A Non-Linear Optimization Model for the Multi-Depot Multi-Supplier Vehicle Routing Problem with Relaxed Time Windows
Abstract
1. Introduction
2. Related Work
3. Problem Description
3.1. Problem Statement
3.2. Description of Model
4. Methods for Optimization Based on Active Constraints
- Calculate the reduced gradient:
- 2.
- Generate approximations to reduce the Hessian, particularly focusing on
- 3.
- Obtain approximations for systems of equations
- 4.
- by resolving the system
- 5.
- Establish the direction to achieve .
- 6.
- Utilize a line search to identify the nearest approximation to where
- 1.
- is fulfilled by a feasible vector ;
- 2.
- The corresponding function value and the gradient vector ;
- 3.
- The number of superbasis variables, ;
- 4.
- Factorization, , on the base matrix ;
- 5.
- The factorization, , of the quasi-Newton approach to the matrix is (it should be noted that , , and are never truly counted);
- 6.
- A vector that meets ;
- 7.
- The reduced gradient vector ;
- 8.
- and both have small positive convergence tolerances.
- Step 1.
- (Convergence testing in a known subspace). If , proceed to step 3.
- Step 2.
- (“PRICE”, i.e., calculate the Lagrange multiplier, add one superbase).
- a.
- Determine .
- b.
- Choose , ’s largest element that corresponds to the variables in its upper (lower) bound. If not, STOP; Kuhn–Tucker’s essential requirements for an optimal solution have been met.
- c.
- If this is not the case
- i.
- Select or based on ;
- ii.
- Insert as the new column ;
- iii.
- Insert as a new element;
- iv.
- Sum up a new relevant column to .
- d.
- Multiply S by 1.(Note: MINOS also has a DOUBLE PRICE alternative, which provides several non-basic variables to be a superbase).
- Step 3.
- (Determine the search direction, ).
- a.
- Complete .
- b.
- Complete .
- c.
- Make .
- Step 4.
- (Test Ratio, “CHUZR”).
- a.
- If , the highest value of is feasible.
- b.
- If , proceed to step 7.
- Step 5.
- (Line search).
- a.
- Determine , an approximation in which
- b.
- Convert to and and to their respective values in the new .
- Step 6.
- (Calculate the reduced slope, ).
- a.
- Complete .
- b.
- Determine the new reduced slope, .
- c.
- Using and metric-variable recursion on , modify and switch in reduced gradient .
- d.
- Set .
- e.
- If , proceeds to step 1. As there are no new constraints found, they persist within this subspace.
- Step 7.
- (Exchange base if required; eliminate one superbase). Here, has reached one of its limits, and, for some , the variable associated with the column of has also attained one of its limits.
- a.
- In the case of a base variable exceeding the limit ,
- i.
- Substitute the -th column with the -th column of and ;Assume that is chosen so that non-singular is maintained (this involves a vector that fulfills );
- ii.
- Changes to , , , and , as well as changes to , to reflect these changes;
- iii.
- Identify the latest gradient at the bottom ;
- iv.
- Go to (c).
- b.
- Otherwise, the variable superbase reaches its maximum value . Determine .
- c.
- After reaching the desired limit, create the -th variable in nonbasis , accordingly:
- i.
- Eliminate the -th column from and ;
- ii.
- To the triangular matrix, add .
- d.
- Step 1 should be repeated after subtracting by one.
5. Problem Description for MVRPTW
5.1. Real Problem Example
5.2. Methodology
- Number of vehicles—4;
- Number of customers—8;
- Number of routes—4;
- Multiple suppliers and depots;
- Flexible but constrained time windows for delivery.
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dantzig, G.B.; Ramser, J.H. The Truck Dispatching Problem. Manag. Sci. 1959, 6, 80–91. [Google Scholar] [CrossRef]
- Toth, P.; Vigo, D. An Overview of Vehicle Routing Problems. In The Vehicle Routing Problem; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2002; pp. 1–26. [Google Scholar]
- Braekers, K.; Ramaekers, K.; Van Nieuwenhuyse, I. The Vehicle Routing Problem: State of the Art Classification and Review. Comput. Ind. Eng. 2016, 99, 300–313. [Google Scholar] [CrossRef]
- Tan, S.-Y.; Yeh, W.-C. The Vehicle Routing Problem: State-of-the-Art Classification and Review. Appl. Sci. 2021, 11, 10295. [Google Scholar] [CrossRef]
- Koç, Ç.; Laporte, G.; Tükenmez, İ. A Review of Vehicle Routing with Simultaneous Pickup and Delivery. Comput. Oper. Res. 2020, 122, 104987. [Google Scholar] [CrossRef]
- Schrage, L. Formulation and Structure of More Complex/Realistic Routing and Scheduling Problems. Networks 1981, 11, 229–232. [Google Scholar] [CrossRef]
- Laporte, G.; Louveaux, F.V.; van Hamme, L. An Integer L-Shaped Algorithm for the Capacitated Vehicle Routing Problem with Stochastic Demands. Oper. Res. 2002, 50, 415–423. [Google Scholar] [CrossRef]
- Koç, Ç.; Bektaş, T.; Jabali, O.; Laporte, G. Thirty Years of Heterogeneous Vehicle Routing. Eur. J. Oper. Res. 2016, 249, 1–21. [Google Scholar] [CrossRef]
- Borcinova, Z. Two Models of the Capacitated Vehicle Routing Problem. Croat. Oper. Res. Rev. 2017, 8, 463–469. [Google Scholar] [CrossRef]
- Takan, M.A.; Kasımbeyli, R. Multiobjective Mathematical Models and Solution Approaches for Heterogeneous Fixed Fleet Vehicle Routing Problems. J. Ind. Manag. Optim. 2021, 17, 2073. [Google Scholar] [CrossRef]
- Siddharth, S.; Nandini, B. A Brief Overview of Vehicle Routing Problem and Two-Phase Heuristics. Int. J. Adv. Res. 2020, 8, 1239–1244. [Google Scholar] [CrossRef]
- Cao, W.; Yang, W. A Survey of Vehicle Routing Problem. MATEC Web Conf. 2017, 100, 1006. [Google Scholar] [CrossRef]
- Li, B.; Wu, G.; He, Y.; Fan, M.; Pedrycz, W. An Overview and Experimental Study of Learning-Based Optimization Algorithms for the Vehicle Routing Problem. IEEE/CAA J. Autom. Sin. 2022, 9, 1115–1138. [Google Scholar] [CrossRef]
- Saragih, N.I.; Turnip, P. Design of Vehicle Routes for Rice Distribution System in Bandung Using Simulated Annealing Algorithm. J. Rekayasa Sist. Ind. 2022, 11, 211–220. [Google Scholar] [CrossRef]
- Mockova, D.; Rybickova, A. Application of Genetic Algorithms to Vehicle Routing Problem. Neural Netw. World 2014, 24, 57–78. [Google Scholar] [CrossRef]
- Zacharia, P.; Stavrinidis, S. The Vehicle Routing Problem with Simultaneous Pick-Up and Delivery under Fuzziness Considering Fuel Consumption. Vehicles 2024, 6, 231–241. [Google Scholar] [CrossRef]
- Bell, J.E.; McMullen, P.R. Ant Colony Optimization Techniques for the Vehicle Routing Problem. Adv. Eng. Inform. 2004, 18, 41–48. [Google Scholar] [CrossRef]
- Dorigo, M.; Stützle, T. Ant Colony Optimization: Overview and Recent Advances. In Handbook of Metaheuristics; Gendreau, M., Potvin, J.-Y., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 311–351. ISBN 978-3-319-91086-4. [Google Scholar]
- Kuo, Y. Using Simulated Annealing to Minimize Fuel Consumption for the Time-Dependent Vehicle Routing Problem. Comput. Ind. Eng. 2010, 59, 157–165. [Google Scholar] [CrossRef]
- Yıldırım, U.M.; Çatay, B. An Ant Colony-Based Matheuristic Approach for Solving a Class of Vehicle Routing Problems. In Proceedings of the Computational Logistics: 6th International Conference, ICCL 2015, Delft, The Netherlands, 23–25 September 2015; Corman, F., Voß, S., Negenborn, R.R., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 105–119. [Google Scholar]
- Nahum, O.E.; Hadas, Y. Developing a Model for the Stochastic Time-Dependent Vehicle-Routing Problem. In Proceedings of the 2009 International Conference on Computers & Industrial Engineering, Troyes, France, 6–9 July 2009; pp. 118–123. [Google Scholar]
- Musolino, G.; Rindone, C.; Vitetta, A. A Modelling Framework to Simulate Paths and Routes Choices of Freight Vehicles in Sub-Urban Areas. In Proceedings of the 2021 7th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Heraklion, Greece, 16–17 June 2021; pp. 1–6. [Google Scholar]
- Tang, Q.; Kong, Y.; Pan, L.; Lee, C. Learning to Solve Soft-Constrained Vehicle Routing Problems with Lagrangian Relaxation. arXiv 2022, arXiv:2207.09860. [Google Scholar]
- Yu, S.P.; Li, Y.P. An Improved Ant Colony Optimization for VRP with Time Windows. Appl. Mech. Mater. 2012, 263–266, 1609–1613. [Google Scholar] [CrossRef]
- Zheng, J. A Vehicle Routing Problem Model with Multiple Fuzzy Windows Based on Time-Varying Traffic Flow. IEEE Access 2020, 8, 39439–39444. [Google Scholar] [CrossRef]
- Cordeau, J.-F.; Desaulniers, G.; Desrosiers, J.; Solomon, M.M.; Soumis, F. The VRP with Time Windows. In The Vehicle Routing Problem; Toth, P., Vigo, D., Eds.; SIAM Monographs on Discrete Mathematics and Applications: Philadelpia, PA, USA, 2002; pp. 157–193. [Google Scholar]
- Ibaraki, T.; Imahori, S.; Kubo, M.; Masuda, T.; Uno, T.; Yagiura, M. Effective Local Search Algorithms for Routing and Scheduling Problems with General Time-Window Constraints. Transp. Sci. 2005, 39, 206–232. [Google Scholar] [CrossRef]
- Bräysy, O.; Gendreau, M. Vehicle Routing Problem with Time Windows, Part II: Metaheuristics. Transp. Sci. 2005, 39, 119–139. [Google Scholar] [CrossRef]
- Baldoquin, M.G.; Martinez, J.A.; Díaz-Ramírez, J. A Unified Model Framework for the Multi-Attribute Consistent Periodic Vehicle Routing Problem. PLoS ONE 2020, 15, e0237014. [Google Scholar] [CrossRef] [PubMed]
- Kohl, N. Exact Methods for Time Constrained Routing and Related Scheduling Problems. Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, 1995. [Google Scholar]
- Bräysy, O.; Gendreau, M. Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms. Transp. Sci. 2005, 39, 104–118. [Google Scholar] [CrossRef]
- Vidal, T.; Crainic, T.G.; Gendreau, M.; Prins, C. Heuristics for Multi-Attribute Vehicle Routing Problems: A Survey and Synthesis. Eur. J. Oper. Res. 2013, 231, 1–21. [Google Scholar] [CrossRef]
- Gendreau, M.; Tarantilis, C.D. Solving Large-Scale Vehicle Routing Problems with Time Windows: The State-of-the-Art; Cirrelt: Montreal, QC, Canada, 2010. [Google Scholar]
- Vareias, A.D.; Repoussis, P.P.; Tarantilis, C.D. Assessing Customer Service Reliability in Route Planning with Self-Imposed Time Windows and Stochastic Travel Times. Transp. Sci. 2019, 53, 256–281. [Google Scholar] [CrossRef]
- Theurich, F.; Fischer, A.; Scheithauer, G. A Branch-and-Bound Approach for a Vehicle Routing Problem with Customer Costs. EURO J. Comput. Optim. 2021, 9, 100003. [Google Scholar] [CrossRef]
- Yao, Y.; Van Woensel, T.; Veelenturf, L.P.; Mo, P. The Consistent Vehicle Routing Problem Considering Path Consistency in a Road Network. Transp. Res. Part B Methodol. 2021, 153, 21–44. [Google Scholar] [CrossRef]
- Song, M.; Cheng, L. Incorporating Travel Time Means and Standard Deviations into Transportation Network Design Problem: A Hybrid Method Based on Column Generation and Lagrangian Relaxation. Transp. Lett. 2024, 16, 131–143. [Google Scholar] [CrossRef]
- Donati, A.V.; Montemanni, R.; Casagrande, N.; Rizzoli, A.E.; Gambardella, L.M. Time Dependent Vehicle Routing Problem with a Multi Ant Colony System. Eur. J. Oper. Res. 2008, 185, 1174–1191. [Google Scholar] [CrossRef]
- Kumar, S.N.; Panneerselvam, R. A Time-Dependent Vehicle Routing Problem with Time Windows for e-Commerce Supplier Site Pickups Using Genetic Algorithm. Intell. Inf. Manag. 2015, 7, 181. [Google Scholar] [CrossRef]
- Stenger, A.; Schneider, M.; Goeke, D. The Prize-Collecting Vehicle Routing Problem with Single and Multiple Depots and Non-Linear Cost. Eur. J. Transp. Logist. 2013, 2, 57–87. [Google Scholar] [CrossRef]
- Agrawal, V.; Lightner, C.A.; Lightner-Laws, C.A.; Wagner, N. A Bi-Criteria Evolutionary Algorithm for a Constrained Multi-Depot Vehicle Routing Problem. Soft Comput. 2016, 21, 5159–5178. [Google Scholar] [CrossRef]
- Bagul, A.; Mukherjee, I. Enhanced Sourcing Strategy for Centralized Multitier Multiple Suppliers Network with Failure Risks. Int. J. Product. Perform. Manag. 2020, 71, 211–244. [Google Scholar] [CrossRef]
Route | Customer | Customer | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
1 | 0 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | |
1 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
2 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
3 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
4 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
5 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | ||
6 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | ||
7 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | ||
8 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | ||
2 | 0 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | |
1 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
2 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
3 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | ||
4 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
5 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | ||
6 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
7 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | ||
8 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | ||
3 | 0 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | |
1 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
2 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
3 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | ||
4 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | ||
5 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
6 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | ||
7 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
8 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
4 | 0 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | |
1 | 0.00000 | 1.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
2 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
3 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | ||
4 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
5 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | ||
6 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | ||
7 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
8 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 |
Vehicle | Customer | Customer | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
1 | 0 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | |
1 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
2 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | ||
3 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
4 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
5 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
6 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | ||
7 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | ||
8 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | ||
2 | 0 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | |
1 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
2 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
3 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 1.00000 | 0.00000 | 0.00000 | ||
4 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
5 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
6 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
7 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | ||
8 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | ||
3 | 0 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | |
1 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
2 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
3 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | ||
4 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | ||
5 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
6 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | ||
7 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
8 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
4 | 0 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | |
1 | 0.00000 | 1.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
2 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
3 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | ||
4 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
5 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | ||
6 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | ||
7 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
8 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 |
Route | Customer | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
1 | 39.74026 | 69.48052 | 40.00000 | 20.64935 | 20.00000 | 10.25974 | 10.00000 | 19.87013 |
2 | 40.00000 | 40.00000 | 60.00000 | 20.00000 | 10.00000 | 30.00000 | 10.00000 | 20.00000 |
3 | 0.00000 | 0.00000 | 30.00000 | 0.00000 | 0.00000 | 59.87013 | 110.00000 | 100.12987 |
4 | 60.25974 | 10.51948 | 0.00000 | 99.35065 | 110.00000 | 19.87013 | 0.00000 | 0.00000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mawengkang, H.; Syahputra, M.R.; Sutarman, S.; Salhi, A. A Non-Linear Optimization Model for the Multi-Depot Multi-Supplier Vehicle Routing Problem with Relaxed Time Windows. Vehicles 2024, 6, 1482-1495. https://doi.org/10.3390/vehicles6030070
Mawengkang H, Syahputra MR, Sutarman S, Salhi A. A Non-Linear Optimization Model for the Multi-Depot Multi-Supplier Vehicle Routing Problem with Relaxed Time Windows. Vehicles. 2024; 6(3):1482-1495. https://doi.org/10.3390/vehicles6030070
Chicago/Turabian StyleMawengkang, Herman, Muhammad Romi Syahputra, Sutarman Sutarman, and Abdellah Salhi. 2024. "A Non-Linear Optimization Model for the Multi-Depot Multi-Supplier Vehicle Routing Problem with Relaxed Time Windows" Vehicles 6, no. 3: 1482-1495. https://doi.org/10.3390/vehicles6030070
APA StyleMawengkang, H., Syahputra, M. R., Sutarman, S., & Salhi, A. (2024). A Non-Linear Optimization Model for the Multi-Depot Multi-Supplier Vehicle Routing Problem with Relaxed Time Windows. Vehicles, 6(3), 1482-1495. https://doi.org/10.3390/vehicles6030070