Tomographic Universality of the Discrete Wigner Function
Abstract
:1. Introduction
2. The Generalized Pauli Group and Displacement Operators
3. Phase Space Construction and the Wigner Map
4. Tomographic Universality of the Discrete Wigner Function
4.1. Tomographic Property for a Given DPS Partition
4.2. Odd Local Dimensions
4.3. Even Local Dimensions
- 1.
- If , then ;
- 2.
- If , then ;
- 3.
- If , there are no values producing Abelian curves, as can be observed in the example in Figure 1b, where the only Abelian curve is the ray .
- 1.
- If , then ;
- 2.
- If , then ;
- 3.
- If , .
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
- (a)
- Regular curves
- (b)
- Exceptional curves
Appendix C
References
- Wigner, E. On the quantum correction for thermodynamic equilibrium. Phys. Rev. A 1932, 40, 749–759. [Google Scholar] [CrossRef]
- Bloch, F. Zur Theorie des Austauschproblems und der Remanenzerscheinung der Ferromagnetika. Z. für Phys. 1932, 74, 295–335. [Google Scholar] [CrossRef]
- Groenewold, H.J. On the principles of elementary quantum mechanics. Physica 1949, 12, 405–460. [Google Scholar] [CrossRef]
- Moyal, J.E. Quantum mechanics as a statistical theory. Math. Proc. Camb. Philos. Soc. 1947, 45, 99–124. [Google Scholar] [CrossRef]
- Mandel, L.; Wolf, E. Coherence Properties of Optical Fields. Rev. Mod. Phys. 1965, 37, 231–287. [Google Scholar] [CrossRef]
- Barker, J.R.; Murray, S. A quasi-classical formulation of the Wigner function approach to quantum ballistic transport. Phys. Lett. A 1983, 93, 271–274. [Google Scholar] [CrossRef]
- Lin, J.; Chiu, L.C. Quantum theory of electron transport in the Wigner formalism. J. Appl. Phys. 1985, 57, 1373–1376. [Google Scholar] [CrossRef]
- Berry, M.V. Semi-classical mechanics in phase space: A study of Wigner’s function. Philos. Trans. R. Soc. A 1977, 287, 237–271. [Google Scholar] [CrossRef]
- O’Connell, R.F.; Wigner, E.P. Manifestations of Bose and Fermi statistics on the quantum distribution functionfor systems of spin-0 and spin-1/2 particles. Phys. Rev. A 1984, 30, 2613–2618. [Google Scholar] [CrossRef]
- Cohen, M.; Scully, M.O. Joint Wigner distribution for spin-1/2 particles. Foud. Phys. 1986, 16, 295–310. [Google Scholar] [CrossRef]
- Wootters, W.K. A Wigner-function formulation of finite-state quantum mechanics. Ann. Phys. 1987, 176, 1–21. [Google Scholar] [CrossRef]
- Gibbons, K.S.; Hoffman, M.J.; Wootters, W.K. Discrete phase space based on finite fields. Phys. Rev. A 2004, 70, 062101. [Google Scholar] [CrossRef]
- Gottesman, D. The Heisenberg representation of quantum computers. In Group 22: International Colloquium on Group Theoretical Methods in Physics, Proceedings of 22nd International Colloquium, Group22, ICGTMP’98, Hobart, Australia, 13–17 July 1998; Corney, S.P., Delbourgo, R., Jarvis, P.D., Eds.; International Press: Cambridge, MA, USA, 1999; pp. 32–43. [Google Scholar]
- Galvão, E.F. Discrete Wigner functions and quantum computational speedup. Phys. Rev. A 2005, 71, 042302. [Google Scholar] [CrossRef]
- Cormick, C.; Galvão, E.F.; Gottesman, D.; Paz, J.P.; Pittenger, A.O. Classicality in discrete Wigner functions. Phys. Rev. A 2006, 73, 012301. [Google Scholar] [CrossRef]
- Gross, D. Hudson’s theorem for finite-dimensional quantum systems. J. Math. Phys. A 2006, 47, 122107. [Google Scholar] [CrossRef]
- Veitch, V.C.; Ferrie, C.; Gross, D.; Emerson, J. Negative quasi-probability as a resource for quantum computation. New J. Phys. 2012, 14, 113011. [Google Scholar] [CrossRef]
- Raussendorf, R.; Browne, D.E.; Delfosse, N.; Okay, C.; Bermejo-Vega, J. Contextuality and Wigner-function negativity in qubit quantum computation. Phys. Rev. A 2017, 95. [Google Scholar] [CrossRef]
- Schmid, D.; Du, H.; Shelby, J.H.; Pusey, M.F. Uniqueness of Noncontextual Models for Stabilizer Subtheories. Phys. Rev. Lett. 2022, 129, 120403. [Google Scholar] [CrossRef]
- Raussendorf, R.; Okay, C.; Zurel, M.; Feldmann, P. The role of cohomology in quantum computation with magic states. Quantum 2023, 7, 979. [Google Scholar] [CrossRef]
- Saniga, M.; Planat, M.; Rosu, H. Mutually unbiased bases and finite projective planes. J. Opt. B Quantum Semiclass. Opt. 2004, 6, L19–L20. [Google Scholar] [CrossRef]
- Ivanovic, I.D. Geometrical description of quantal state determination. J. Phys. A 1984, 14, 3241–3245. [Google Scholar] [CrossRef]
- Wootters, W.K.; Fields, B.D. Optimal State-Determination by Mutually Unbiased Measurements. Ann. Phys. 1989, 191, 363–381. [Google Scholar] [CrossRef]
- Klappenecker, A.; Rötteler, M. Constructions of mutually unbiased bases. In Lecture Notes in Computer Science Vol. 2948: Finite Fields and Applications, Procceedings of 7th International Conference, Fq7, Toulouse, France, 5–9 May 2003; Mullen, G., Poli, A., Stichtenoth, H., Eds.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 137–144. [Google Scholar]
- Bandyopadhyay, S.; Boykin, P.O.; Roychowdhury, V.; Vatan, F. A new proof for the existence of mutually unbiased bases. Algorithmica 2002, 34, 512–528. [Google Scholar] [CrossRef]
- Klimov, A.B.; Romero, J.L.; Björk, G.; Sánchez-Soto, L.L. Discrete phase-space structure of n-qubit mutually unbiased bases. Ann. Phys. 2009, 324, 53–72. [Google Scholar] [CrossRef]
- Klimov, A.B.; Romero, J.L.; Björk, G.; Sánchez-Soto, L.L. Geometrical approach to mutually unbiased bases. J. Phys. A Math. Gen. 2007, 40, 9177. [Google Scholar] [CrossRef]
- Pittenger, A.O.; Rubin, M.H. Wigner functions and separability for finite systems. J. Phys. A Math. Gen. 2005, 38, 6005–6036. [Google Scholar] [CrossRef]
- Delfosse, N.; Guerin, P.A.; Bian, J.; Raussendorf, R. Wigner Function Negativity and Contextuality in Quantum Computation on Rebits. Phys. Rev. X 2015, 5, 021003. [Google Scholar] [CrossRef]
- Howard, M.; Wallman, J.; Vietch, V.; Emerson, J. Contextuality supplies the ‘magic’ for quantum computation. Nature 2014, 510, 351–355. [Google Scholar] [CrossRef] [PubMed]
- Delfosse, N.; Okay, C.; Bermejo-Vega, J.; Browne, D.E.; Raussendorf, R. Equivalence between contextuality and negativity of the Wigner function for qudits. New J. Phys. 2017, 19, 123024. [Google Scholar] [CrossRef]
- Muñoz, C.; Klimov, A.B.; Sanchez-Soto, L.L. Discrete phase-space structures and Wigner functions for N qubits. Quantum Inf. Process. 2017, 16, 158. [Google Scholar] [CrossRef]
- Lidl, R.; Niederreiter, H. Introduction to Finite Fields and Their Applications, 2nd ed.; Cambridge University Press: Cambridge, UK, 1994; ISBN 978-052-146-094-1. [Google Scholar]
- Schwinger, J. Unitary Operator Bases. Proc. Natl. Acad. Sci. USA 1960, 46, 570–579. [Google Scholar] [CrossRef] [PubMed]
- Schwinger, J. Unitary Transformations and the Action Principle. Proc. Natl. Acad. Sci. USA 1960, 46, 883–897. [Google Scholar] [CrossRef]
- Lawrence, J.; Brukner, Č.; Zeilinger, A. Mutually unbiased binary observable sets on N qubits. Phys. Rev. A 2002, 65, 032320. [Google Scholar] [CrossRef]
- Romero, J.L.; Björk, G.; Klimov, A.B.; Sánchez-Soto, L.L. Structure of the sets of mutually unbiased bases for N qubits. Phys. Rev. A 2005, 72, 062310. [Google Scholar] [CrossRef]
- Durt, T. About Weyl and Wigner tomography in finite-dimensional Hilbert spaces. Open Sys. Inf. Dyn. 2006, 13, 403–413. [Google Scholar] [CrossRef]
- Vourdas, A. Quantum systems with finite Hilbert space. Rep. Prog. Phys. 2004, 67, 267. [Google Scholar] [CrossRef]
- Vourdas, A. Factorization in finite quantum systems. J. Phys. A Math. Gen. 2003, 36, 5645. [Google Scholar] [CrossRef]
- Paz, J.P.; Roncaglia, A.J.; Saraceno, M. Qubits in phase space: Wigner-function approach to quantum-error correction and the mean-king problem. Phys. Rev. A 2005, 72, 012309. [Google Scholar] [CrossRef]
- Bjork, G.; Klimov, A.B.; Sanchez-Soto, L.L. The discrete Wigner function. In Progress in Optics, 1st ed.; Wolf, E., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 51, pp. 469–516. [Google Scholar] [CrossRef]
- Klimov, A.B.; Muñoz, C.; Romero, J.L. Geometrical approach to the discrete Wigner function in prime power dimensions. J. Phys. A Math. Gen. 2006, 39, 14471. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sainz, I.; Camacho, E.; García, A.; Klimov, A.B. Tomographic Universality of the Discrete Wigner Function. Quantum Rep. 2024, 6, 58-73. https://doi.org/10.3390/quantum6010005
Sainz I, Camacho E, García A, Klimov AB. Tomographic Universality of the Discrete Wigner Function. Quantum Reports. 2024; 6(1):58-73. https://doi.org/10.3390/quantum6010005
Chicago/Turabian StyleSainz, Isabel, Ernesto Camacho, Andrés García, and Andrei B. Klimov. 2024. "Tomographic Universality of the Discrete Wigner Function" Quantum Reports 6, no. 1: 58-73. https://doi.org/10.3390/quantum6010005
APA StyleSainz, I., Camacho, E., García, A., & Klimov, A. B. (2024). Tomographic Universality of the Discrete Wigner Function. Quantum Reports, 6(1), 58-73. https://doi.org/10.3390/quantum6010005