# Descriptions of Relativistic Dynamics with World Line Condition

^{1}

^{2}

^{3}

^{4}

^{5}

^{*}

## Abstract

**:**

In memory of E.C.G. Sudarshan, who was interested, for almost three decades, in problems of covariant description of relativistic interacting particles.

## 1. Introduction

## 2. A Geometrical Formulation of Dirac’s Problem

**Remark**

**1.**

## 3. Newtonian Realization in the Instant Form

## 4. The Eleventh-Generator Formalism

## 5. A “Frozen Phase-Space” Realization

## 6. A Lagrangian Solution to the Dirac Problem

**Remark**

**2.**

## 7. Conclusions

## Author Contributions

## Funding

## Acknowledgments

## Conflicts of Interest

## References

- Dirac, P.A.M. Forms of relativistic dynamics. Rev. Mod. Phys.
**1949**, 21, 392–399. [Google Scholar] [CrossRef] - Currie, D.G.; Jordan, T.F.; Sudarshan, E.C.G. Relativistic Invariance and Hamiltonian Theories of Interacting Particles. Rev. Mod. Phys.
**1963**, 35, 350–375. [Google Scholar] [CrossRef] - Sudarshan, E.C.G. Action-at-a-distance. Fields Quanta
**1972**, 2, 175–216. [Google Scholar] - Komar, A. Interacting Relativistic Particles. Phys. Rev. D
**1978**, 18, 1887–1893. [Google Scholar] [CrossRef] - Rohrlich, F. Relativistic Hamiltonian dynamics I. Classical mechanics. Ann. Phys.
**1979**, 117, 292–322. [Google Scholar] [CrossRef] - Todorov, I.T. Dynamics of relativistic point particles as a problem with constraints. In JINR-E–2-10125, USSR; Joint Inst. for Nuclear Research: Dubna, Russia, 1976. [Google Scholar]
- Dirac, P.A.M. Lectures on Quantum Mechanics; Belfer Graduate School of Science, Yeshiva University: New York, NY, USA, 1964. [Google Scholar]
- Mukunda, N.; Sudarshan, E.C.G. Forms of relativistic dynamics with world lines. Phys. Rev. D
**1981**, 23, 2210–2217. [Google Scholar] [CrossRef] - Balachandran, A.P.; Marmo, G.; Mukunda, N.; Nilssen, J.S.; Simoni, A.; Sudarshan, E.C.G.; Zaccaria, F. Unified geometrical approach to relativistic particle dynamics. J. Math. Phys.
**1984**, 25, 167–176. [Google Scholar] [CrossRef] - Balachandran, A.P.; Dominici, D.; Marmo, G.; Mukunda, N.; Nilssen, J.S.; Samuel, J.; Sudarshan, E.C.G.; Zaccaria, F. Separability in relativistic Hamiltonian particle dynamics. Phys. Rev. D
**1982**, 26, 3492–3498. [Google Scholar] [CrossRef] - Abraham, R.; Marsden, J.E. Foundations of Mechanics; Benjamin/Cummings Publishing Company: Reading, MA, USA, 1978. [Google Scholar]
- Giordano, M.; Marmo, G.; Simoni, A. Symplectic and Lagrangian Realization of Poisson Manifolds. In Quantization, Coherent States, and Complex Structures; Antoine, J.-P., Twareque Ali, S., Lisiecki, W., Mladenov, I.M., Odzijewicz, A., Eds.; Springer: Boston MA, USA, 1995; pp. 159–171. [Google Scholar]
- Grigore, D.R. On manifest covariance conditions in the Lagrangian formalism. Int. J. Mod. Phys. A
**1992**, 7, 4073–4089. [Google Scholar] [CrossRef] - Marmo, G.; Mukunda, N.; Sudarshan, E.C.G. Relativistic particle dynamics-Lagrangian proof of the no-interaction theorem. Phys. Rev. D
**1984**, 30, 2110–2116. [Google Scholar] [CrossRef] - Morandi, G.; Ferrario, C.; Lo Vecchio, G.; Marmo, G.; Rubano, C. The inverse problem in the calculus of variations and the geometry of the tangent bundle. Phys. Rep.
**1990**, 188, 147–284. [Google Scholar] [CrossRef] - Cariñena, J.F.; Ibort, A.; Marmo, G.; Morandi, G. Geometry from Dynamics, Classical and Quantum; Springer: Dordrecht, The Netherlands, 2015. [Google Scholar]
- Kolar, I.; Slovak, J.; Michor, P.W. Natural Operations in Differential Geometry; Springe: Berlin, Germany, 1993. [Google Scholar]
- Balachandran, A.P.; Marmo, G.; Stern, A. A Lagrangian approach to the No-Interaction theorem. Il Nuovo Cimento
**1982**, 69, 175–186. [Google Scholar] [CrossRef] - Arnol’d, V.I. Mathematical Methods of Classical Mechanics; Springer: Berlin, Germany, 1978. [Google Scholar]
- Asorey, M.; Ciaglia, F.M.; Di Cosmo, F.; Ibort, A.; Marmo, G. Covariant Jacobi brackets for test particles. Mod. Phys. Lett. A
**2017**, 32, 1750122-15. [Google Scholar] [CrossRef] - Kirillov, A.A. Local Lie algebras. Russ. Math. Surv.
**1976**, 31, 55–75. [Google Scholar] [CrossRef] - Bergmann, P.G.; Komar, A.B. Status Report on the quantization of the gravitational field. In Recent Developments in General Relativity; Pergamon Press: New York, NY, USA, 1962. [Google Scholar]
- Dubrovin, B.A.; Giordano, M.; Marmo, G.; Simoni, A. Poisson brackets on presymplectic manifolds. Int. J. Mod. Phys. A
**1993**, 8, 3747–3771. [Google Scholar] [CrossRef] - De Ritis, R.; Marmo, G.; Preziosi, B. A New Look at Relativity Transformations. Gen. Relat. Gravit.
**1999**, 31, 1501–1517. [Google Scholar] [CrossRef] - Bhamathi, G.; Sudarshan, E.C.G. Time as dynamical variable. Phys. Lett. A
**2003**, 317, 359–362. [Google Scholar] [CrossRef] - Sudarshan, E.C.G.; Mukunda, N. Forms of Relativistic Dynamics with World Line Condition and Separability. Found. Phys.
**1983**, 13, 385–393. [Google Scholar] [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Ciaglia, F.M.; Di Cosmo, F.; Ibort, A.; Marmo, G.
Descriptions of Relativistic Dynamics with World Line Condition. *Quantum Rep.* **2019**, *1*, 181-192.
https://doi.org/10.3390/quantum1020016

**AMA Style**

Ciaglia FM, Di Cosmo F, Ibort A, Marmo G.
Descriptions of Relativistic Dynamics with World Line Condition. *Quantum Reports*. 2019; 1(2):181-192.
https://doi.org/10.3390/quantum1020016

**Chicago/Turabian Style**

Ciaglia, Florio Maria, Fabio Di Cosmo, Alberto Ibort, and Giuseppe Marmo.
2019. "Descriptions of Relativistic Dynamics with World Line Condition" *Quantum Reports* 1, no. 2: 181-192.
https://doi.org/10.3390/quantum1020016