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Abstract: In this paper, a generalized form of relativistic dynamics is presented. A realization of
the Poincaré algebra is provided in terms of vector fields on the tangent bundle of a simultaneity
surface in R4. The construction of this realization is explicitly shown to clarify the role of the
commutation relations of the Poincaré algebra versus their description in terms of Poisson brackets in
the no-interaction theorem. Moreover, a geometrical analysis of the “eleventh generator” formalism
introduced by Sudarshan and Mukunda is outlined, this formalism being at the basis of many
proposals which evaded the no-interaction theorem.

Keywords: relativistic dynamics; no-interaction theorem; world line condition

In memory of E.C.G. Sudarshan, who was interested, for almost three decades, in problems of covariant
description of relativistic interacting particles.

1. Introduction

Seventy years ago, Dirac [1] argued that a covariant description of relativistic dynamics means to
find a realization of the Lie algebra of the Poincaré group in terms of observables and a Poisson bracket.
In the so-called instant form, Dirac argued that the role of the single Hamiltonian in non relativistic
dynamics should be replaced by four Hamiltonians, one of them being the total energy of the system,
the other three being the boosts. Quoting Dirac, “the equations of motion should be expressible in the
Hamiltonian form. This is necessary for a transition to the quantum theory to be possible.”

All subsequent papers, therefore, always assumed the realization of the Poincaré algebra to be
given in terms of Poisson Brackets on dynamical variables on a carrier space which would attribute
three positions and three momenta (or velocities) to each particle. The additional requirement that
every particle evolution would be associated with an invariant world-line on space-time, gave rise
to the world-line condition and, in the hands of Sudarshan and collaborators, ended up with the
no-interaction theorem [2]. For the sake of clarity, let us recall what are the assumptions at the base of
this theorem: The physical system is described in the canonical formalism by a phase space with an
associated Poisson bracket; the three-dimensional position coordinates of each particle at a common
physical time (instant form of dynamics) represent half of a system of canonical variables for this phase
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space; under the Euclidean subgroup of the Poincaré group (characteristic of the instant form) the
canonical and geometrical transformation laws for these coordinates coincide; if in any state of motion,
as seen from a given reference frame, the world-lines of the particles are drawn in space-time, then the
canonical transformations which relates this description with the one seen from a different frame
preserve the objective reality of these lines. These conditions express the two aspects of relativistic
invariance in the description of a physical system: From one point of view physical laws have to be
invariant under changes of reference frames (relativistic invariance); on the other hand some physical
quantities transform in a specific way under changes of reference frames due to the action of the
Lorentz group on space-time events (manifest invariance). Then the no-interaction theorem states that,
when considering a system of particles, the only dynamical evolution which is compatible with the
above assumptions is the free dynamical evolution. This conclusion is in agreement with the relativistic
principle of constancy of the speed of light, which forbids instantaneous interactions propagating
faster than the speed of light. These results have supported the development of field theories: Particles
locally exchange energy and momenta with fields which have their own degrees of freedom and their
own dynamics.

Later on, in the 1980s, many relativists and particle physicists took up the problem of providing a
covariant description of relativistic interacting particles without the intervention of fields, that is, a kind
of “action-at-a-distance” covariant under the Poincaré group (For a detailed discussion about the
meaning of an action-at-a-distance in the context of classical and quantum mechanics we refer to
Reference [3], where a comparison with local field theories is also presented). In these attempts (see,
for instance, References [4–6]) interactions were described via constraints, using Dirac description
of Hamiltonian constrained systems [7]. In the beginning these models were supposed to violate
the world line condition (WLC). However, Sudarshan and Mukunda proposed an interpretation in
terms of an “eleventh generator” formalism [8]. The set of constraints used to define the interaction
among particles depend on an additional variable, parameterising the curves which constitute a
state of the motion for the system. The generator of this “evolution” is independent of the other
ten generators of the Poincaré group, obtaining the so-called “eleventh generator” formalism. They
also noticed that the notion of WLC can be meaningfully implemented in this framework, providing
examples of interacting particles satisfying the WLC. The difference with the assumptions of the
no-interaction theorem, indeed, consists in the “dynamical” choice of the time parameter: In the
constrained formalism the time depends on the state of the motion of the system and there is not a
neat separation between kinematics and dynamics, as in Dirac’s form of relativistic dynamics. In other
words, the variables interpreted as the world line positions after implementing all the constraints
do not need to coincide with the canonical positions of the phase space initially associated with the
physical system. Later on [9], it was proven that all these constrained descriptions can be derived from
a common “covering phase space” via suitable reduction procedures.

However, the additional requirement of separability, that is, the requirement that in the instant
form clusters of particles very far apart should behave as non-interacting, gave rise to a novel version of
the no-interaction theorem [10]. All these results pointed out again that a suitable covariant description
of relativistic interacting particles cannot be formulated without the intervention of fields.

With the hope to clarify the role of the commutation relations of the Poincaré algebra versus their
description in terms of Poisson Brackets, in this paper we propose a solution of the problem posed by
Dirac in terms of vector fields, we call it a Newtonian realization, the dynamical vector field being a
second order one, and then we require this realization to be compatible with a Lagrangian description
(a covariant inverse problem for the full Poincaré algebra, not just the dynamcs). We also provide a
geometrical description of the “eleventh generator” formalism by means of Jacobi Brackets. We find
that in this approach “canonical positions” do not coincide with “geometrical positions”, that is,
positions in space-time. We shall present these various aspects in the particular case of one particle
relativistic systems with possible “external forces”, a situation which would arise after implementing
the “separability condition”.
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2. A Geometrical Formulation of Dirac’s Problem

In modern geometrical terms, the problem addressed by Dirac may be formulated as follows.
The Lie agebra of any Lie group G, say lG, canonically defines a Poisson structure on the dual space
l∗G = Lin(lG,R) by means of the following construction. With every element u ∈ lG, we associate a
linear function û ∈ F (l∗G) and we define a Poisson Bracket on F (l∗G) by setting

{û, v̂} = ̂[u, v] , (1)

or, if α ∈ l∗G
{û, v̂} (α) = α([u, v]) . (2)

This bracket leads to a well defined tensor field even in infinite dimensions provided that lG
may be identified with its double dual (l∗G)

∗, that is, whenever lG is reflexive. Thus, if P denotes the
Poincaré group, we introduce the following notations for the elements of lP:

Pµ , µ = 0, 1, 2, 3 (3)

form the Abelian part of the Poincaré algebra and

Mµν , µ, ν = 0, 1, 2, 3 , (4)

represent rotations and boosts. Then, the commutation relations read[
Pµ, Pν

]
= 0 (5)[

Mµν, Pρ

]
= gνρPµ − gµρPν (6)[

Mµν, Mρσ

]
= gνρ Mµσ − gµρ Mνσ + gνσ Mρµ − gµσ Mρν , (7)

where gµν is the Minkowski metric on R4 and they can be used to explicitly characterize also the
Poisson algebra on the dual space l∗P.

Now, the problem as stated by Dirac amounts to find a “symplectic realization” or a “Lagrangian
realization” [11,12] of the Poisson manifold (l∗P, {·, ·}), associated with the Poincaré group. This means
we need to find a Poisson map:

µ : T∗Q → l∗P (8)

in the phase-space case or a Poisson map

µL : TQ → l∗P (9)

in the Lagrangian one. In the latter situation, we have to consider a Lagrangian-dependent Poisson
bracket, since the tangent bundle is not equipped with a canonical symplectic structure.

Remark 1. This formulation of the problem would be consistent with Wigner’s approach to the classification
of elementary particles as irreducible unitary representations of the Poincaré group. The classical counterpart
would correspond to the coadjoint orbits of the Poincaré group acting on the dual of the Lie algebra.

Our “Newtonian realization” would correspond, instead, to a map:

ν : lP → χ(M) (10)

such that the Lie bracket in the Lie algebra of the Poincaré group is realized in terms of the commutator
between the vector fields on some carrier spaceM. Note that a similar idea has been developed in
Reference [13].
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3. Newtonian Realization in the Instant Form

Let us start with the vector space R4 with globally defined coordinate functions xµ, µ = 0, 1, 2, 3
and equipped with the Minkowski metric tensor

g = −dx0 ⊗ dx0 +
3

∑
j=1

dxj ⊗ dxj.

In this space, a simultaneity surface for an inertial reference frame is diffeomorphic with R3,
that is, it represents the space of positions at a given instant. The coordinate functions for this copy of
R3 are given by the xj’s with j = 1, 2, 3. Positions and velocities are points of the tangent bundle TR3,
which will be our carrier spaceM. Thus, we have to find a realization of the Poincaré algebra in terms
of vector fields on TR3.

It is clear that, since space rotations and space translations form the Euclidean group which
preseves every simultaneity leaf associated with a given inertial frame, we can exploit the tangent lift
of their standard realization on R3. On the other hand, in Dirac parlance, the complicated generators
will be those corresponding to the “Hamiltonians”, that is, the dynamics and the three boosts. It is
at this point that the world-line condition plays a preminent role. Let Γ denote the second order
dynamical vector field and K1, K2, K3 the vector fields representing the boosts. Then, we require that
the following conditions hold:

LKj xl = xjLΓxl = xj ẋl (11)

LKj ẋl = ẋj ẋl + xjLΓ ẋl − δjl . (12)

These vectors fields express the world-line condition as stated by Sudarshan and collaborators [14].
Moreover, we notice that Kj is a non-linear vector field, it does not respect the tangent bundle structure
of TR3 and it is the sum of a Newtonoid [15] vector field and a vertical lift of a translation for all
j = 1, 2, 3. Indeed, we have

Kj = xj ẋl
∂

∂xl
+ ẋj ẋl

∂

∂ẋl
+ xjLΓ ẋl

∂

∂ẋl
− δjl

∂

∂ẋl
= xjΓ + ẋj∆− δjl

(
∂

∂xl

)V
, (13)

where ∆ = ẋj
∂

∂ẋj
is the dilation vector field along the fibers of the tangent bundle TR3 [15,16] and(

∂
∂xj

)V
denotes the vertical lift of the vector field ∂

∂xj
[17]. In summary, the Newtonian realization of

the Poincaré algebra is given by

Pj = − ∂
∂xj

, P0 = Γ (14)

Jl = εl jk

(
xj

∂
∂xk

+ ẋj
∂

∂ẋk

)
, Kj = xjΓ + ẋj∆ +

(
Pj
)V . (15)

We eventually notice that this realization of the Poincaré algebra is a dynamical one, that is,
it depends on the second order dynamics Γ.

By requiring these vector fields to satisfy the commutation relations of the Poincaré algebra,
we get a system of partial differential equations for the accelerations, that is, we derive a system of
PDE for the functions a1, a2, a3 which appear in the second order dynamical vector field

Γ = ẋj
∂

∂xj
+ aj

∂

∂ẋj
.
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In particular, the commutation relations with the spatial translations impose that the accelerations
cannot depend on the positions xj. The commutation relations with the rotations, instead, imply the
following expression:

aj = ẋj f (ẋ2) . (16)

Finally, let us consider the commutation relation [K1, K2] = J3. This relation is verified if and only
if the following set of PDE holds true:

2(x1 ẋ2 − x2 ẋ1)ẋ3

[
(1− ẋ2) ∂ f

∂ẋ2 + f
]
= 0 (17)

−x2 f + 2(x1 ẋ2 − x2 ẋ1)ẋ1

[
(1− ẋ2) ∂ f

∂ẋ2 + f
]
= 0 (18)

x1 f + 2(x1 ẋ2 − x2 ẋ1)ẋ2

[
(1− ẋ2) ∂ f

∂ẋ2 + f
]
= 0 . (19)

The only solution to this system is f = 0, which means that the only dynamics, as intended
by Dirac, compatible with the world-line condition must admit a generator Γ which has
vanishing accelerations.

An additional result can be obtained if one requires that the realization by means of vector fields
allows for a compatible non-trivial Lagrangian function [14,18], that is, for any of the vector fields in
the Newtonian realization the following condition must be satisfied:

LXωL = 0 , (20)

or, equivalently,
LXθL = dFX , (21)

due to the contractability of TR3. By using LKm θL = dFm, LΓθL = dL, LPm θL = LJm θL = 0 we find that

LKmL = LΓFm , m = 1, 2, 3 . (22)

Since Γ is the vector field describing the dynamics of a non-interacting particle, we can find a
solution for Fm having the form

Fm = xmh(ẋ2) , (23)

where ẋ2 = ∑j ẋj ẋj and we can add to it any constant of the motion. Then Equation (22) becomes

2
(

ẋ2 − 1
) ∂L

∂ẋ2 = h
(

ẋ2
)

. (24)

The commutation relations of the Poincaré algebra, however, impose some additional conditions.
Indeed, since

[Km, Pn] = δmnΓ , (25)

we have that
LPm LKn θL = −δmnLΓθL , (26)

which implies the following equation for Fn

LPm Fm = −L . (27)

This is an equation involving only the Lagrangian function

2(ẋ2 − 1)
∂L
∂ẋ2 = L , (28)
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which integrates to

L = c
√

1−∑
j
(ẋj)2 , (29)

with c ∈ R.
This result is quite remarkable because, by requiring the Newtonian realization of the Poincaré

algebra to allow for a Lagrangian description, we obtain that the Lagrangian is unique. This uniqueness
property is very startling when we recall that, if we only require the dynamical vector field

Γ = ẋj
∂

∂xj
(30)

to allow for a Lagrangian description, we find an infinite family of solutions provided not only by any
function L = L(ẋ2) but also L = L(ẋ1, ẋ2, ẋ3). In other words, among the infinitely many Lagrangian
functions providing a description of the free dynamics, there is only one which admits the above
Newtonian realization of the Poincaré algebra as generalized Noether symmetries.

4. The Eleventh-Generator Formalism

In References [8], Mukunda and Sudarshan introduced an eleventh-generator formalism.
We would like to unveil the geometric content of their formalism because it forms the prototype for the
proposals made in the eighties to evade the no-interaction theorem by means of the Dirac-Bergmann
constraint formalism [4–6].

We start with what Dirac calls an elementary solution of the symplectic realization of the Poisson
manifold defined by l∗P, that is, the phase-space T∗R4 with coordinates (xµ, pµ) and with symplectic
structure given by the natural one,

ω = dpµ ∧ dxµ = gµνdpµ ∧ dxν , (31)

which is the exterior differential of the one form

θ0 = pµdxµ = gµν pµdxν . (32)

By setting Pµ = pµ, Mµν = xµ pν − xν pµ we obtain Dirac’s elementary solution of the problem in
terms of Poisson Brackets and generating functions.

Starting from this solution, we can construct another solution by adding an element to the Poincaré
algebra. Specifically, on T∗R4 we consider the submanifold

Σm =
{
(xµ, pµ)|pµ pµ = m2

}
. (33)

If we consider the natural immersion of Σm into T∗R4, it is possible to write the pull-back

i∗Σm
θ0 = θm . (34)

On Σm, the form θm defines a contact structure [19,20], since θm ∧ (dθm)3 6= 0 represents a volume
form. Then, it is possible to define a Lie algebra structure [21] on F (Σm) by setting

[ f , g]m θm ∧ (dθm)
3 = ( f dg− gd f ) ∧ (dθm)

3 + 2d f ∧ dg ∧ θm ∧ (dθm)
2 . (35)

The given expression shows that the bracket, being defined only in terms of θm which is Poincaré
invariant, is indeed preserved by the action of the Poincaré group given above. As a matter of
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fact, this bracket can be described in the more common setting of a bivector field and a vector field,
say (Λm, Γm), defined by

iΓm

(
θm ∧ (dθm)3) = (dθm)

3 (36)

iΛm

(
θm ∧ (dθm)3) = 3θm ∧ (dθm)

2 . (37)

Then, the bracket in Equation (35) can be defined as follows:

[ f , g]m = Λm(d f , dg) + f LΓm g− gLΓm f , (38)

and the Jacobi identity holds true because of the following properties:

[Λm, Λm] = 2Γm ∧Λm (39)

[Γm, Λm] = 0 , (40)

where the bracket between multivector fields is the Schouten bracket [17].
By using the pair (Λm, Γm), it is possible to associate with any function f a first order differential

operator X̃ f and a vector field X f , respectively given by

X̃ f = Λm(d f , ·) + f Γm − LΓm f (41)

X f = Λm(d f , ·) + f Γm . (42)

It should be noticed that constant functions are not mapped into the null vector field, but in both
cases we have Xc = cΓm, for any c ∈ R. Moreover, the Lie bracket does not satisfy the Leibniz rule but
we have

[ f , gh]m = [ f , g]m h + g [ f , h]m − [ f , 1]m gh , (43)

showing an important difference between [ f , g]m and { f , g}, where the first is called Jacobi bracket
and the second Poisson Bracket. It is common to call X f the Hamiltonian vector field associated with f .
However, on the subalgebra of functions which are constants of the motion for Γm, that is, LΓm f = 0,
the Jacobi bracket reduces to a Poisson Bracket.

It turns out that the usual generating functions of the Poincaré algebra given in T∗R4, when pulled
back to Σm, provide a solution of the Dirac problem because they are constants of the motion for Γm

and therefore generate a realization of the Poincaré algebra in terms of Poisson Brackets. To compare
the Jacobi algebra with the Poisson Bracket on T∗R4, we consider the following bivector field

Λ =

(
gµν − pµ pν

pµ pµ

)
∂

∂pµ ∧
∂

∂xµ = gµν ∂

∂pµ ∧
∂

∂xµ − ∆ ∧ Γ , (44)

where
∆ = pµ ∂

∂pµ , Γ =
pµ

pν pν

∂

∂xµ . (45)

All these contravariant tensor fields are actually tangent to the leaves of the foliation defined
by pµ pµ = m2 when m changes and we remove the manifold defined by pµ pµ = 0. Then, on each
mass-shell Σm, we have the following pair

Λm =
(

gµν − pµ pν

m2

)
∂

∂pµ ∧ ∂
∂xν (46)

Γm = pµ

m2
∂

∂xµ , (47)
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and the associated Jacobi bracket is given by the following relations:

[xρ, xσ]m = xρ pσ−xσ pρ

m2 (48)

[pρ, xσ]m = gρσ (49)

[pρ, pσ]m = 0 . (50)

By using the generating functions which are constants of the motion for Γ, that is, Mµν and Pµ,
we find the associated vector fields:

Xµν = xµ
∂

∂xν − xν
∂

∂xµ + pµ
∂

∂pν − pν
∂

∂pµ (51)

Yµ = ∂
∂xµ . (52)

Therefore, in this realization, the Poincaré algebra, represented in terms of vector fields, contains
a central element given by Γm which plays the role of the eleventh generator.

5. A “Frozen Phase-Space” Realization

In the same spirit of the previous section, we start with the phase-space T∗R4, we remove the
manifold defined by pµ pµ = 0 and we consider the one-form

θ =
θ0√
pµ pµ

, (53)

which, on a given mass-shell Σm, would be

θ̃m =
θm

m
. (54)

Then, the two-form dθ = dθ0√
pµ pµ −

pµdpµ

√
pµ pµ ∧ θ0 is a degenerate two-form whose kernel is

generated by

∆ = pµ ∂

∂pµ and Γ =
pµ

pν pν

∂

∂xµ . (55)

Indeed, θ is invariant under dilation because it is homogeneous of degree zero in the momenta.
The fact that Γ is in the kernel of dθ follows by direct computation.

As the infinitesimal generators which realize the Poincaré algebra commute with ∆ and Γ,
they descend to the quotient manifold which is symplectic and six dimensional. We obtain in
this way another solution of Dirac’s problem in terms of Poisson brackets. However, there is no
evolution on points of this quotient manifold because we quotiented out the dynamics represented
by Γ and, therefore, this realization is on a “frozen phase-space” as it was called by P. Bergmann and
A. Komar [22].

6. A Lagrangian Solution to the Dirac Problem

In this last section, it is useful to show how it is possible to provide a realization of the Poincaré
algebra in the Lagrangian formalism on TR4 [23]. By means of natural geometric coordinates in TR4,
we can consider the Lagrangian function

L = m
√

gµν ẋµ ẋν . (56)

For simplicity, in the following computations we set m = 1. The associate one-form θL will be

θL =
gµν ẋµdxν

L . (57)
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Let v2 = gµν ẋµ ẋν, then

dθL = ωL =
1
v3

(
gµνv2 − ẋµ ẋν

)
dẋν ∧ dxµ , (58)

and we have to remove from TR4 the submanifold defined by L = 0. We notice that the vector fields

∆ = ẋµ ∂

∂ẋµ and Γ = ẋµ ∂

∂xµ ,

are both in the kernel of ωL. By passing to the quotient with respect to ∆ and Γ, we get a symplectic
six-dimensional manifold. To define a Poisson Bracket on functions on (the open submanifold of) TR4,
we need to define a lift from vector fields on the quotient manifold to vector fields on TR4. At this
purpose, it is possible to use a flat connection whose horizontal leaves are defined by the level sets of
the functions f1 = gµν ẋµxν and f2 = L. A connection one-form, a (1− 1)-tensor field A which satisfies
A2 = A and contains ∆ and Γ in its null-space, is given by

A = 1−
ẋµdẋµ

L2 ⊗ ∆− 1
Ld
(

ẋµxµ

L

)
⊗ Γ . (59)

We observe that

ẋµdẋµ

L2 (∆) = 1 , 1
Ld
(

ẋµxµ

L

)
(∆) = 0 (60)

ẋµdẋµ

L2 (Γ) = 0 , 1
Ld
(

ẋµxµ

L

)
(Γ) = 1 , (61)

and that
[∆, Γ] = Γ . (62)

By using this connection, we define a bivector field

Λ = Lgµν

[
A
(

∂

∂ẋµ

)
∧ A

(
∂

∂xν

)]
, (63)

whose associated Poisson Brackets will be

{ẋρ, xσ} = L
(

gρσ − ẋρ ẋσ

L2

)
(64)

{ẋρ, ẋσ} = 0 (65)

{xρ, xσ} = ẋσxρ−ẋρxσ

L . (66)

Note that these brackets are very similar to those derived on the phase space with the aid of the
Jacobi bracket. The bivector field Λ reads

Λ = L
(

gρσ − ẋρ ẋσ

L2

)
∂

∂ẋρ ∧
∂

∂xσ
. (67)

This tensor field and the associated brackets are Lorentz invariant. The canonical coordinates on
the symplectic quotient are given by the functions:

Qj = LK j

ẋ0 (68)

Pj = ẋj

L , (69)
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where we have introduced a splitting in space and time so that we may write

Jl =
1
L εl jk ẋjxk (70)

K j = 1
L
(
ẋjx0 − ẋ0xj) . (71)

We notice that the functions

Qj = LK j

ẋ0 = −xj + ẋj x0

ẋ0 (72)

are the so called Newton-Wigner positions. Once more, canonical coordinates and geometrical positions
do not coincide.

Remark 2. It is in order, at this point, to note that the (1− 1)-tensor field

1
Ld
(

ẋµxµ

L

)
⊗ Γ (73)

behaves like a “dynamical” reference frame [24]. On the tangent bundle, however, the analog of a simultaneity
submanifold would be the “horizontal foliation” defined by the level sets of the two functions f1 and
f2. The dynamics takes from one simultaneity submanifold to another. If we restrict to the dynamically
invariant submanifold

kµ =
gµν ẋν

L , (74)

we would get f1 = kνxν and Γ
L would be a reference frame in space-time in the usual meaning when kµkµ = 1.

It should be noticed that, in this dynamical approach, the function

τ =
ẋµxµ

L (75)

behaves like a dynamical time function [25], whereas, the dynamical vector field Γ
L defines “dynamical clocks”

and S(Γ) would give a dilation vector field along the fibers. In conclusion, the submanifold defined by the level
set of the functions

f1 = gµν ẋµxν (76)

f2 = L (77)

kµ =
gµν ẋν

L , µ = 0, 1, 2, 3 , (78)

would give a “dynamical simultaneity surface” in space-time.

One could consider the foliation given by the level sets of the two functions f1 and f2 as a
“generalized instant form” where the instant is now given by the value of the function f1 which is
the dynamical time associated with the vector field Γ

L . We close this section providing a Newtonian
realization of the Poincaré algebra also in this different Lagrangian framework. Indeed, the vector
fields generating boosts and rotation in TR4 are already tangent to the leaves of the foliation. On the
other hand the generators of translations are not. However, a direct computation shows that the
following vector fields solve the problem, since they are tangent to the leaves of the foliation and obey
the commutation relations of the Poincaré algebra:

Pµ =
∂

∂xµ −
xµ

L Γ . (79)

The various solutions we have presented of the Dirac’s problem seem to imply that, if in
every description the canonical positions coincide with geometrical positions, an “action-at-distance”
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compatible with the world-line condition does not seem possible and the intervention of the fields in
the final description seems unavoidable.

7. Conclusions

The main idea developed in the eighties uses the constraint formalism to describe interacting
multiparticle systems. One starts with a N-particle system by using a redundant set of variables and
imposes a sufficient number of constraints (generalized mass-shell relations) in order to ensure 3N
degrees of freedom. Several proposals were made and a unified geometrical setting was proposed in
References [9].

In all these various models, the description of a true physical system of N particles with 3N
degrees of freedom requires the introduction of constraints, that is, the selection of a Poincaré invariant
submanifold in the redundant initial space one has selected. In summary, the motion is generated by
the constraints.

The requirement that, when a system breaks up into clusters, each of the clusters will have an
evolution parameter independent of the other clusters, implies that no action-at-distance may possibly
satisfy the requirement of covariance under the Poincaré group and the world-line condition [10].
Therefore, the conclusion that can be drawn from this presentation is that a relativistically covariant
description of interacting particles requires the introduction of fields. Their additional degrees of
freedom, indeed, allow for the implementation of interactions which satisfy all the principles of a
relativistic theory.

We close with a quotation from Sudarshan and Mukunda [26]: «This curious result is reminiscent
of the EPR “paradox” in quantum theory but the above indicated circle of ideas suggests that correlations
between distant objects need not always involve transport of material influences. It may rather depend upon the
indecomposable nature of the dynamical system itself. In the present context it is brought about by the imposition
of the apparently innocent WLC. As has often been shown by Dirac, there are surprising structural similarities
between classical mechanics and quantum mechanics; and often ideas that were identified in quantum mechanics
reappear from a deeper study of classical mechanics».

Author Contributions: All the authors have equally contributed to the elaboration and writing of the paper.

Funding: This research received no external funding.

Acknowledgments: F.D.C. and A.I. would like to thank partial support provided by the MINECO research project
MTM2017-84098-P and QUITEMAD++, S2018/TCS-A4342. A.I. and G.M. acknowledge financial support from
the Spanish Ministry of Economy and Competitiveness, through the Severo Ochoa Programme for Centres of
Excellence in RD(SEV-2015/0554). G.M. would like to thank the support provided by the Santander/UC3M
Excellence Chair Programme 2019/2020, and he is also a member of the Gruppo Nazionale di Fisica Matematica
(INDAM), Italy.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Dirac, P.A.M. Forms of relativistic dynamics. Rev. Mod. Phys. 1949, 21, 392–399. [CrossRef]
2. Currie, D.G.; Jordan, T.F.; Sudarshan, E.C.G. Relativistic Invariance and Hamiltonian Theories of Interacting

Particles. Rev. Mod. Phys. 1963, 35, 350–375. [CrossRef]
3. Sudarshan, E.C.G. Action-at-a-distance. Fields Quanta 1972, 2, 175–216.
4. Komar, A. Interacting Relativistic Particles. Phys. Rev. D 1978, 18, 1887–1893. [CrossRef]
5. Rohrlich, F. Relativistic Hamiltonian dynamics I. Classical mechanics. Ann. Phys. 1979, 117, 292–322.

[CrossRef]
6. Todorov, I.T. Dynamics of relativistic point particles as a problem with constraints. In JINR-E–2-10125, USSR; Joint

Inst. for Nuclear Research: Dubna, Russia, 1976.
7. Dirac, P.A.M. Lectures on Quantum Mechanics; Belfer Graduate School of Science, Yeshiva University:

New York, NY, USA, 1964.

http://dx.doi.org/10.1103/RevModPhys.21.392
http://dx.doi.org/10.1103/RevModPhys.35.350
http://dx.doi.org/10.1103/PhysRevD.18.1887
http://dx.doi.org/10.1016/0003-4916(79)90357-9


Quantum Rep. 2019, 1 192

8. Mukunda, N.; Sudarshan, E.C.G. Forms of relativistic dynamics with world lines. Phys. Rev. D 1981, 23,
2210–2217. [CrossRef]

9. Balachandran, A.P.; Marmo, G.; Mukunda, N.; Nilssen, J.S.; Simoni, A.; Sudarshan, E.C.G.; Zaccaria, F.
Unified geometrical approach to relativistic particle dynamics. J. Math. Phys. 1984, 25, 167–176. [CrossRef]

10. Balachandran, A.P.; Dominici, D.; Marmo, G.; Mukunda, N.; Nilssen, J.S.; Samuel, J.; Sudarshan, E.C.G.;
Zaccaria, F. Separability in relativistic Hamiltonian particle dynamics. Phys. Rev. D 1982, 26, 3492–3498.
[CrossRef]

11. Abraham, R.; Marsden, J.E. Foundations of Mechanics; Benjamin/Cummings Publishing Company: Reading,
MA, USA, 1978.

12. Giordano, M.; Marmo, G.; Simoni, A. Symplectic and Lagrangian Realization of Poisson Manifolds.
In Quantization, Coherent States, and Complex Structures; Antoine, J.-P., Twareque Ali, S., Lisiecki, W.,
Mladenov, I.M., Odzijewicz, A., Eds.; Springer: Boston MA, USA, 1995; pp. 159–171.

13. Grigore, D.R. On manifest covariance conditions in the Lagrangian formalism. Int. J. Mod. Phys. A 1992, 7,
4073–4089. [CrossRef]

14. Marmo, G.; Mukunda, N.; Sudarshan, E.C.G. Relativistic particle dynamics-Lagrangian proof of the
no-interaction theorem. Phys. Rev. D 1984, 30, 2110–2116. [CrossRef]

15. Morandi, G.; Ferrario, C.; Lo Vecchio, G.; Marmo, G.; Rubano, C. The inverse problem in the calculus of
variations and the geometry of the tangent bundle. Phys. Rep. 1990, 188, 147–284. [CrossRef]

16. Cariñena, J.F.; Ibort, A.; Marmo, G.; Morandi, G. Geometry from Dynamics, Classical and Quantum; Springer:
Dordrecht, The Netherlands, 2015.

17. Kolar, I.; Slovak, J.; Michor, P.W. Natural Operations in Differential Geometry; Springe: Berlin, Germany, 1993.
18. Balachandran, A.P.; Marmo, G.; Stern, A. A Lagrangian approach to the No-Interaction theorem. Il Nuovo

Cimento 1982, 69, 175–186. [CrossRef]
19. Arnol’d, V.I. Mathematical Methods of Classical Mechanics; Springer: Berlin, Germany, 1978.
20. Asorey, M.; Ciaglia, F.M.; Di Cosmo, F.; Ibort, A.; Marmo, G. Covariant Jacobi brackets for test particles.

Mod. Phys. Lett. A 2017, 32, 1750122-15. [CrossRef]
21. Kirillov, A.A. Local Lie algebras. Russ. Math. Surv. 1976, 31, 55–75. [CrossRef]
22. Bergmann, P.G.; Komar, A.B. Status Report on the quantization of the gravitational field. In Recent

Developments in General Relativity; Pergamon Press: New York, NY, USA, 1962.
23. Dubrovin, B.A.; Giordano, M.; Marmo, G.; Simoni, A. Poisson brackets on presymplectic manifolds. Int. J.

Mod. Phys. A 1993, 8, 3747–3771. [CrossRef]
24. De Ritis, R.; Marmo, G.; Preziosi, B. A New Look at Relativity Transformations. Gen. Relat. Gravit. 1999, 31,

1501–1517. [CrossRef]
25. Bhamathi, G.; Sudarshan, E.C.G. Time as dynamical variable. Phys. Lett. A 2003, 317, 359–362. [CrossRef]
26. Sudarshan, E.C.G.; Mukunda, N. Forms of Relativistic Dynamics with World Line Condition and Separability.

Found. Phys. 1983, 13, 385–393. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1103/PhysRevD.23.2210
http://dx.doi.org/10.1063/1.525987
http://dx.doi.org/10.1103/PhysRevD.26.3492
http://dx.doi.org/10.1142/S0217751X92001824
http://dx.doi.org/10.1103/PhysRevD.30.2110
http://dx.doi.org/10.1016/0370-1573(90)90137-Q
http://dx.doi.org/10.1007/BF02812914
http://dx.doi.org/10.1142/S021773231750122X
http://dx.doi.org/10.1070/RM1976v031n04ABEH001556
http://dx.doi.org/10.1142/S0217751X93001521
http://dx.doi.org/10.1023/A:1026778303509
http://dx.doi.org/10.1016/j.physleta.2003.09.007
http://dx.doi.org/10.1007/BF01906186
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	A Geometrical Formulation of Dirac's Problem
	Newtonian Realization in the Instant Form
	The Eleventh-Generator Formalism
	A ``Frozen Phase-Space'' Realization
	A Lagrangian Solution to the Dirac Problem
	Conclusions
	References

