Magnesium Ions Depolarize the Neuronal Membrane via Quantum Tunneling through the Closed Channels
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
4. Conclusions
Funding
Conflicts of Interest
References
- Schwalfenberg, G.K.; Genuis, S.J. The Importance of Magnesium in Clinical Healthcare. Scientifica 2017, 2017, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Dribben, W.H.; Eisenman, L.N.; Mennerick, S. Magnesium induces neuronal apoptosis by suppressing excitability. Cell Death Dis. 2010, 1, e63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stanojevic, M.; Lopicic, S.; Spasic, S.; Aleksic, I.; Nedeljkov, V.; Prostran, M. Effects of high extracellular magnesium on electrophysiological properties of membranes of Retzius neurons in leech Haemopis sanguisuga. J. Elem. 2015, 21, 1. [Google Scholar] [CrossRef]
- Qaswal, A.B. Quantum tunneling of ions through the closed voltage-gated channels of the biological membrane: A mathematical model and implications. Quantum Rep. 2019, 1, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Qaswal, A.B. A Theoretical study to explain the referred pain phenomenon and its characteristics via quantum tunneling of potassium ions through the channels of neuronal membrane. NeuroQuantology 2019, 17, 43–52. [Google Scholar]
- Qaswal, A.B. Lithium stabilizes the mood of bipolar patients by depolarizing the neuronal membrane via quantum tunneling through the sodium channels. Clin. Psychopharmacol. Neurosci. Available online: http://www.cpn.or.kr/journal/view.html?uid=986&vmd=Full&. (accessed on 22 December 2019).
- Qaswal, A.B. The myelin sheath maintains the spatiotemporal fidelity of action potentials by eliminating the effect of quantum tunneling of potassium ions through the closed channels of the neuronal membrane. Quantum Rep. 2019, 1, 287–294. [Google Scholar] [CrossRef] [Green Version]
- Brookfield, K.F.; Vinson, A. Magnesium sulfate use for fetal neuroprotection. Curr. Opin. Obstet. Gynecol. 2019, 31, 110–115. [Google Scholar] [CrossRef]
- Jameson, R.A.; Bernstein, H.B. Magnesium sulfate and novel therapies to promote neuroprotection. Clin. Perinatol. 2019, 46, 187–201. [Google Scholar] [CrossRef]
- Magee, L.A.; De Silva, D.A.; Sawchuck, D.; Synnes, A.; Von Dadelszen, P. No. 376-magnesium sulphate for fetal neuroprotection. J. Obstet. Gynaecol. Can. 2019, 41, 505–522. [Google Scholar] [CrossRef]
- Chouinard, G.; Beauclair, L.; Geiser, R.; Etienne, P. A pilot study of magnesium aspartate hydrochloride (Magnesiocard®) as a mood stabilizer for rapid cycling bipolar affective disorder patients. Prog. Neuro-Psychopharmacol. Boil. Psychiatry 1990, 14, 171–180. [Google Scholar] [CrossRef]
- Kadir, L.A.; Stacey, M.; Barrett-Jolley, R. Emerging roles of the membrane potential: Action beyond the action potential. Front. Physiol. 2018, 9, 9. [Google Scholar]
- Macfarlane, S.N.; Sontheimer, H. Changes in ion channel expression accompany cell cycle progression of spinal cord astrocytes. Glia 2000, 30, 39–48. [Google Scholar] [CrossRef]
- Stillwell, E.F.; Cone, C.M.; Cone, C.D. Stimulation of DNA synthesis in cns neurones by sustained depolarisation. Nat. New Boil. 1973, 246, 110–111. [Google Scholar] [CrossRef] [PubMed]
- Cone, C.D. Induction of mitosis in mature neurons in central nervous system by sustained depolarization. Science 1976, 192, 155–158. [Google Scholar] [CrossRef] [PubMed]
- Urrego, D.; Tomczak, A.P.; Zahed, F.; Stühmer, W.; Pardo, L.A. Potassium channels in cell cycle and cell proliferation. Philos. Trans. R. Soc. B Boil. Sci. 2014, 369, 20130094. [Google Scholar] [CrossRef] [Green Version]
- Oelstrom, K.; Goldschen-Ohm, M.P.; Holmgren, M.; Chanda, B. Evolutionarily conserved intracellular gate of voltage-dependent sodium channels. Nat. Commun. 2014, 5, 3420. [Google Scholar] [CrossRef] [Green Version]
- Serway, R.A.; Moses, C.J.; Moyer, C.A. Modern Physics; Thomson Learning: Boston, MA, USA, 2005. [Google Scholar]
- Chowdhury, S.; Chanda, B. Estimating the voltage-dependent free energy change of ion channels using the median voltage for activation. J. Gen. Physiol. 2011, 139, 3–17. [Google Scholar] [CrossRef]
- Hall, J.E. Guyton and Hall Textbook of Medical Physiology E-Book; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Chen, F.; Hihath, J.; Huang, Z.; Li, X.; Tao, N. Measurement of single-molecule conductance. Annu. Rev. Phys. Chem. 2007, 58, 535–564. [Google Scholar] [CrossRef] [Green Version]
- Pickard, W.F. Generalizations of the Goldman-Hodgkin-Katz equation. Math. Biosci. 1976, 30, 99–111. [Google Scholar] [CrossRef]
- González, C.; Contreras, G.F.; Peyser, A.; Larsson, P.; Neely, A.; Latorre, R. Voltage sensor of ion channels and enzymes. Biophys. Rev. 2011, 4, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feigenspan, A.; Dedek, K.; Weiler, R.; Thanos, S.; Schlich, K. Expression and biophysical characterization of voltage-gated sodium channels in axons and growth cones of the regenerating optic nerve. Investig. Ophthalmol. Vis. Sci. 2010, 51, 1789–1799. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.M.; Favre, I.; Schild, L.; Moczydlowski, E. On the structural basis for size-selective permeation of organic cations through the voltage-gated sodium channel: Effect of alanine mutations at the DEKA locus on selectivity, inhibition by Ca2+ and H+, and molecular sieving. J. Gen. Physiol. 1997, 110, 693–715. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, J.H. Action Potential Initiation and Conduction in Axons; Elsevier: Amsterdam, The Netherlands, 2009; pp. 23–29. [Google Scholar]
- Bazydlo, L.A.L.; Needham, M.; Harris, N.S. Calcium, magnesium, and phosphate. Lab. Med. 2014, 45, e44–e50. [Google Scholar] [CrossRef]
Magnesium Ion | Charge (C) | Mass (Kg) | Kinetic Energy (J) | Tunneling Probability | CQMg 1 (mS) | CQMg(Mg) 2 (mS/cm2) |
---|---|---|---|---|---|---|
Extracellular | 3.2 × 10−19 | 4.04 × 10−26 | 3.09 × 10−20 | 1.54 × 10−8 | 2.39 × 10−10 | 1.2 |
Intracellular | 3.2 × 10−19 | 4.04 × 10−26 | 0.21 × 10−20 | 5.13 × 10−21 | 7.96 × 10−23 | 3.98 × 10−13 |
Sodium Ion | Charge (C) | Mass (Kg) | Kinetic Energy (J) | Tunneling Probability | CQNa 1 (mS) | CQM(Na) 2 (mS/cm2) |
---|---|---|---|---|---|---|
Extracellular | 1.6 × 10−19 | 3.8 × 10−26 | 1.65 × 10−20 | 7.36 × 10−14 | 2.85 ×10−15 | 1.43 ×10−5 |
Intracellular | 1.6 × 10−19 | 3.8 × 10−26 | 0.21 × 10−20 | 2.34 × 10−20 | 9.1 ×10−22 | 4.55 ×10−12 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barjas Qaswal, A. Magnesium Ions Depolarize the Neuronal Membrane via Quantum Tunneling through the Closed Channels. Quantum Rep. 2020, 2, 57-63. https://doi.org/10.3390/quantum2010005
Barjas Qaswal A. Magnesium Ions Depolarize the Neuronal Membrane via Quantum Tunneling through the Closed Channels. Quantum Reports. 2020; 2(1):57-63. https://doi.org/10.3390/quantum2010005
Chicago/Turabian StyleBarjas Qaswal, Abdallah. 2020. "Magnesium Ions Depolarize the Neuronal Membrane via Quantum Tunneling through the Closed Channels" Quantum Reports 2, no. 1: 57-63. https://doi.org/10.3390/quantum2010005
APA StyleBarjas Qaswal, A. (2020). Magnesium Ions Depolarize the Neuronal Membrane via Quantum Tunneling through the Closed Channels. Quantum Reports, 2(1), 57-63. https://doi.org/10.3390/quantum2010005