# Distance between Bound Entangled States from Unextendible Product Bases and Separable States

^{1}

^{2}

^{3}

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Bound Entangled States from Unextendible Product Bases

## 3. Entanglement Witnesses

## 4. The Gilbert Algorithm

- Choose at random a pure product state ${\rho}_{2}$.
- Maximize $\mathrm{tr}({\rho}_{0}-{\rho}_{1})({\rho}_{2}-{\rho}_{1})$, or go to step 1 if $\mathrm{tr}({\rho}_{0}-{\rho}_{1})({\rho}_{2}-{\rho}_{1})\le 0$.
- Find the point ${\rho}_{1}^{\prime}$, which lies on line ${\rho}_{1}d-{\rho}_{2}$, and minimizes the Hilbert–Schmidt distance $D(\sigma ,\rho )=\sqrt{\mathrm{tr}{(\rho -\sigma )}^{2}}$.
- Update ${\rho}_{1}\leftarrow {\rho}_{1}^{\prime}$.
- Go to point 1 until a given HALT condition is met.

## 5. Numerical Results

## 6. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Brukner, Č.; ukowski, M.Z.; Pan, J.-W.; Zeilinger, A. Bell’s inequalities and quantum communication complexity. Phys. Rev. Lett.
**2004**, 92, 127901. [Google Scholar] [CrossRef] [PubMed][Green Version] - Bennett, C.H.; Popescu, S.; Rohrlich, D.; Smolin, J.A.; Thapiyal, A.V. Exact and asymptotic measures of multipartite pure-state entanglement. Phys. Rev. A
**2000**, 63, 012307. [Google Scholar] [CrossRef][Green Version] - Horodecki, M.; Horodecki, P.; Horodecki, R. Mixed-State Entanglement and Distillation: Is there a “Bound” Entanglement in Nature? Phys. Rev. Lett.
**1998**, 80, 5239. [Google Scholar] [CrossRef][Green Version] - Horodecki, P. Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A
**1997**, 232, 333–339. [Google Scholar] [CrossRef][Green Version] - Horodecki, M.; Horodecki, P.; Horodecki, R. Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps. Phys. Let. A
**2001**, 283, 1–7. [Google Scholar] [CrossRef][Green Version] - Jamiołkowski, A. Linear transformations which preserve trace and positive semidefiniteness of operators. Rep. Math. Phys.
**1972**, 3, 275–278. [Google Scholar] [CrossRef] - Choi, M.D. Completely positive linear maps on complex matrices. Linear Algebra Appl.
**1975**, 10, 285. [Google Scholar] [CrossRef][Green Version] - Terhal, B.M. Bell inequalities and the separability criterion. Phys. Lett. A
**2000**, 271, 319. [Google Scholar] [CrossRef][Green Version] - Bandyopadhyay, S.; Ghosh, S.; Roychowdhury, V. Non-full-rank bound entangled states satisfying the range criterion. Phys. Rev. A
**2005**, 71, 012316. [Google Scholar] [CrossRef][Green Version] - Pandya, P.; Sakarya, O.; Wieśniak, M. Hilbert-Schmidt distance and entanglement witnessing. arxiv
**2018**, arXiv:1811.06599. [Google Scholar] - Gilbert, E.G. An iterative procedure for computing the minimum of a quadratic form on a convex set. SIAM J. Control.
**1966**, 4, 61–80. [Google Scholar] [CrossRef] - Bertlmann, R.; Durstberg, K.; Heismayr, B.C.; Krammer, P. Optimal entanglement witnesses for qubits and qutrits. Phys. Rev. A
**2005**, 72, 052331. [Google Scholar] [CrossRef][Green Version] - DiVincenzo, D.P.; Mor, T.; Shor, P.W.; Smolin, J.A.; Terhal, B.M. Unextendible Product Bases and Bound Entanglement. Phys. Rev. Lett.
**1999**, 82, 5385. [Google Scholar] - DiVincenzo, D.P.; Mor, T.; Shor, P.W.; Smolin, J.A.; Terhal, B.M. Unextendible product bases, uncompletable product bases and bound entanglement. Commun. Math. Phys.
**2003**, 238, 379. [Google Scholar] [CrossRef][Green Version] - Brukner, Č.; Vedral, V. Macroscopic Thermodynamical Witnesses of Quantum Entanglement, preprint arxiv:quant.ph/0406040; Tóth, G. Entanglement witnesses in spin models. Phys. Rev. A
**2005**, 71, 010301. [Google Scholar] - Życzkowski, K.; Sommers, H.-J. Induced measures in the space of mixed quantum states. J. Phys. A Math. Theor.
**2001**, 34, 7111. [Google Scholar] [CrossRef][Green Version] - Witte, C.; Trucks, M. A new entanglement measure induced by the Hilbert–Schmidt norm. Phys. Lett. A
**1999**, 257, 14. [Google Scholar] [CrossRef][Green Version] - Ozawa, M. Entanglement measures and the Hilbert–Schmidt distance. Phys. Lett. A
**2000**, 286, 158. [Google Scholar] [CrossRef][Green Version]

**Figure 1.**Visualization of the structure of bound entangled states from unextendible product bases considered in this article. The size of the central tile is $(n-l+1)(m-o+1)$.

**Figure 2.**The comparison between last distance between a UPB BE state found by the Gilbert algorithm after 25,100 corrections ($3\times 3$, top left), 4000 corrections ($4\times 4$, top right, and $5\times 5$, bottom left), and 3500 corrections ($6\times 6$, bottom right). Red points correspond to distances from Equation (3) with BGR witnesses, the black points show the distance to the hyperplanes of the witnesses found by the Gilbert algorithm. The last distance found by the algorithm is marked with blue points and the extrapolation of its decay is represented with green points. The data are segregated by the size of the central tile.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Wieśniak, M.; Pandya, P.; Sakarya, O.; Woloncewicz, B.
Distance between Bound Entangled States from Unextendible Product Bases and Separable States. *Quantum Rep.* **2020**, *2*, 49-56.
https://doi.org/10.3390/quantum2010004

**AMA Style**

Wieśniak M, Pandya P, Sakarya O, Woloncewicz B.
Distance between Bound Entangled States from Unextendible Product Bases and Separable States. *Quantum Reports*. 2020; 2(1):49-56.
https://doi.org/10.3390/quantum2010004

**Chicago/Turabian Style**

Wieśniak, Marcin, Palash Pandya, Omer Sakarya, and Bianka Woloncewicz.
2020. "Distance between Bound Entangled States from Unextendible Product Bases and Separable States" *Quantum Reports* 2, no. 1: 49-56.
https://doi.org/10.3390/quantum2010004