A Study of Multi-Objective Crashworthiness Optimization of the Thin-Walled Composite Tube under Axial Load
Abstract
:1. Introduction
2. Method
2.1. Finite Element Model
2.2. Modeling Using GMDH Neural Network.
3. Result and Discussion
3.1. GMDH Modeling of Crashworthiness Parameters
3.2. Multi-Objective Optimization
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Seyedi, M.; Jung, S.; Dolzyk, G.; Wekezer, J. Experimental assessment of vehicle performance and injury risk for cutaway buses using tilt table and modified dolly rollover tests. Accid. Anal. Prev. 2019, 13, 105287. [Google Scholar] [CrossRef] [PubMed]
- Seyedi, M.; Jung, S.; Wekezer, J.; Kerrigan, J.R.; Gepner, B. Rollover Crashworthiness Analyses—An Overview and State of the Art. Int. J. Crashworthiness 2019, 25, 328–350. [Google Scholar] [CrossRef]
- Borazjani, S. Light-weight Design of Vehicle Roof Panel for Stiffness and Crash Analyses. Ph.D. Thesis, Politecnico di Torino, Turin, Italy, 2016. [Google Scholar] [CrossRef]
- Meredith, J.; Bilson, E.; Powe, R.; Collings, E.; Kirwan, K. A performance versus cost analysis of prepreg carbon fibre epoxy energy absorption structures. Compos. Struct. 2015, 124, 206–213. [Google Scholar] [CrossRef] [Green Version]
- Mamalis, A.; Robinson, M.; Manolakos, D.E.; Demosthenous, G.A.; Ioannidis, M.B.; Carruthers, J. Crashworthy capability of composite material structures. Compos. Struct. 1997, 37, 109–134. [Google Scholar] [CrossRef]
- Palanivelu, S.; Van Paepegem, W.; Degrieck, J.; Van Ackeren, J.; Kakogiannis, D.; Van Hemelrijck, D.; Vantomme, J. Experimental study on the axial crushing behaviour of pultruded composite tubes. Polym. Test. 2010, 29, 224–234. [Google Scholar] [CrossRef] [Green Version]
- Mamalis, A.G. Crashworthiness of Composite Thin-Walled Structures; Routledge: London, UK, 2017. [Google Scholar]
- Carruthers, J.J.; Kettle, A.; Robinson, A. Energy Absorption Capability and Crashworthiness of Composite Material Structures: A Review. Appl. Mech. Rev. 1998, 51, 635–649. [Google Scholar] [CrossRef]
- Talib, A.A.; Ali, A.; Badie, M.A.; Lah, N.A.C.; Golestaneh, A.F. Developing a hybrid, carbon/glass fiber-reinforced, epoxy composite automotive drive shaft. Mater. Des. 2010, 31, 514–521. [Google Scholar] [CrossRef]
- Palma, T.; Munther, M.; Damasus, P.; Salari, S.; Beheshti, A.; Davami, K. Multiscale mechanical and tribological characterizations of additively manufactured polyamide 12 parts with different print orientations. J. Manuf. Process. 2019, 40, 76–83. [Google Scholar] [CrossRef]
- Salari, S.; Dadkan, S.; Khakbiz, M.; Atai, M. Effect of Nanoparticles on Surface Characteristics of Dental Nanocomposite. Med. Devices Sens. 2020. [Google Scholar] [CrossRef]
- Caliskan, A.G. Crashworthiness of Composite Materials & Structures for Vehicle Applications. SAE Tech. Pap. 2000, 1, 15. [Google Scholar]
- Gan, N.; Feng, Y.; Yin, H.; Wen, G.; Wang, D.; Huang, X. Quasi-static axial crushing experiment study of foam-filled CFRP and aluminum alloy thin-walled structures. Compos. Struct. 2016, 157, 303–319. [Google Scholar] [CrossRef]
- Belingardi, G.; Boria, S.; Obradovic, J. Energy absorbing sacrificial structures made of composite materials for vehicle crash design. In Dynamic Failure of Composite and Sandwich Structures; Springer: Dordrecht, The Netherlands, 2013; Volume 192, pp. 577–609. [Google Scholar]
- Alkbir, M.; Sapuan, S.M.; Nuraini, A.A.; Ishak, M.R. Fibre properties and crashworthiness parameters of natural fibre-reinforced composite structure: A literature review. Compos. Struct. 2016, 148, 59–73. [Google Scholar] [CrossRef]
- Kazancı, Z.; Bathe, K.-J. Crushing and crashing of tubes with implicit time integration. Int. J. Impact Eng. 2012, 42, 80–88. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X. Numerical and experimental investigations on the axial crushing response of composite tubes. Compos. Struct. 2009, 91, 222–228. [Google Scholar] [CrossRef]
- Swaminathan, N.; Averill, R.C. Contribution of failure mechanisms to crush energy absorption in a composite tube. Mech. Adv. Mater. Struct. 2006, 13, 51–59. [Google Scholar] [CrossRef]
- Bank, L.C. Progressive failure and ductility of FRP composites for construction. J. Compos. Constr. 2013, 17, 406–419. [Google Scholar] [CrossRef]
- Farley, G.L.; Jones, R.M. Prediction of the Energy-Absorption Capability of Composite Tubes. J. Compos. Mater. 1992, 26, 388–404. [Google Scholar] [CrossRef]
- Israr, H.A.; Rivallant, S.; Bouvet, C.; Barrau, J.J. Finite element simulation of 0/90 CFRP laminated plates subjected to crushing using a free-face-crushing concept. Compos. Part A Appl. Sci. Manuf. 2014, 62, 16–25. [Google Scholar] [CrossRef] [Green Version]
- Jia, X.; Chen, G.; Yu, Y.; Li, G.; Zhu, J.; Luo, X.; Duan, C.; Yang, X.; Hui, D. Effect of geometric factor, winding angle and pre-crack angle on quasi-static crushing behavior of filament wound CFRP cylinder. Compos. Part B Eng. 2013, 45, 1336–1343. [Google Scholar] [CrossRef]
- Palanivelu, S.; Van Paepegem, W.; Degrieck, J.; Kakogiannis, D.; Van Ackeren, J.; Van Hemelrijck, D.; Wastiels, J.; Vantomme, J. Parametric study of crushing parameters and failure patterns of pultruded composite tubes using cohesive elements and seam, Part. I: Central delamination and triggering modelling. Polym. Test. 2010, 29, 729–741. [Google Scholar] [CrossRef] [Green Version]
- Alghamdi, A. Collapsible impact energy absorbers: An. overview. Thin-walled Struct. 2001, 39, 189–213. [Google Scholar] [CrossRef]
- Xiao, X. Evaluation of a composite damage constitutive model for PP composites. Compos. Struct. 2007, 79, 163–173. [Google Scholar] [CrossRef]
- Xiao, X.; Botkin, M.E.; Johnson, N.L. Axial crush simulation of braided carbon tubes using MAT58 in LS-DYNA. Thin-Walled Struct. 2009, 47, 740–749. [Google Scholar] [CrossRef]
- Wade, B.; Feraboli, P.; Osborne, M. Simulating Laminated Composites Using LS-DYNA Material Model MAT54 Part I:[0] and [90] Ply Single-Element Investigation; FAA JAMS: Baltimore, MD, USA, 2012. [Google Scholar]
- Curtis, J.; Hinton, M.J.; Li, S.; Reid, S.R.; Soden, P.D. Damage, deformation and residual burst strength of filament-wound composite tubes subjected to impact or quasi-static indentation. Compos. Part B Eng. 2000, 31, 419–433. [Google Scholar] [CrossRef]
- Song, S.; Waas, A.M.; Shahwan, K.W.; Xiao, X.; Faruque, O. Braided textile composites under compressive loads: Modeling the response, strength and degradation. Compos. Sci. Technol. 2007, 67, 3059–3070. [Google Scholar] [CrossRef]
- Zarei, H.; Kröger, M.; Albertsen, H. An experimental and numerical crashworthiness investigation of thermoplastic composite crash boxes. Compos. Struct. 2008, 85, 245–257. [Google Scholar] [CrossRef]
- Nariman-Zadeh, N.; Darvizeh, A.; Ahmad-Zadeh; Hybrid, G. Genetic design of GMDH-type neural networks using singular value decomposition for modelling and prediction of the explosive cutting process. Mech. Eng. Part B J. Eng. Manuf. 2003, 217, 779–790. [Google Scholar] [CrossRef]
- Nariman-Zadeh, N.; Darvizeh, A.; Felezi, E.M.; Gharababaei, H. Polynomial modelling of explosive compaction process of metallic powders using GMDH-type neural networks and singular value decomposition. Model. Simul. Mater. Sci. Eng. 2002, 10, 727. [Google Scholar] [CrossRef]
- Amanifard, N.; Nariman-Zadeh, N.; Borji, M.; Khalkhali, A.; Habibdoust, A. Modelling and Pareto optimization of heat transfer and flow coefficients in microchannels using GMDH type neural networks and genetic algorithms. Energy Convers. Manag. 2008, 49, 311–325. [Google Scholar] [CrossRef]
- Khalkhali, A.; Safikhani, H. Pareto based multi-objective optimization of a cyclone vortex finder using CFD, GMDH type neural networks and genetic algorithms. Eng. Optim. 2012, 44, 105–118. [Google Scholar] [CrossRef]
- Ivakhnenko, A.G. Polynomial theory of complex systems. IEEE Trans. Syst. Man Cybern. 1971, 1, 364–378. [Google Scholar] [CrossRef] [Green Version]
- Atashkari, K.; Nariman-Zadeh, N.; Gölcü, M.; Khalkhali, A.; Jamali, A. Modelling and multi-objective optimization of a variable valve-timing spark-ignition engine using polynomial neural networks and evolutionary algorithms. Energy Convers. Manag. 2007, 48, 1029–1041. [Google Scholar] [CrossRef]
- Kim, J.-S.; Yoon, H.-J.; Shin, K.-B. A study on crushing behaviors of composite circular tubes with different reinforcing fibers. Int. J. Impact Eng. 2011, 38, 198–207. [Google Scholar] [CrossRef]
- Tsai, S.W.; Wu, E.M. A general theory of strength for anisotropic materials. J. Compos. Mater. 1971, 5, 58–80. [Google Scholar] [CrossRef]
- Du Bois, P.; Chou, C.C.; Fileta, B.B.; Khalil, T.B.; King, A.I.; Mahmood, H.F.; Mertz, H.J.; Wismans, J.; Prasad, P.; Belwafa, J.E. Vehicle Crashworthiness and Occupant Protection; American Iron and Steel Institute: Detroit, MI, USA, 2004. [Google Scholar]
- Atashkari, K.; Nariman-Zadeh, N.; Pilechi, A.; Jamali, A.; Yao, X. Thermodynamic Pareto optimization of turbojet engines using multi-objective genetic algorithms. Int. J. Therm. Sci. 2005, 44, 1061–1071. [Google Scholar] [CrossRef]
Mechanical Properties | Carbon/Epoxy | Epoxy Resin |
---|---|---|
Tensile modulus (GPa) | 130 (11.4) * | 3.4 |
Tensile strength (MPa) | 2725 (78.0) | 37.5 |
Compressive modulus (GPa) | 91.7 (19.2) | NA |
Compressive strength (MPa) | 551.2 (69.4) | NA |
Shear modulus (GPa) | 8.2 (0.2) | 2.1 |
Shear strength (MPa) | 78.4 (3.1) | 36.1 |
ILSS (MPa) | 71.0 (0.3) | NA |
Parameter | Value |
---|---|
DFAILT | 0.01 |
DFAILC | −0.013 |
DFAILM | 0.03 |
DFAILS | 0.01 |
Test | Mean Force (Pm-kN) | Maximum Force (Pmax-kN) | Specific Energy Absorption (SEA -kJ/kg) |
---|---|---|---|
Numerical simulation | 25.8 | 35.4 | 73.4 |
Experimental analysis [37] | 25.2 | 31.4 | 72.7 |
Simulation Number | Input Data | Output Data | ||||||
---|---|---|---|---|---|---|---|---|
E (J) | Pmax (kN) | Pcr (kN) | ||||||
θ1 (deg) | θ2 (deg) | FEM | GMDH | FEM | GMDH | FEM | GMDH | |
1 | 90 | 180 | 2567 | 2535 | 43 | 41.8 | 42 | 42.5 |
2 | 90 | 135 | 1982 | 1991 | 27 | 27.8 | 30 | 30.7 |
3 | 90 | 90 | 2083 | 2096 | 30 | 26.9 | 31 | 29.3 |
4 | 90 | 45 | 1982 | 1986 | 27 | 27.9 | 30 | 30.6 |
5 | 90 | 0 | 2568 | 2612 | 43 | 43.9 | 43 | 43.6 |
6 | 60 | 180 | 1928 | 1825 | 34 | 32.1 | 34 | 33.1 |
7 | 60 | 160 | 1380 | 1437 | 23 | 26.3 | 26 | 27.7 |
8 | 60 | 45 | 1202 | 1215 | 22 | 22.2 | 24 | 23.9 |
9 | 60 | 0 | 1928 | 1914 | 34 | 33.3 | 34 | 33.6 |
10 | 30 | 135 | 1015 | 1047 | 20 | 19.2 | 20 | 19.82 |
11 | 30 | 45 | 1055 | 1074 | 19 | 19.3 | 19 | 18.9 |
12 | 0 | 135 | 1437 | 1372 | 37 | 36.9 | 37 | 36.9 |
13 | 0 | 45 | 1435 | 1395 | 37 | 38.2 | 37 | 37.1 |
Output Parameter | RMSE | R2 | MAPE |
---|---|---|---|
Absorbed energy (E) | 18.7 | 0.99 | 2.22 |
Maximum force (Pmax) | 0.79 | 0.99 | 1.02 |
Critical force (Pcr) | 1.51 | 0.99 | 2.48 |
Model | Optimized Outputs | ||
---|---|---|---|
SEA (kJ/kg) | Pmax (kN) | Pcr (kN) | |
GMDH neural network | 72.6 | 23.7 | 21.08 |
Numerical FE simulation | 68.5 | 23 | 23.03 |
Error | 5.6 | 3 | 9.2 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Seyedi, M.R.; Khalkhali, A. A Study of Multi-Objective Crashworthiness Optimization of the Thin-Walled Composite Tube under Axial Load. Vehicles 2020, 2, 438-452. https://doi.org/10.3390/vehicles2030024
Seyedi MR, Khalkhali A. A Study of Multi-Objective Crashworthiness Optimization of the Thin-Walled Composite Tube under Axial Load. Vehicles. 2020; 2(3):438-452. https://doi.org/10.3390/vehicles2030024
Chicago/Turabian StyleSeyedi, Mohammad Reza, and Abolfazl Khalkhali. 2020. "A Study of Multi-Objective Crashworthiness Optimization of the Thin-Walled Composite Tube under Axial Load" Vehicles 2, no. 3: 438-452. https://doi.org/10.3390/vehicles2030024
APA StyleSeyedi, M. R., & Khalkhali, A. (2020). A Study of Multi-Objective Crashworthiness Optimization of the Thin-Walled Composite Tube under Axial Load. Vehicles, 2(3), 438-452. https://doi.org/10.3390/vehicles2030024