Identification of the Optimal Passenger Car Vehicle Fleet Transition for Mitigating the Cumulative Life-Cycle Greenhouse Gas Emissions until 2050
Abstract
:1. Introduction
2. Optimization Model of the Vehicle Fleet Transition
2.1. Meta-Analysis of Life-Cycle GHG Emissions
2.1.1. Meta-Analysis of the Life-Cycle GHG Emissions of Batteries
2.1.2. Meta-Analysis of the Life-Cycle GHG Emissions of Fuels
2.1.3. Emissions Factors of the German Energy Sector from Today till 2050
2.2. Scenarios for the Sensitivity-Analysis of Key Influence Parameters
2.2.1. Battery Production Scenarios
2.2.2. Energy Sector Scenarios
2.2.3. Hydrogen Production Path Scenarios
2.2.4. Mobility Trend Scenarios
2.3. Modelling the Vehicle Behavior and Its Life-Cycle GHG Emissions
3. Identification of the Optimal Vehicle Fleet Transitions
3.1. Optimal Vehicle Fleet Transition for the Base Scenario
3.2. Optimal Vehicle Fleet Transition for the Worst-Case Scenario
3.3. Optimal Vehicle Fleet Transition for the Best-Case Scenario
3.4. Sensitivity-Analysis of Key Influence Parameters
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Federal Ministry for Environment, Nature Conservation and Nuclear Safety. Klimaschutzbericht 2018—Zum Aktionsprogramm Klimaschutz 2020 der Bundesregierung; Federal Ministry for Environment, Nature Conservation and Nuclear Safety: Bonn, Germany, 2019.
- Knörr, W.; Heidt, C.; Gores, S.; Bergk, F. Aktualisierung “Daten- und Rechenmodell: Energieverbrauch und Schadstoffemissionen des Motorisierten Verkehrs in Deutschland 1960–2035” (TREMOD) für die Emissionsberichterstattung 2016 Berichtsperiode 1990–2014; IFEU—Institut für Energie- und Umweltforschung Heidelberg GmbH: Heidelberg, Germany, 2016. [Google Scholar]
- Kickhöfer, B.; Brokate, J. Die Entwicklung des Deutschen Pkw-Bestandes: Ein Vergleich Bestehender Modelle und die Vorstellung Eines Evolutionären Simulationsansatzes; Institut für Verkehrsforschung; Institut für Fahrzeugkonzepte; German Aerospace Center: Berlin, Germany, 2017. [Google Scholar]
- Harrison, G.; Krause, J.; Thiel, C. Transitions and Impacts of Passenger Car Powertrain Technologies in European Member States. Transp. Res. Procedia 2016, 14, 2620–2629. [Google Scholar] [CrossRef]
- Plötz, P.; Gnan, T.; Wietschel, M. Total Ownership Cost Projection for the German Electric Vehicle Market with Implications for its Future Power and Electricity Demand; Fraunhofer Institute for Systems and Innovation Research ISI: Karlsruhe, Germany, 2012. [Google Scholar]
- Helms, H.; Jöhrens, J.; Kämper, C.; Giegrich, J.; Liebich, A.; Vogt, R.; Lambrecht, U. Weiterentwicklung und vertiefte Analyse der Umweltbilanz von Elektrofahrzeugen. 2016. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/texte_27_2016_umweltbilanz_von_elektrofahrzeugen.pdf (accessed on 20 January 2020).
- Fraunhofer ISE. Treibhausgas-Emissionen für Batterie- und Brennstoffzellenfahrzeuge mit Reichweiten über 300 km; Fraunhofer ISE: Freiburg, Germany, 2019. [Google Scholar]
- Wietschel, M.; Kühnbach, M.; Rüdiger, D. Die Aktuelle Treibhausgas- Emissionsbilanz von Elektrofahrzeugen in Deutschland; Working Paper Sustainability and Innovation No. S 02/2019; Fraunhofer Institute for Systems and Innovation Research ISI: Karlsruhe, Germany, 2019. [Google Scholar]
- Esser, A.; Schleiffer, J.-E.; Eichenlaub, T.; Rinderknecht, S. Development of an Optimization Framework for the Comparative Evaluation of the Ecoimpact of Powertrain Concepts. In VDI-Berichte, Proceedings of the 19th Internationaler VDI-Kongress “Dritev—Getriebe in Fahrzeugen”, Bonn, Germany, 10–11 July 2019; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- Wuppertal Institut für Klima, Umwelt, Energie GmbH. STROMbegleitung—Begleitforschung zu Technologien, Perspektiven und Ökobilanzen der Elektromobilität; Wuppertal Institut für Klima, Umwelt, Energie GmbH: Wuppertal, Germany, 2015. [Google Scholar]
- Blat Belmonte, B.; Esser, A.; Weyand, S.; Franke, G. Meta-Analysis of Lithium-Ion Batteries—Identification of the Optimal Passenger Car Vehicle Fleet Transition for Mitigating the Cumulative Life Cycle Greenhouse Gas Emissions until 2050; Supplementary data table S1; Darmstadt, Germany. 2019. Available online: http://dx.doi.org/10.25534/tudatalib-144 (accessed on 21 January 2020).
- Blat Belmonte, B.; Esser, A.; Weyand, S.; Franke, G. Meta-Analysis of Fuels—Identification of the Optimal Passenger Car Vehicle Fleet Transition for Mitigating the Cumulative Life Cycle Greenhouse Gas Emissions until 2050; Supplementary data table S2; Darmstadt, Germany. 2019. Available online: http://dx.doi.org/10.25534/tudatalib-145 (accessed on 20 January 2020).
- Grote, K.-H.; Bender, B.; Göhlich, D. Dubbel; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Helms, H.; Jöhrens, J.; Hanusch, J.; Höpfner, U.; Lambrecht, U.; Pehnt, M. UMBRELA—Wissenschaftlicher Grundlagenbericht Gefördert Durch das Bundesministerium für Umwelt, Naturschutz und Reaktorsicherheit (BMU); Federal Ministry for the Environment, Nature Conservation and Nuclear Safety: Heidelberg, Germany, 2011; Available online: https://www.erneuerbar-mobil.de/sites/default/files/publications/abschlussbericht-umbrela_1.pdf (accessed on 20 January 2020).
- Granovskii, M.; Dincer, I.; Rosen, M.A. Life cycle assessment of hydrogen fuel cell and gasoline vehicles. Int. J. Hydrogen Energy 2006, 31, 337–352. [Google Scholar] [CrossRef]
- Bhandari, R.; Trudewind, C.A.; Zap, P. Life Cycle Assessment of Hydrogen Production Methods—A Review; Forschungszentrum Jülich, Institute of Energy and Climate Research—Systems Analysis and Technology Evaluation (IEK-STE): Jülich, Germany, 2012. [Google Scholar]
- Edwards, R.; Larivé, J.-F.; Rickeard, D.; Weindorf, W. Well-to-Tank Report Version 4.a—JEC Well-to-Wheels Analysis; European Commission Joint Research Centre, Institute for Energy: Ispra, Italy, 2014. [Google Scholar]
- International Renewable Energy Agency. Hydrogen from Renewable Power—Technology Outlook for the Energy Transition; International Renewable Energy Agency: Abu Dhabi, UAE, 2018. [Google Scholar]
- BDEW Bundesverband der Energie- und Wasserwirtschaft e.V. Gas Kann Grün: Die Potentiale von Biogas/Biomethan—Status Quo, Fakten und Entwicklung; BDEW: Berlin, Germany, 2019. [Google Scholar]
- Braune, M.; Grasemann, E.; Gröngröft, A.; Klemm, M.; Oehmichen, K.; Zech, K. Die Biokraftstoffproduktion in Deutschland—Stand der Technik und Optimierungsansätze; Deutsches Biomasseforschungszentrum, DBFZ-ReportNr. 22; Deutsches Biomasseforschungszentrum Gemeinnützige GmbH: Leipzig, Germany, 2016. [Google Scholar]
- Federal Ministry for Economic Affairs and Energy. Marktanalyse Windenergie an Land. Federal Ministry for Economic Affairs and Energy; Federal Ministry for Economic Affairs and Energy: Berlin, Germany, 2014. Available online: https://www.erneuerbare-energien.de/EE/Redaktion/DE/Downloads/bmwi_de/marktanalysen-photovoltaik-windenergie-an-land.pdf?__blob=publicationFile&v=4 (accessed on 20 January 2020).
- The Federal Government of Germany. Kommission “Wachstum, Strukturwandel und Beschäftigung”—Abschlussbericht; The Federal Government of Germany: Berlin, Germany, 2019. Available online: https://www.bmwi.de/Redaktion/DE/Downloads/A/abschlussbericht-kommission-wachstum-strukturwandel-und-beschaeftigung.pdf?__blob=publicationFile (accessed on 20 January 2020).
- German Federal Environment Agency. Genehmigte Oder im Genehmigungsverfahren Befindliche Kraftwerksprojekte in Deutschland; German Federal Environment Agency: Dessau-Roßlau, Germany, 2019; Available online: https://www.umweltbundesamt.de/daten/energie/konventionelle-kraftwerke-erneuerbare-energien#textpart-1 (accessed on 9 April 2019).
- Burger, B. Energy Charts; Fraunhofer-Institut für Solare Energiesysteme ISE: Freiburg, Germany, 2018. [Google Scholar]
- BDEW Bundesverband der Energie- und Wasserwirtschaft e.V. Erneuerbare Energien und das EEG: Zahlen, Fakten, Grafiken (2017)—Anlagen, Installierte Leistung, Stromerzeugung, Marktintegration der Erneuerbaren Energien, EEG-Auszahlungen und Regionale Verteilung der EEG-Anlagen; BDEW: Berlin, Germany, 2017; Available online: https://www.dieter-bouse.de/app/download/5810146463/BDEW_Erneuerbare+Energien+und+das+EEG+-+Zahlen%2C+Fakten+und+Grafiken+2017%2C+Foliensatz+Juli+2017.pdf (accessed on 20 January 2020).
- German Federal Environment Agency. Treibhausgasneutrales Deutschland im Jahr 2050; German Federal Environment Agency: Dessau-Roßlau, Germany, 2013; Available online: https://www.umweltbundesamt.de/sites/default/files/medien/376/publikationen/treibhausgasneutrales_deutschland_im_jahr_2050_langfassung.pdf (accessed on 20 January 2020).
- German Aerospace Center; IFNE. Langfristszenarien und Strategien für den Ausbau Erneuerbarer Energien in Deutschland—Leitszenario 2009; German Aerospace Center; IFNE: Berlin, Germany, 2009. [Google Scholar]
- Fritsche, U.; Leuchtner, J.; Matthes, F.C.; Rausch, L.; Simon, K.-H. Umweltanalyse von Energie-, Transport- und Stoffsystemen: Gesamt-Emissions-Modell Integrierter Systeme (GEMIS) Version 2.1—Erweiterter und Aktualisierter Endbericht; Institut für angewandte Ökologie e.V.: Freiburg, Germany, 1995. [Google Scholar]
- Wernet, G.; Bauer, C.; Steubing, B.; Reinhard, J.; Moreno-Ruiz, E.; Weidema, B. The ecoinvent database version 3 (part I): Overview and methodology. Int. J. Life Cycle Assess. 2016, 21, 1218–1230. [Google Scholar] [CrossRef]
- Federal Motor Transport Authority. Jahresbilanz des Fahrzeugbestandes am 1. Januar 2019. Federal Motor Transport Authority. 2019. Available online: https://www.kba.de/DE/Statistik/Fahrzeuge/Bestand/b_jahresbilanz.html (accessed on 16 April 2019).
- Federal Ministry of Transport and Digital Infrastructure; German Aerospace Center; DIW. Verkehr in Zahlen 2018/2019. 47. Jahrgang; Federal Ministry of Transport and Digital Infrastructure; German Aerospace Center; DIW: Berlin, Germany, 2018.
- Plötz, P.; Gnan, T.; Kühn, A.; Wietschel, M. Markthochlaufszenarien für Elektrofahrzeuge; Fraunhofer ISI: Karlsruhe, Germany, 2013. [Google Scholar]
- Federal Motor Transport Authority. Erneut Mehr Gesamtkilometer Bei Geringerer Jahresfahrleistung je Fahrzeug; Kraftverkehrs statistik; Federal Motor Transport Authority: Flensburg, Germany, 2018. [Google Scholar]
- Federal Motor Transport Authority. Verkehr in Kilometern der Deutschen Kraftfahrzeuge im Jahr 2017—Jahresfahrleistung in Millionen Kilometer Nach Fahrzeugarten und Fahrzeugalter im Jahr 2017; Federal Motor Transport Authority: Flensburg, Germany, 2019; Available online: https://www.kba.de/DE/Statistik/Kraftverkehr/VerkehrKilometer/verkehr_in_kilometern_node.html (accessed on 28 May 2019).
- André, M. The ARTEMIS European driving cycles for measuring car pollutant emissions. Sci. Total. Environ. 2004, 334, 73–84. [Google Scholar] [CrossRef] [PubMed]
- Federal Ministry of Transport and Digital Infrastructure; Institut für Angewandte Sozialwissenschaft GmbH infas; German Aerospace Center; IVT Research GmbH; infas 360 GmbH. Mobilität in Deutschland—Ergebnisbericht; Federal Ministry of Transport and Digital Infrastructure; Institut für angewandte Sozialwissenschaft GmbH infas; German Aerospace Center; IVT Research GmbH; infas 360 GmbH: Bonn, Germany, 2019.
- MathWorks. Fmincon. Available online: https://www.mathworks.com/help/optim/ug/fmincon.html (accessed on 27 September 2019).
Powertrain Class | Internal Combustion Engines Vehicles (ICEV) | Hybrid Electric Vehicles (HEV) | Plug-In Hybrid Electric Vehicles (PHEV) | Battery Electric Vehicles (BEV) | Full Cell Electric Vehicles (FCEV) |
---|---|---|---|---|---|
Powertrain concepts | ICEV-E10 | mHEV-E10 | PHEV10-E10 | BEV20 | FCHEV |
ICEV-B7 | PHEV15-E10 | BEV100 | FCPHEV20 | ||
ICEV-CNG | PHEV20-E10 | ||||
ICEV-LPG | PHEV10-CNG | ||||
PHEV15-CNG | |||||
PHEV20-CNG |
Fuel Type | Petrol | Diesel | Bioethanol | Biodiesel | Liquefied Petroleum Gas (LPG) |
---|---|---|---|---|---|
Density | 0.745 kg/L | 0.837 kg/L | 0.786 kg/L | 0.879 kg/L | 0.590 kg/L |
Energy Source | Emission Factor in 2018 in gCO2-eq./kWh |
---|---|
Lignite | 944.23 |
Hard coal | 805.29 |
Oil | 651.94 |
Other 1 | 520.00 |
Gas | 386.75 |
Solar | 93.19 |
Hydropower | 38.00 |
Biomass | 32.49 |
Nuclear | 22.37 |
Wind onshore | 9.62 |
Wind offshore | 5.10 |
Powertrain Concept | Production Emissions (Without Battery) in kg CO2-eq. | Powertrain Concept | Production Emissions (Without Battery) in kg CO2-eq. |
---|---|---|---|
ICEV-E10 | 8130 | PHEV10-CNG | 9349 |
ICEV-B7 | 8171 | PHEV15-CNG | 9349 |
ICEV-CNG | 8130 | PHEV20-CNG | 9349 |
ICEV-LPG | 8130 | BEV20 | 8945 (8802) 1 |
mHEV E10 | 9410 | BEV100 | 9247 (8941) 1 |
PHEV10-E10 | 9381 | FCHEV | 8957 |
PHEV15-E10 | 9381 | FCPHEV20 | 9195 |
PHEV20-E10 | 9381 | - | - |
ARTEMIS-Driving Cycles | Distance Travelled | All-Range Profile | Short-Range Profile |
---|---|---|---|
City cycle | 0–60 km | 29.3% | 39.6% |
Rural cycle | 100 km | 44.7% | 60.4% |
Highway cycle (150 km/h version) | 200 km | 26% | - |
Powertrain Concept | Short Range Driving Profile | All Range Driving Profile | ||
---|---|---|---|---|
Fuel Consumptionin in kg/100 km | Electrical Consumptionin in kWh/100 km | Fuel Consumptionin in kg/100 km | Electrical Consumptionin in kWh/100 km | |
ICEV-E10 | 4.81 | 0 | 4.59 | 0 |
ICEV-B7 | 4.86 | 0 | 4.46 | 0 |
ICEV-CNG | 4.24 | 0 | 4.03 | 0 |
ICEV-LPG | 4.36 | 0 | 4.15 | 0 |
mHEV E10 | 3 | 0 | 3.35 | 0 |
PHEV10-E10 | 1.1 | 10.8 | 1.91 | 8.27 |
PHEV15-E10 | 0.2 | 16 | 1.19 | 12.4 |
PHEV20-E10 | 0.0745 | 17.4 | 0.932 | 14.1 |
PHEV10-CNG | 1.02 | 10.6 | 1.69 | 8.27 |
PHEV15-CNG | 0.21 | 15.9 | 1.05 | 12.4 |
PHEV20-CNG | 0.013 | 17.4 | 0.815 | 14.2 |
BEV20 | 0 | 17.4 (16.6) 1 | - | - |
BEV100 | 0 | 23.4 (20.9) 1 | 0 | 23.1 (20.4) 1 |
FCHEV | 0.874 | 0 | 0.935 | 0 |
FCPHEV20 | 0 | 20.4 | 0.227 | 16.2 |
Powertrain Concept | PHEV15-CNG | PHEV20-CNG | BEV20 | BEV100 | FCPHEV20 |
---|---|---|---|---|---|
Life-cycle GHG emissions in kg CO2-eq./km | 96.83 | 92.49 | 80.60 | 92.71 | 94.23 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blat Belmonte, B.; Esser, A.; Weyand, S.; Franke, G.; Schebek, L.; Rinderknecht, S. Identification of the Optimal Passenger Car Vehicle Fleet Transition for Mitigating the Cumulative Life-Cycle Greenhouse Gas Emissions until 2050. Vehicles 2020, 2, 75-99. https://doi.org/10.3390/vehicles2010005
Blat Belmonte B, Esser A, Weyand S, Franke G, Schebek L, Rinderknecht S. Identification of the Optimal Passenger Car Vehicle Fleet Transition for Mitigating the Cumulative Life-Cycle Greenhouse Gas Emissions until 2050. Vehicles. 2020; 2(1):75-99. https://doi.org/10.3390/vehicles2010005
Chicago/Turabian StyleBlat Belmonte, Benjamin, Arved Esser, Steffi Weyand, Georg Franke, Liselotte Schebek, and Stephan Rinderknecht. 2020. "Identification of the Optimal Passenger Car Vehicle Fleet Transition for Mitigating the Cumulative Life-Cycle Greenhouse Gas Emissions until 2050" Vehicles 2, no. 1: 75-99. https://doi.org/10.3390/vehicles2010005
APA StyleBlat Belmonte, B., Esser, A., Weyand, S., Franke, G., Schebek, L., & Rinderknecht, S. (2020). Identification of the Optimal Passenger Car Vehicle Fleet Transition for Mitigating the Cumulative Life-Cycle Greenhouse Gas Emissions until 2050. Vehicles, 2(1), 75-99. https://doi.org/10.3390/vehicles2010005