On Bell’s Inequality in -Symmetric Quantum Systems
Abstract
1. Introduction
2. -Symmetric Qubits
3. Proof of Bell’s Inequality in -Symmetric Quantum Theory
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Bell, J.S. On the Einstein Podolsky Rosen paradox. Phys. Phys. Fiz. 1964, 1, 195–200. [Google Scholar] [CrossRef]
- Bell, J.S.; Aspect, A. Speakable and Unspeakable in Quantum Mechanics: Collected Papers on Quantum Philosophy, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Bell, J.S. On the Problem of Hidden Variables in Quantum Mechanics. Rev. Mod. Phys. 1966, 38, 447–452. [Google Scholar] [CrossRef]
- Blaylock, G. The EPR paradox, Bell’s inequality, and the question of locality. Am. J. Phys. 2010, 78, 111–120. [Google Scholar] [CrossRef]
- Clauser, J.F.; Horne, M.A.; Shimony, A.; Holt, R.A. Proposed Experiment to Test Local Hidden-Variable Theories. Phys. Rev. Lett. 1969, 23, 880–884. [Google Scholar] [CrossRef]
- Cirel’Son, B.S. Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 1980, 4, 93–100. [Google Scholar] [CrossRef]
- Aspect, A.; Grangier, P.; Roger, G. Experimental Realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A New Violation of Bell’s Inequalities. Phys. Rev. Lett. 1982, 49, 91–94. [Google Scholar] [CrossRef]
- Aspect, A. Bell’s inequality test: More ideal than ever. Nature 1999, 398, 189–190. [Google Scholar] [CrossRef]
- Aspect, A.; Dalibard, J.; Roger, G. Experimental Test of Bell’s Inequalities Using Time-Varying Analyzers. Phys. Rev. Lett. 1982, 49, 1804–1807. [Google Scholar] [CrossRef]
- Gröblacher, S.; Paterek, T.; Kaltenbaek, R.; Brukner, Č.; Żukowski, M.; Aspelmeyer, M.; Zeilinger, A. An experimental test of non-local realism. Nature 2007, 446, 871–875. [Google Scholar] [CrossRef]
- Giustina, M.; Versteegh, M.A.M.; Wengerowsky, S.; Handsteiner, J.; Hochrainer, A.; Phelan, K.; Steinlechner, F.; Kofler, J.; Larsson, J.A.; Abellán, C.; et al. Significant-Loophole-Free Test of Bell’s Theorem with Entangled Photons. Phys. Rev. Lett. 2015, 115, 250401. [Google Scholar] [CrossRef] [PubMed]
- Rauch, D.; Handsteiner, J.; Hochrainer, A.; Gallicchio, J.; Friedman, A.S.; Leung, C.; Liu, B.; Bulla, L.; Ecker, S.; Steinlechner, F.; et al. Cosmic Bell Test Using Random Measurement Settings from High-Redshift Quasars. Phys. Rev. Lett. 2018, 121, 080403. [Google Scholar] [CrossRef] [PubMed]
- Boole, G. XII. On the theory of probabilities. Philos. Trans. R. Soc. Lond. 1862, 152, 225–252. [Google Scholar]
- Boole, G. An Investigation of the Laws of Thought: On Which Are Founded the Mathematical Theories of Logic and Probabilities; Cambridge Library Collection—Mathematics; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar] [CrossRef]
- Maccone, L. A simple proof of Bell’s inequality. Am. J. Phys. 2013, 81, 854–859. [Google Scholar] [CrossRef]
- Preskill, J. Lecture Notes for ph219/cs219: Quantum Information and Computation. Available online: http://theory.caltech.edu/~preskill/ph219/ph219_2020-21.html (accessed on 30 July 2021).
- Mermin, N. Bringing Home the Atomic World: Quantum Mysteries for Anybody. Am. J. Phys. 1981, 49, 940–943. [Google Scholar] [CrossRef]
- Einstein, A.; Podolsky, B.; Rosen, N. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? Phys. Rev. 1935, 47, 777–780. [Google Scholar] [CrossRef]
- Bohm, D. Quantum Theory; Courier Corporation: Chelmsford, MA, USA, 2012. [Google Scholar]
- Walleczek, J.; Grössing, G. The Non-Signalling theorem in generalizations of Bell’s theorem. J. Phys. Conf. Ser. 2014, 504, 012001. [Google Scholar] [CrossRef]
- Bender, C.M.; Brody, D.C.; Jones, H.F. Erratum: Complex Extension of Quantum Mechanics [Phys. Rev. Lett. 89, 270401 (2002)]. Phys. Rev. Lett. 2004, 92, 119902. [Google Scholar] [CrossRef]
- Bender, C.M.; Boettcher, S. Real Spectra in Non-Hermitian Hamiltonians Having Symmetry. Phys. Rev. Lett. 1998, 80, 5243–5246. [Google Scholar] [CrossRef]
- Miri, M.A.; Alù, A. Exceptional points in optics and photonics. Science 2019, 363, 7709. [Google Scholar] [CrossRef]
- Schindler, J.; Li, A.; Zheng, M.C.; Ellis, F.M.; Kottos, T. Experimental study of active LRC circuits with symmetries. Phys. Rev. A 2011, 84, 040101. [Google Scholar] [CrossRef]
- Rüter, C.E.; Makris, K.G.; El-Ganainy, R.; Christodoulides, D.N.; Segev, M.; Kip, D. Observation of parity-time symmetry in optics. Nat. Phys. 2010, 6, 192–195. [Google Scholar] [CrossRef]
- Hang, C.; Huang, G.; Konotop, V.V. Symmetry with a System of Three-Level Atoms. Phys. Rev. Lett. 2013, 110, 083604. [Google Scholar] [CrossRef]
- Guo, A.; Salamo, G.J.; Duchesne, D.; Morandotti, R.; Volatier-Ravat, M.; Aimez, V.; Siviloglou, G.A.; Christodoulides, D.N. Observation of -Symmetry Breaking in Complex Optical Potentials. Phys. Rev. Lett. 2009, 103, 093902. [Google Scholar] [CrossRef]
- Bender, C.M.; Berntson, B.K.; Parker, D.; Samuel, E. Observation of PT phase transition in a simple mechanical system. Am. J. Phys. 2013, 81, 173–179. [Google Scholar] [CrossRef]
- Chen, S.L.; Chen, G.Y.; Chen, Y.N. Increase of entanglement by local PT-symmetric operations. Phys. Rev. A 2014, 90, 054301. [Google Scholar] [CrossRef]
- Pati, A.K. Violation of Invariance of Entanglement Under Local PT Symmetric Unitary. arXiv 2014, arXiv:1404.6166. [Google Scholar]
- Pati, A.K. Entanglement in non-Hermitian quantum theory. Pramana 2009, 73, 485–498. [Google Scholar] [CrossRef][Green Version]
- Lee, Y.C.; Hsieh, M.H.; Flammia, S.T.; Lee, R.K. Local Symmetry Violates the No-Signaling Principle. Phys. Rev. Lett. 2014, 112, 130404. [Google Scholar] [CrossRef] [PubMed]
- Dogra, S.; Melnikov, A.A.; Paraoanu, G.S. Quantum simulation of parity-time symmetry breaking with a superconducting quantum processor. Commun. Phys. 2021, 4, 26. [Google Scholar] [CrossRef]
- Japaridze, G.; Pokhrel, D.; Wang, X.Q. No-signaling principle and Bell inequality in-symmetric quantum mechanics. J. Phys. A 2017, 50, 185301. [Google Scholar] [CrossRef]
- Sachs, R.G. The Physics of Time Reversal; University of Chicago Press: Chicago, IL, USA, 1987. [Google Scholar]
- Zhu, X.Y.; Tao, Y.H. Conventional Bell Basis in PT-symmetric Quantum Theory. Int. J. Theor. Phys. 2018, 57, 3839–3849. [Google Scholar] [CrossRef]
- Bender, C.M.; Hassanpour, N.; Hook, D.W.; Klevansky, S.P.; Sünderhauf, C.; Wen, Z. Behavior of eigenvalues in a region of broken symmetry. Phys. Rev. A 2017, 95, 052113. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhosale, S.S.; Rath, B.; Panigrahi, P.K.
On Bell’s Inequality in
Bhosale SS, Rath B, Panigrahi PK.
On Bell’s Inequality in
Bhosale, Sarang S., Biswanath Rath, and Prasanta K. Panigrahi.
2021. "On Bell’s Inequality in
Bhosale, S. S., Rath, B., & Panigrahi, P. K.
(2021). On Bell’s Inequality in