A Non-Linear Optimization Model for the Multi-Depot Multi-Supplier Vehicle Routing Problem with Relaxed Time Windows
Abstract
:1. Introduction
2. Related Work
3. Problem Description
3.1. Problem Statement
3.2. Description of Model
4. Methods for Optimization Based on Active Constraints
- Calculate the reduced gradient:
- 2.
- Generate approximations to reduce the Hessian, particularly focusing on
- 3.
- Obtain approximations for systems of equations
- 4.
- by resolving the system
- 5.
- Establish the direction to achieve .
- 6.
- Utilize a line search to identify the nearest approximation to where
- 1.
- is fulfilled by a feasible vector ;
- 2.
- The corresponding function value and the gradient vector ;
- 3.
- The number of superbasis variables, ;
- 4.
- Factorization, , on the base matrix ;
- 5.
- The factorization, , of the quasi-Newton approach to the matrix is (it should be noted that , , and are never truly counted);
- 6.
- A vector that meets ;
- 7.
- The reduced gradient vector ;
- 8.
- and both have small positive convergence tolerances.
- Step 1.
- (Convergence testing in a known subspace). If , proceed to step 3.
- Step 2.
- (“PRICE”, i.e., calculate the Lagrange multiplier, add one superbase).
- a.
- Determine .
- b.
- Choose , ’s largest element that corresponds to the variables in its upper (lower) bound. If not, STOP; Kuhn–Tucker’s essential requirements for an optimal solution have been met.
- c.
- If this is not the case
- i.
- Select or based on ;
- ii.
- Insert as the new column ;
- iii.
- Insert as a new element;
- iv.
- Sum up a new relevant column to .
- d.
- Multiply S by 1.(Note: MINOS also has a DOUBLE PRICE alternative, which provides several non-basic variables to be a superbase).
- Step 3.
- (Determine the search direction, ).
- a.
- Complete .
- b.
- Complete .
- c.
- Make .
- Step 4.
- (Test Ratio, “CHUZR”).
- a.
- If , the highest value of is feasible.
- b.
- If , proceed to step 7.
- Step 5.
- (Line search).
- a.
- Determine , an approximation in which
- b.
- Convert to and and to their respective values in the new .
- Step 6.
- (Calculate the reduced slope, ).
- a.
- Complete .
- b.
- Determine the new reduced slope, .
- c.
- Using and metric-variable recursion on , modify and switch in reduced gradient .
- d.
- Set .
- e.
- If , proceeds to step 1. As there are no new constraints found, they persist within this subspace.
- Step 7.
- (Exchange base if required; eliminate one superbase). Here, has reached one of its limits, and, for some , the variable associated with the column of has also attained one of its limits.
- a.
- In the case of a base variable exceeding the limit ,
- i.
- Substitute the -th column with the -th column of and ;Assume that is chosen so that non-singular is maintained (this involves a vector that fulfills );
- ii.
- Changes to , , , and , as well as changes to , to reflect these changes;
- iii.
- Identify the latest gradient at the bottom ;
- iv.
- Go to (c).
- b.
- Otherwise, the variable superbase reaches its maximum value . Determine .
- c.
- After reaching the desired limit, create the -th variable in nonbasis , accordingly:
- i.
- Eliminate the -th column from and ;
- ii.
- To the triangular matrix, add .
- d.
- Step 1 should be repeated after subtracting by one.
5. Problem Description for MVRPTW
5.1. Real Problem Example
5.2. Methodology
- Number of vehicles—4;
- Number of customers—8;
- Number of routes—4;
- Multiple suppliers and depots;
- Flexible but constrained time windows for delivery.
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dantzig, G.B.; Ramser, J.H. The Truck Dispatching Problem. Manag. Sci. 1959, 6, 80–91. [Google Scholar] [CrossRef]
- Toth, P.; Vigo, D. An Overview of Vehicle Routing Problems. In The Vehicle Routing Problem; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2002; pp. 1–26. [Google Scholar]
- Braekers, K.; Ramaekers, K.; Van Nieuwenhuyse, I. The Vehicle Routing Problem: State of the Art Classification and Review. Comput. Ind. Eng. 2016, 99, 300–313. [Google Scholar] [CrossRef]
- Tan, S.-Y.; Yeh, W.-C. The Vehicle Routing Problem: State-of-the-Art Classification and Review. Appl. Sci. 2021, 11, 10295. [Google Scholar] [CrossRef]
- Koç, Ç.; Laporte, G.; Tükenmez, İ. A Review of Vehicle Routing with Simultaneous Pickup and Delivery. Comput. Oper. Res. 2020, 122, 104987. [Google Scholar] [CrossRef]
- Schrage, L. Formulation and Structure of More Complex/Realistic Routing and Scheduling Problems. Networks 1981, 11, 229–232. [Google Scholar] [CrossRef]
- Laporte, G.; Louveaux, F.V.; van Hamme, L. An Integer L-Shaped Algorithm for the Capacitated Vehicle Routing Problem with Stochastic Demands. Oper. Res. 2002, 50, 415–423. [Google Scholar] [CrossRef]
- Koç, Ç.; Bektaş, T.; Jabali, O.; Laporte, G. Thirty Years of Heterogeneous Vehicle Routing. Eur. J. Oper. Res. 2016, 249, 1–21. [Google Scholar] [CrossRef]
- Borcinova, Z. Two Models of the Capacitated Vehicle Routing Problem. Croat. Oper. Res. Rev. 2017, 8, 463–469. [Google Scholar] [CrossRef]
- Takan, M.A.; Kasımbeyli, R. Multiobjective Mathematical Models and Solution Approaches for Heterogeneous Fixed Fleet Vehicle Routing Problems. J. Ind. Manag. Optim. 2021, 17, 2073. [Google Scholar] [CrossRef]
- Siddharth, S.; Nandini, B. A Brief Overview of Vehicle Routing Problem and Two-Phase Heuristics. Int. J. Adv. Res. 2020, 8, 1239–1244. [Google Scholar] [CrossRef]
- Cao, W.; Yang, W. A Survey of Vehicle Routing Problem. MATEC Web Conf. 2017, 100, 1006. [Google Scholar] [CrossRef]
- Li, B.; Wu, G.; He, Y.; Fan, M.; Pedrycz, W. An Overview and Experimental Study of Learning-Based Optimization Algorithms for the Vehicle Routing Problem. IEEE/CAA J. Autom. Sin. 2022, 9, 1115–1138. [Google Scholar] [CrossRef]
- Saragih, N.I.; Turnip, P. Design of Vehicle Routes for Rice Distribution System in Bandung Using Simulated Annealing Algorithm. J. Rekayasa Sist. Ind. 2022, 11, 211–220. [Google Scholar] [CrossRef]
- Mockova, D.; Rybickova, A. Application of Genetic Algorithms to Vehicle Routing Problem. Neural Netw. World 2014, 24, 57–78. [Google Scholar] [CrossRef]
- Zacharia, P.; Stavrinidis, S. The Vehicle Routing Problem with Simultaneous Pick-Up and Delivery under Fuzziness Considering Fuel Consumption. Vehicles 2024, 6, 231–241. [Google Scholar] [CrossRef]
- Bell, J.E.; McMullen, P.R. Ant Colony Optimization Techniques for the Vehicle Routing Problem. Adv. Eng. Inform. 2004, 18, 41–48. [Google Scholar] [CrossRef]
- Dorigo, M.; Stützle, T. Ant Colony Optimization: Overview and Recent Advances. In Handbook of Metaheuristics; Gendreau, M., Potvin, J.-Y., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 311–351. ISBN 978-3-319-91086-4. [Google Scholar]
- Kuo, Y. Using Simulated Annealing to Minimize Fuel Consumption for the Time-Dependent Vehicle Routing Problem. Comput. Ind. Eng. 2010, 59, 157–165. [Google Scholar] [CrossRef]
- Yıldırım, U.M.; Çatay, B. An Ant Colony-Based Matheuristic Approach for Solving a Class of Vehicle Routing Problems. In Proceedings of the Computational Logistics: 6th International Conference, ICCL 2015, Delft, The Netherlands, 23–25 September 2015; Corman, F., Voß, S., Negenborn, R.R., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 105–119. [Google Scholar]
- Nahum, O.E.; Hadas, Y. Developing a Model for the Stochastic Time-Dependent Vehicle-Routing Problem. In Proceedings of the 2009 International Conference on Computers & Industrial Engineering, Troyes, France, 6–9 July 2009; pp. 118–123. [Google Scholar]
- Musolino, G.; Rindone, C.; Vitetta, A. A Modelling Framework to Simulate Paths and Routes Choices of Freight Vehicles in Sub-Urban Areas. In Proceedings of the 2021 7th International Conference on Models and Technologies for Intelligent Transportation Systems (MT-ITS), Heraklion, Greece, 16–17 June 2021; pp. 1–6. [Google Scholar]
- Tang, Q.; Kong, Y.; Pan, L.; Lee, C. Learning to Solve Soft-Constrained Vehicle Routing Problems with Lagrangian Relaxation. arXiv 2022, arXiv:2207.09860. [Google Scholar]
- Yu, S.P.; Li, Y.P. An Improved Ant Colony Optimization for VRP with Time Windows. Appl. Mech. Mater. 2012, 263–266, 1609–1613. [Google Scholar] [CrossRef]
- Zheng, J. A Vehicle Routing Problem Model with Multiple Fuzzy Windows Based on Time-Varying Traffic Flow. IEEE Access 2020, 8, 39439–39444. [Google Scholar] [CrossRef]
- Cordeau, J.-F.; Desaulniers, G.; Desrosiers, J.; Solomon, M.M.; Soumis, F. The VRP with Time Windows. In The Vehicle Routing Problem; Toth, P., Vigo, D., Eds.; SIAM Monographs on Discrete Mathematics and Applications: Philadelpia, PA, USA, 2002; pp. 157–193. [Google Scholar]
- Ibaraki, T.; Imahori, S.; Kubo, M.; Masuda, T.; Uno, T.; Yagiura, M. Effective Local Search Algorithms for Routing and Scheduling Problems with General Time-Window Constraints. Transp. Sci. 2005, 39, 206–232. [Google Scholar] [CrossRef]
- Bräysy, O.; Gendreau, M. Vehicle Routing Problem with Time Windows, Part II: Metaheuristics. Transp. Sci. 2005, 39, 119–139. [Google Scholar] [CrossRef]
- Baldoquin, M.G.; Martinez, J.A.; Díaz-Ramírez, J. A Unified Model Framework for the Multi-Attribute Consistent Periodic Vehicle Routing Problem. PLoS ONE 2020, 15, e0237014. [Google Scholar] [CrossRef] [PubMed]
- Kohl, N. Exact Methods for Time Constrained Routing and Related Scheduling Problems. Ph.D. Thesis, Technical University of Denmark, Kongens Lyngby, Denmark, 1995. [Google Scholar]
- Bräysy, O.; Gendreau, M. Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms. Transp. Sci. 2005, 39, 104–118. [Google Scholar] [CrossRef]
- Vidal, T.; Crainic, T.G.; Gendreau, M.; Prins, C. Heuristics for Multi-Attribute Vehicle Routing Problems: A Survey and Synthesis. Eur. J. Oper. Res. 2013, 231, 1–21. [Google Scholar] [CrossRef]
- Gendreau, M.; Tarantilis, C.D. Solving Large-Scale Vehicle Routing Problems with Time Windows: The State-of-the-Art; Cirrelt: Montreal, QC, Canada, 2010. [Google Scholar]
- Vareias, A.D.; Repoussis, P.P.; Tarantilis, C.D. Assessing Customer Service Reliability in Route Planning with Self-Imposed Time Windows and Stochastic Travel Times. Transp. Sci. 2019, 53, 256–281. [Google Scholar] [CrossRef]
- Theurich, F.; Fischer, A.; Scheithauer, G. A Branch-and-Bound Approach for a Vehicle Routing Problem with Customer Costs. EURO J. Comput. Optim. 2021, 9, 100003. [Google Scholar] [CrossRef]
- Yao, Y.; Van Woensel, T.; Veelenturf, L.P.; Mo, P. The Consistent Vehicle Routing Problem Considering Path Consistency in a Road Network. Transp. Res. Part B Methodol. 2021, 153, 21–44. [Google Scholar] [CrossRef]
- Song, M.; Cheng, L. Incorporating Travel Time Means and Standard Deviations into Transportation Network Design Problem: A Hybrid Method Based on Column Generation and Lagrangian Relaxation. Transp. Lett. 2024, 16, 131–143. [Google Scholar] [CrossRef]
- Donati, A.V.; Montemanni, R.; Casagrande, N.; Rizzoli, A.E.; Gambardella, L.M. Time Dependent Vehicle Routing Problem with a Multi Ant Colony System. Eur. J. Oper. Res. 2008, 185, 1174–1191. [Google Scholar] [CrossRef]
- Kumar, S.N.; Panneerselvam, R. A Time-Dependent Vehicle Routing Problem with Time Windows for e-Commerce Supplier Site Pickups Using Genetic Algorithm. Intell. Inf. Manag. 2015, 7, 181. [Google Scholar] [CrossRef]
- Stenger, A.; Schneider, M.; Goeke, D. The Prize-Collecting Vehicle Routing Problem with Single and Multiple Depots and Non-Linear Cost. Eur. J. Transp. Logist. 2013, 2, 57–87. [Google Scholar] [CrossRef]
- Agrawal, V.; Lightner, C.A.; Lightner-Laws, C.A.; Wagner, N. A Bi-Criteria Evolutionary Algorithm for a Constrained Multi-Depot Vehicle Routing Problem. Soft Comput. 2016, 21, 5159–5178. [Google Scholar] [CrossRef]
- Bagul, A.; Mukherjee, I. Enhanced Sourcing Strategy for Centralized Multitier Multiple Suppliers Network with Failure Risks. Int. J. Product. Perform. Manag. 2020, 71, 211–244. [Google Scholar] [CrossRef]
Route | Customer | Customer | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
1 | 0 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | |
1 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
2 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
3 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
4 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
5 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | ||
6 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | ||
7 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | ||
8 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | ||
2 | 0 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | |
1 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
2 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
3 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | ||
4 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
5 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | ||
6 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
7 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | ||
8 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | ||
3 | 0 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | |
1 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
2 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
3 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | ||
4 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | ||
5 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
6 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | ||
7 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
8 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
4 | 0 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | |
1 | 0.00000 | 1.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
2 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
3 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | ||
4 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
5 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | ||
6 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | ||
7 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
8 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 |
Vehicle | Customer | Customer | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | ||
1 | 0 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | |
1 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
2 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | ||
3 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
4 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
5 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
6 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | ||
7 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | ||
8 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | ||
2 | 0 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | |
1 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
2 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
3 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 1.00000 | 0.00000 | 0.00000 | ||
4 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
5 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
6 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
7 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | ||
8 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | ||
3 | 0 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | |
1 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
2 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
3 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | ||
4 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | ||
5 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
6 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | ||
7 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
8 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
4 | 0 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | |
1 | 0.00000 | 1.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
2 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
3 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | ||
4 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
5 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | ||
6 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 | 0.00000 | ||
7 | 1.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | ||
8 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 0.00000 | 1.00000 | 0.00000 |
Route | Customer | |||||||
---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
1 | 39.74026 | 69.48052 | 40.00000 | 20.64935 | 20.00000 | 10.25974 | 10.00000 | 19.87013 |
2 | 40.00000 | 40.00000 | 60.00000 | 20.00000 | 10.00000 | 30.00000 | 10.00000 | 20.00000 |
3 | 0.00000 | 0.00000 | 30.00000 | 0.00000 | 0.00000 | 59.87013 | 110.00000 | 100.12987 |
4 | 60.25974 | 10.51948 | 0.00000 | 99.35065 | 110.00000 | 19.87013 | 0.00000 | 0.00000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mawengkang, H.; Syahputra, M.R.; Sutarman, S.; Salhi, A. A Non-Linear Optimization Model for the Multi-Depot Multi-Supplier Vehicle Routing Problem with Relaxed Time Windows. Vehicles 2024, 6, 1482-1495. https://doi.org/10.3390/vehicles6030070
Mawengkang H, Syahputra MR, Sutarman S, Salhi A. A Non-Linear Optimization Model for the Multi-Depot Multi-Supplier Vehicle Routing Problem with Relaxed Time Windows. Vehicles. 2024; 6(3):1482-1495. https://doi.org/10.3390/vehicles6030070
Chicago/Turabian StyleMawengkang, Herman, Muhammad Romi Syahputra, Sutarman Sutarman, and Abdellah Salhi. 2024. "A Non-Linear Optimization Model for the Multi-Depot Multi-Supplier Vehicle Routing Problem with Relaxed Time Windows" Vehicles 6, no. 3: 1482-1495. https://doi.org/10.3390/vehicles6030070
APA StyleMawengkang, H., Syahputra, M. R., Sutarman, S., & Salhi, A. (2024). A Non-Linear Optimization Model for the Multi-Depot Multi-Supplier Vehicle Routing Problem with Relaxed Time Windows. Vehicles, 6(3), 1482-1495. https://doi.org/10.3390/vehicles6030070