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Abstract: In recent decades, thin-walled composite components have been widely used in the
automotive industry due to their high specific energy absorption. A large number of experimental and
numerical studies have been conducted to characterize the energy absorption mechanism and failure
criteria for different composite tubes. Their results indicate that the energy absorption characteristics
depend highly on the failure modes that occur during the impact. And failure mechanism is
dependent on fiber material, matrix material, fiber angle, the layout of the fibers, as well as the
geometry of structure and load condition. In this paper, first, the finite element (FE) model of the
CFRP tube was developed using the Tsai-Wu failure criterion to model the crush characteristics.
The FE results were validated using the published experimental. Then, a series of FE simulations were
conducted considering different fiber directions and the number of layers to generate enough data
for constructing the GMDH-type neural network. The polynomial expression of the three outputs
(energy absorption, maximum force, and critical buckling force) was extracted using the GMDH
algorithm and was used to perform the Pareto-based multi-objective optimizations. Finally, the failure
mechanism of the optimum design point was simulated in LS-DYNA. The main contribution of
this study was to successfully model the CFRP tube and damage mechanism using appropriate
material constitutive model’s parameters and present the multi-objective method to find the optimum
crashworthy design of the CFRP tube.
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1. Introduction

Having better crashworthy parameters for the structure include energy absorption characteristics
has been widely considered a key factor to improve the safety of the occupants during a crash in
the vehicle or aerospace industry [1–4]. Some of the main typical energy-absorbing structures are
thin-walled structures that have proven fairly effective and been widely studied and employed in
vehicles [5–7]. To enhance the energy absorption capacity without adding much weight, composite
materials have become very effective and popular in many engineering fields [8–11]. Among composite
materials, carbon-reinforced composite tubes are considered as substantially efficient energy-absorbing
components that have widely applied in the automotive and aerospace industry. Their crashworthiness
behavior has been the subject of several studies in recent years [12–14]. A large number of experimental
and numerical studies have been conducted to gain a better understanding of the failure mechanism
of composite tubes [15–17]. Their results indicate that the mechanisms of energy absorption and
dissipation for composite tubes are far more complex than those observed in conventional materials.
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The composite tubes absorb the impact energy through a combination of complex damage mechanisms
including fiber breakage, matrix cracking, delamination, and friction [18]. Therefore, developing the
numerical models that can replicate the impact response of these materials can provide a better
understanding of energy absorption characteristics and crush failure mode for the composite tube.

Noticeably, FE simulation is an efficient and economic method to model the crushing mechanism
of the composite tube [19]. Early simulation works were limited by computational technology [20],
but recently, as computational power has improved significantly, extensive work has been done on
numerical simulations using explicit FE codes such as LS-DYNA and ABAQUS [21–23]. These studies
have been carried out for special geometric shapes such as square or circular tubes, frusta,
honeycomb, etc. [24]. Even though crash simulations using the FE method have become routine work
in the automotive industry, their development for composite structures and failure prediction have
yet to be explored [25,26] because crush simulation and failure prediction, even under quasi-static
loading, is a difficult task. Recently, this topic has been the subject of several studies [19,21,27–30].
They tried to characterize the failure mechanism from different aspects, including but not limited to
the micro-mechanics model, fiber types, geometry of the tube, and how they change the crushing
mechanism. Although these published studies have made significant contributions to our current
understanding of composite crash behavior, only a few attempts have been made to optimize those
behaviors. In addition, the failure mechanism and damage sequences of CFRP tubes are still not
well understood [15]. This study focuses on characteristics of the failure mechanism for CFRP
composite tube under axial load using appropriate material constitutive model and then optimize its
crashworthy behavior.

On the other hand, design optimization of vehicle structures considering the maximum capacity
of energy absorption with minimizing the mass and cost of the vehicle is one of the key areas in the
vehicle industry [14]. Over a decade, there has been extensive research on genetic algorithms to design
artificial neural networks. Also, many research studies have been conducted to implement evolutionary
methods in identifying the system parameters [31,32]. Among them, the group method of data handling
(GMDH) algorithm is a self-organizing approach that characterizes the complicated models based
on their performance as a set of multiple inputs and single output pairs [33,34]. This method was
proposed by Ivakhnenko [35] and can model complex systems without having prior knowledge about
that system. In addition, Because GAs is useful for dealing with complex problems that have a large
number of variables, their application in the GMDH-type neural network was investigated [36].

In this paper, first, the FE model of the CFRP tube was developed and using an appropriate
failure criterion that can represent the crush characteristics. The results were then validated using
the experimental data reported in [37]. The fiber direction and thickness of the tube were considered
as input variables and several simulations were conducted to generate enough data to construct the
GMDH-type neural network. The polynomial expression of the three outputs was extracted using
GMDH models which were then used to perform the Pareto-based multi-objective optimizations.
These results were then used for the Pareto-based multi-objective optimization which provides some
valuable insights into the optimum crashworthy design of the CFRP tube. The results can be applied
in any structural design that requires crash safety such as the automotive and aerospace industry.
The main contribution of this study was to successfully model the CFRP tube and damage mechanism
using appropriate material constitutive model’s parameters and present the multi-objective method to
optimize the crashworthy behavior of the CFRP composite tube.

2. Method

2.1. Finite Element Model

A FE model of an unidirectional carbon/epoxy composite tube was developed using LS-DYNA
software (Livemore Software Technology, Livermore, CA, USA) and it was validated against the
experimental data published by Kim, Yoon [37]. Figure 1 shows the dimensions of the [90/0]7 tube that
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was utilized in that experimental study. The cylinder had a 30 mm internal diameter and a height of
100 mm with seven layers of carbon fibers with a thickness of 0.13 mm for each layer. The total mass of
the tube was 28.3 g. Table 1 lists the mechanical properties of the composite tube and the resin epoxy
that was extracted from the experimental tests [37].

Vehicles 2019, 1, FOR PEER REVIEW 3 

 

that was utilized in that experimental study. The cylinder had a 30 mm internal diameter and a height 

of 100 mm with seven layers of carbon fibers with a thickness of 0.13 mm for each layer. The total 

mass of the tube was 28.3 g. Table 1 lists the mechanical properties of the composite tube and the 

resin epoxy that was extracted from the experimental tests [37]. 

Table 1. Mechanical properties of the composite tube and resin epoxy [37] 

Mechanical Properties Carbon/Epoxy Epoxy Resin 

Tensile modulus (GPa) 130 (11.4) * 3.4 

Tensile strength (MPa) 2725 (78.0) 37.5 

Compressive modulus (GPa) 91.7 (19.2) NA 

Compressive strength (MPa) 551.2 (69.4) NA 

Shear modulus (GPa) 8.2 (0.2) 2.1 

Shear strength (MPa) 78.4 (3.1) 36.1 

ILSS (MPa) 71.0 (0.3) NA 

*( ): standard deviation. 

The FE model has three main components: a cylinder using 19,900 shell elements with a size of 

0.5 mm, a loading plate using solid elements, and a stationary plate using the Rigid_Wall option. The 

composite tube was modeled using 14 integration points. The 60 × 60 × 10 mm3 rigid plate was 

modeled to apply the quasi-static load. The details of the geometry and FE model components are 

illustrated in Error! Reference source not found.. The details of the trigger mechanism are illustrated 

in this figure. The three layers of shell elements were used to obtain the closest possible angle in 

experimental model. 

 

Figure 1. Dimensions of the composite tube, fiber orientation, trigger mechanism, and FE model using 

LS-DYNA (units are millimeters and degrees, respectively). 

Detail A (trigger mechanism)

  

   

Integration points

Mid surface

Composite tube

Stationary plate 

Rigid Wall  

Loading rigid 

plate 

Integration points

Mid surface

Figure 1. Dimensions of the composite tube, fiber orientation, trigger mechanism, and FE model using
LS-DYNA (units are millimeters and degrees, respectively).

Table 1. Mechanical properties of the composite tube and resin epoxy [37].

Mechanical Properties Carbon/Epoxy Epoxy Resin

Tensile modulus (GPa) 130 (11.4) * 3.4
Tensile strength (MPa) 2725 (78.0) 37.5

Compressive modulus (GPa) 91.7 (19.2) NA
Compressive strength (MPa) 551.2 (69.4) NA

Shear modulus (GPa) 8.2 (0.2) 2.1
Shear strength (MPa) 78.4 (3.1) 36.1

ILSS (MPa) 71.0 (0.3) NA

(*): standard deviation.

The FE model has three main components: a cylinder using 19,900 shell elements with a size
of 0.5 mm, a loading plate using solid elements, and a stationary plate using the Rigid_Wall option.
The composite tube was modeled using 14 integration points. The 60 × 60 × 10 mm3 rigid plate was
modeled to apply the quasi-static load. The details of the geometry and FE model components are
illustrated in Figure 1. The details of the trigger mechanism are illustrated in this figure. The three
layers of shell elements were used to obtain the closest possible angle in experimental model.
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The failure mechanism of the composite tube was modeled using the Tsai-Wu theory [38].
The MAT_ENHANCED_COMPOSITE_DAMAGE (MAT 54/55 keyword in LS-DYNA) was used to
model the damage in the composite tube. Based on the Tsai-Wu theory the failure criterion for the
compressive fiber mode, tensile matrix mode, and the combination of tensile and compressive matrix
mode are given as following equations respectively:

σaa > 0 e2
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σaa
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)2
+ β

(
σab
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)
− 1

{
≥ 0 failed
< 0 elastic

(1)
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If failed, then Ea = Eb = Gab = vba = vab = 0; where the σij is stress in the (ij) direction, Ea is Young’s
modulus in the (i) direction, Gij is in-plane shear modulus in the (ij) direction, vij is Poisson’s ratio in
the (ij) direction, S is shear strength and X and Y is strength, respectively.

Other parameters that have a significant influence on failure occurs during the simulation cannot
be extracted through the experimental tests. Therefore, their values were obtained through the trial
and error process which are shown in Table 2. These parameters are the maximum strain for the fibers
in tensile (DFAILT), compression (DFAILC) mode, and the maximum strain for the matrix for the
tensile/compression (DFAILM) and shear (DFAILS) modes. The load was applied as a quasi-static with
a maximum velocity of 0.1 mm/s. Figure 2 shows the velocity profile implemented in our simulation
over time. Three different contacts were used for this simulation include NODE_TO_SURFACE
between the loading plate and tube, AUTOMATIC_SINGLE_SURFACE between all components,
and ERODING_SINGLE_SURFACE to prevent the penetration of the composite layers. Because the
explicit solver was selected in our analysis, the mass scaling option was also used to improve the
simulation time.

Table 2. The values of MAT 54/55 parameters considered in simulations

Parameter Value

DFAILT 0.01
DFAILC −0.013
DFAILM 0.03
DFAILS 0.01

The strength reduction parameters were used to degrade the pristine fiber strength of a ply under
a compressive load. The SOFT parameter, which cannot be measured experimentally, was selected
by trial and error during several crash simulations. It should be noted that studies have shown that
while the material strength parameters affect the stress-strain curve significantly, changing the material
strength has a very small effect on the total energy of simulation [27]. In addition, the failure strain was
identified as the most critical parameter for the MAT 54 that affects the mechanical responses. Since for
the entire numerical simulations in this study only one type of composite tube and load condition was
selected to investigate the crashworthy behavior, the values of parameters may not be applicable when
those parameters change.
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Figure 3 shows the results of the FE simulation results at different moments and the first 80 mm
of the predicted load-displacement profile for both experiment and simulation. The results show a
good correlation between the FE and experimental results. The two failure mechanisms including
the transverse shearing and lamina bending (delamination) were observed which are illustrated in
Figure 3. Table 3 indicates that the primary evaluation parameters calculated from the experimental
and numerical analysis are close to each other.
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Table 3. Comparison of the resulted data.

Test Mean Force
(Pm-kN)

Maximum Force
(Pmax-kN)

Specific Energy Absorption
(SEA -kJ/kg)

Numerical simulation 25.8 35.4 73.4
Experimental analysis [37] 25.2 31.4 72.7

2.2. Modeling Using GMDH Neural Network.

The classical GMDH is a set of neurons in which different pairs of them in each layer are connected
through a quadratic polynomial. Hence, this will produce new neurons for the next layer which can be
used to map the inputs to output parameters. For example, consider a function f with multi-input
X = (x1, x2, x3, . . . , xn) and a single output yi and the f̂ is the function that approximates the predicted
output value:

yi = f (xi1, xi2, xi3, . . . , xin) (i = 1, 2, . . . , M) (4)

The trained GMDH-type neural network that can predict the output values given M
observations are:

∧
yi =

∧

f (xi1, xi2, xi3, . . . , xin) (i = 1, 2, 3, . . . , M) (5)

The goal is now to minimize the difference between the predicted value using GMDH-type and
actual output:

M∑
i=1

(
∧
yi − yi)

2
→ min (6)

Based on this algorithm, the general form of the connection between the inputs and output
variables are expressed with the following equation which is known as Ivankhnenko polynomial [32]:

y = a0 +
n∑

i=1

aixi +
n∑

i=1

n∑
j=1

ai jxix j +
n∑

i=1

n∑
j=1

n∑
k=1

ai jkxix jxk + . . . (7)

In most applications, the quadratic form was used only for two variables which can be written as:

∧
y = G

(
xi, x j

)
= a0 + a1xi + a2x j + a3x2

i + a4x2
j + a5xix j (8)
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In Equation (8), all the coefficients ai are calculated using the regression method [35] to minimize
the differences between the actual output y and approximated ŷ for the input variables of xi and xj.
This can be expressed with the following equation:

E =

∑M
i=1 (yi −Gi( ))

2

M
→ min (9)

All the combinations of the two independent variables from n input variables are taken into
account for the basic form of the GMDH to construct the regression polynomial similar to Equation (8).

As a result,
(

n
2

)
=

n(n−1)
2 neurons will be built in the first hidden layer for the feed-forward network

structure from the observations which can be expressed in the following form:{ (
yi, xip, xiq

)
| (i = 1, 2, . . . , M) & p, q ∈ (1, 2, . . . , M)

}
(10)

Consequently, using the quadratic sub-expression in the form of Equation (8) the following matrix
can be obtained:

Aa = Y (11)

where the variables are:
a = {a0, a1, . . . , a5} (12)

Y =
{
y1, y2, y3, . . . , yM

}T (13)

A =


1 x1p x1q x2

1p x2
1q x1px1q

1 x2p x2q x2
2p x2

2q x2px2q
...

...
...

...
...

...
1 xMp xMq x2

Mp x2
Mq xMpxMq


(14)

To calculate the coefficients, the least square method from multiple regression analyses can be
used which leads to the Equation (15). This allows us to determine the vector of the best coefficients
for the quadratic equations for the whole set of M data. This procedure is repeated for each neuron in
the next hidden layer based on the topology of the neural network. To prevent the singularity and
round errors for the solutions, the singular value decomposition (SVD) method was implemented [32]:

a = (ATA)
−1

ATY (15)

In this study, the generalized structure GMDH method (GS-GMDH) using a genetic algorithm
was used to train the model which was proposed by Nariman-Zadeh, Darvizeh [31]. The genome or
chromosome which presents the topology of the GMDH-type network consists of a symbolic string
where the input variables are alphabetical names. This shows how the genetic algorithm was taken
into account for the design of GMDH neural networks. Figure 4 shows an example of this network
with four input variables and a single output with two hidden layers which corresponds to the length
of 22+1=8 genes. Further details of the mathematical model and the conditions of this method can be
found in Atashkari, Nariman-Zadeh [36].

These two main concepts include a hybrid GA and SVD are involved to optimally design such a
polynomial neural network [34]. The method that was used in that study was successfully used in
this paper to obtain the polynomial models of the energy absorption, maximum force, and critical
buckling force. The design variables in this study are the fiber angles (θ1, θ2) and the number of layers
n. These variables range are from 0◦–180◦ degrees for fiber angle and 5–9 for the number of layers.
The GMDH-type models have shown a promising prediction of those outputs during the training
process which will be presented in the following section.
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in the next hidden layer based on the topology of the neural network. To prevent the singularity and 

round errors for the solutions, the singular value decomposition (SVD) method was implemented 

[32]: 

𝑎 = (𝐴𝑇𝐴)−1𝐴𝑇𝑌 (15) 
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was used to train the model which was proposed by Nariman-Zadeh, Darvizeh [31]. The genome or 

chromosome which presents the topology of the GMDH-type network consists of a symbolic string 

where the input variables are alphabetical names. This shows how the genetic algorithm was taken 

into account for the design of GMDH neural networks. Figure 4 shows an example of this network 

with four input variables and a single output with two hidden layers which corresponds to the length 

of 22+1=8 genes. Further details of the mathematical model and the conditions of this method can be 

found in Atashkari, Nariman-Zadeh [36]. 
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Figure 4. Structure of a chromosome in the GMDH-type neural network.

3. Result and Discussion

3.1. GMDH Modeling of Crashworthiness Parameters

The validated numerical model was used to analyze the crashworthiness behavior of the FRP
composite tube considering the fiber angles and the tube’s thickness as important parameters. More than
100 FE simulations were conducted using different θ1 and θ2 and n (number of layers) ranged from
θ1 = θ2 = [0–180] and n = [5–9] respectively. The outputs were the absorbed energy (E), maximum
force (Pmax), and critical buckling force (Pcr). For each thickness, the polynomial function of each
output was identified. It should be noted that, in some simulations where the direction of the fibers
was θ1 and θ2 ≤ 40◦, the simulation predicted a catastrophic failure mode which is not out interest for
crashworthiness design. Also, by increasing the number of layers, the values of E, Pmax, and Pcr will
go up. The architecture of the layers was not identified as the main factor that influences the output
parameters. For example, the differences in the energy absorption between the tubes with [0/90]11 and
[90/0]11 fiber direction were only 2%.

Here the results for the composite tube with the number of layers of n = 9 are presented. Figure 5
shows the feedforward GMDH-type networks that was used for three outputs. The GMDH type
neural network that was used for the input-output data set generated from numerical simulations
were presented in Table 4. The population of 13 with a crossover probability of 0.7 and a mutation
probability of 0.07 was used for 1000 generations using the non-commercial code GEvoM.
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Table 4. The results of predicted output data from numerical FE simulation and GMDH type neural
network for n = 9 layers.

Simulation Number
Input Data

Output Data

E (J) Pmax (kN) Pcr (kN)

θ1 (deg) θ2 (deg) FEM GMDH FEM GMDH FEM GMDH

1 90 180 2567 2535 43 41.8 42 42.5
2 90 135 1982 1991 27 27.8 30 30.7
3 90 90 2083 2096 30 26.9 31 29.3
4 90 45 1982 1986 27 27.9 30 30.6
5 90 0 2568 2612 43 43.9 43 43.6
6 60 180 1928 1825 34 32.1 34 33.1
7 60 160 1380 1437 23 26.3 26 27.7
8 60 45 1202 1215 22 22.2 24 23.9
9 60 0 1928 1914 34 33.3 34 33.6

10 30 135 1015 1047 20 19.2 20 19.82
11 30 45 1055 1074 19 19.3 19 18.9
12 0 135 1437 1372 37 36.9 37 36.9
13 0 45 1435 1395 37 38.2 37 37.1

Table 4 summarize the results inputs and outputs resulted from FE simulations and GMDH-type
(for n = 9 layers). Figure 6 shows the comparison between the two model’s outputs including critical
buckling force, maximum force, and energy absorption. The results indicate that the GMDH-type
neural network was adequate enough to predict the objective values for different inputs.

The error between the predicted values and numerical FE simulation for three outputs were
quantified using three different methods and presented in Table 5. The root mean squared error (RMSE),
the absolute fraction of variance (R2), and the absolute percentage (MAPE) were measured based on
the following equations where Yei and Ymi are the desired output from FE simulation and predicted
GMDH respectively:

RMSE =

√∑n
i=1(Yei −Ymi)

2

n
(16)

R2 = 1−
n∑

i=1

(Yei −Ymi)
2

Y2
mi

(17)

MAPE =

1
n

n∑
i=1

(Yei −Ymi)

Ymi

× 100 (18)

Table 5. The calculated error between the FE results and predicted GMDH for the composite tube with
nine layers.

Output Parameter RMSE R2 MAPE

Absorbed energy (E) 18.7 0.99 2.22
Maximum force (Pmax) 0.79 0.99 1.02

Critical force (Pcr) 1.51 0.99 2.48
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Figure 6. Example of comparison of the numerical FE results with predicted values using the GMDH
neural network for three outputs for n = 9.

3.2. Multi-Objective Optimization

In this section, the multi-objective optimization has been conducted to find the vector of the
decision variables that satisfies the constraints and provides the acceptable values for all the objectives
function. The objectives are to maximize specific energy absorption (maximize energy E and minimize
weight W) while minimizing the maximum and critical forces. The polynomial neural network models
obtained from the previous section (shown in Appendix A) were deployed to perform this optimization.
Each output is defined as a set of polynomial functions of two variables. These objectives substantially
influence the crashworthiness characteristics of the composite tube. The constraints of a minimum
of 20 kN and a maximum of 60 kN were defined based on literature [39] for the safety of the vehicle
and occupants respectively. It should be noted that the weight of the tube is only the function of the
number of layers:

Objectives : Constrains :
F1 = E(θ1,θ2) Maximize

F2 = Pmax(θ1,θ2) Minimize

F3 = Pcr(θ1,θ2) Minimize

F4 = W(n) Minimize

20 kN ≤ Pmax ≤ 60 kN
20 kN ≤ Pcr ≤ 60 kN

(19)
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The evolutionary process of Pareto multi-objective optimization has been conducted using the
modified NSGA-II method [40]. In this method, the population size of 60, with the crossover probability
(Pc) of 0.7, and the mutation probability (Pm) of 0.07 was defined. Figure 7 shows the results of all
four objectives resulted from this optimization process. It also shows the best possible design point
that has the minimum weight with a high capability of energy absorption. The plots are showing the
existed relationship between the outputs. For example, energy absorption increased when the peak
force went up.Vehicles 2019, 1, FOR PEER REVIEW 11 
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Figure 7. Pareto diagrams for four objective optimizations and the suggested design point.

The highlighted point it the optimum decision vector which satisfies all the objectives and
constraints defined in this analysis. The optimized values were obtained for the tube with five layers
and a total mass of 19.6 g with the fiber direction of θ1 and θ2 equal to 0 and ±86 degrees, respectively.
Furthermore, the optimum design was also simulated in LS-DYNA and Figure 8 shows the failure
mechanism of this composite tube with the [0/±86]5 layers. The progressive crushing mechanism,
which according to the literature [8,19] has the highest energy absorption capability, was observed from
this simulation. Furthermore, the results from the FE simulation is very close to the values predicted
by the GHMD-type neural network which confirms the reliability of this model for the optimization
process (see Table 6). The FE simulation and GMDG prediction of crashworthy behavior of optimum
design point showed that we can reach the same SEA (72.6 kJ/kg) as our experimental model, by using
the aforementioned fiber direction and number of layers while decreasing the weight by 30%.

It should be noted that since many parameters contribute to the energy absorption of the tube
such as a number of layers, fiber angle, their orientation, the geometry, and loading condition, it is
impossible to generalize the results for CFRP tubes and expect to have the same crush behavior if
those parameters change. However, several studies showed that the trigger mechanism, similar fiber
direction will increase the energy absorption capability of the composite tube [8,15,19,21].
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Table 6. The values of outputs for optimized point resulted from two models.

Model
Optimized Outputs

SEA (kJ/kg) Pmax (kN) Pcr (kN)

GMDH neural network 72.6 23.7 21.08
Numerical FE simulation 68.5 23 23.03

Error 5.6 3 9.2

4. Conclusions

This study focuses on the characteristics of the failure mechanism for a CFRP composite tube under
axial load using the appropriate material constitutive model and then optimizes its crashworthiness
behavior. The FE model of the FRP composite tube and failure mechanism were successfully developed
and validated in LS-DYNA. Promising results were provided by FE simulations which indicate that
the Tsai-Wu failure criteria can effectively represent the crush characteristics of the carbon/epoxy
composite tubes under a quasi-static axial load. Furthermore, the GS-GMDH-type neural network has
been successfully used to derive the polynomial expression of the crashworthy output parameters
include energy absorption, peak force, and critical buckling force as a function of fiber direction.
These results were then used for the Pareto-based multi-objective optimization which provides some
valuable insights into the optimum crashworthy design of the CFRP tube. The results of the optimum
design point showed the same specific energy absorption (72.6 kJ/kg) while its weight decreased by
30% percent. Aside from the experimental and numerical limitations of this study, this approach
can be applied in any structural design that requires crash safety such as either the automotive or
aerospace industry.
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Appendix A

The corresponding polynomial representation for the energy absorption, peak force, and critical
buckling force are as follows:

The polynomial expression for the E:

Y1 = 2022.57− 22.71θ1 − 16.95 θ2 − 0.32 θ2
1 + 0.09θ2

2 − 0.0027θ1θ2
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Y2 = 0.005− 1.05θ1 − 1.21Y1 − 3.01 θ2
1 − 0.01Y2

1 − 0.0027θ1Y1

E = −2.36 + 54.7Y1 − 53.4Y2 + 1.12Y2
1 + 1.14Y2

1 − 2.26Y1Y2

The polynomial expression for the Pmax:

Y1 = 48.1− 0.66θ1 − 0.35θ2 + 0.0069θ2
1 + 0.0019θ2

2 − 2.09θ1θ2

Y2 = −4.19− 0.05Y1 + 0.67θ1 + 0.03Y2
1 − 0.0014θ2

1 − 0.016θ1Y1

Y3 = −5.08 + 1.45θ1 − 0.038 Y1 − 0.0082 θ2
1 + 5.37Y2

1 + 0.0007θ1Y1

Pmax = 8.14− 0.28Y2 − 0.83Y3 − 0.15Y2
2 − 0.15Y2

3 + 0.34Y2Y3

The polynomial expression for the Pcr:

Y1 = 50− 0.64θ1 − 0.27θ2 + 0.008θ2
1 + 0.01θ2

2 + 2.09θ1θ2

Y2 = 50.23− 0.02Y1 + 0.84θ1 + 0.12Y2
1 − 0.01θ2

1 − 0.82θ1Y1

Y3 = 48.25 + 2.02θ1 − 0.01Y1 − 0.012θ2
1 + 6.23Y2

1 + 0.12θ1Y1

Pcr = 8.14− 0.28Y2 + 0.83Y3 − 0.15Y2
2 − 0.15Y2

3 + 0.31Y2Y3
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