Investigation on the Impact of Degree of Hybridisation for a Fuel Cell Supercapacitor Hybrid Bus with a Fuel Cell Variation Strategy
Abstract
:1. Introduction
- Investigate a strategy to facilitate variation of the FC output control operation to eliminate or mitigate the identified limitations.
- Investigate the impact of the degree of hybridisation for a FC/SC hybrid bus with the proposed control strategy.
2. Data Collection
3. FC/SC Operation Strategy
3.1. Overcharge Protection Design
3.2. Undercharge Protection Design
3.3. Control Strategy Overview
4. Performance with FC Variation Strategy
5. Degree of Hybridisation Investigation
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
HTV | Higher threshold value of the supercapacitor SoC (%) |
Ifc_in | Current output from the Fuel Cell (A) |
Ifc_out | Current output from the boost converter on the common busbar (A) |
Ifc_max | Maximum current limit of the fuel cell and boost converter (A) |
Ifc_ref | Reference value for the boost converter current output on the common busbar (A) |
Iload | Current to/from the traction motor (A) |
ISC_in | Current to/from the Supercapacitor (A) |
ISC_out | Current to/from the Buck/Boost converter on the common busbar (A) |
LL | Lower limit of the supercapacitor State-of-charge (%) |
LTV | Lower threshold value of the supercapacitor SoC (%) |
HTV | Higher threshold value of the supercapacitor SoC (%) |
Pfc_out | Power output from the boost converter on the common busbar (W) |
Pload | Power to/from the traction motor load (W) |
Psc_out | Power to/from the buck/boost converter on the common busbar (W) |
SoC | Supercapacitor state-of-charge (%) |
Vfc_in | Voltage across the Fuel Cell (V) |
Vfc_out | Voltage across the Boost converter on the busbar (V) |
Vload | Voltage across the traction motor controller on the busbar (V) |
VSC_in | Voltage across the supercapacitor (V) |
VSC_out | Voltage across the Buck/Boost converter on the busbar (V) |
References
- London Assembly. London Bus Network Statistics TfL Surface Transport Buses Directorate 2016. Available online: https://www.london.gov.uk/sites/default/files/bus_network_report_final.pdf (accessed on 20 July 2019).
- TfL. Health, Safety and Environment Report 2014/15; Transport for London: London, UK, 2015.
- Anderson, D. Transport Statistics Great Britain 2015; Department for Transport: London, UK, 2015.
- Datastore, L. Average Air Quality in London; King’s College London: London, UK, 2019. [Google Scholar]
- Carrol, S. Green Fleet Technology Study for Public Transport; CENEX: Leicestershire, UK, 2015. [Google Scholar]
- Hoffmann, P. Tomorrow’s Energy: Hydrogen, Fuel Cells and the Prospects for a Cleaner Planet; MIT Press: Cambridge, MA, USA, 2012. [Google Scholar]
- Napoli, G.; Micari, S.; Dispenza, G.; Di Novo, S.; Antonucci, V.; Andaloro, L. Development of a fuel cell hybrid electric powertrain : A real case study on a Minibus application. Int. J. Hydrog. Energy 2017, 42, 28034–28047. [Google Scholar] [CrossRef]
- Li, J.; Hu, Z.; Xu, L.; Ouyang, M.; Fang, C.; Hu, J.; Cheng, S.; Po, H.; Zhang, W.; Jiang, H. Fuel cell system degradation analysis of a Chinese plug-in hybrid fuel cell city bus. Int. J. Hydrog. Energy 2016, 41, 15295–15310. [Google Scholar] [CrossRef]
- Fares, D.; Chedid, R.; Panik, F.; Karaki, S.; Jabr, R. Dynamic programming technique for optimizing fuel cell hybrid vehicles. Int. J. Hydrog. Energy 2015, 40, 7777–7790. [Google Scholar] [CrossRef]
- Melo, P.; Ribau, J.; Silva, C. Urban Bus Fleet Conversion to Hybrid Fuel Cell Optimal Powertrains. Procedia-Soc. Behav. Sci. 2014, 111, 692–701. [Google Scholar] [CrossRef] [Green Version]
- Marzougui, H.; Amari, M.; Kadri, A.; Bacha, F.; Ghouili, J. Energy management of fuel cell/battery/ultracapacitor in electrical hybrid vehicle. Int. J. Hydrog. Energy 2017, 42, 8857–8869. [Google Scholar] [CrossRef]
- Hames, Y.; Kaya, K.; Baltacioglu, E.; Turksoy, A. Analysis of the control strategies for fuel saving in the hydrogen fuel cell vehicles. Int. J. Hydrog. Energy 2018, 43, 10810–10821. [Google Scholar] [CrossRef]
- Torreglosa, J.; Garcia, P.; Fernandez, L.; Jurado, F. Predictive Control for the Energy Management of a Fuel Cell-Battery-Supercapacitor Tramway. IEEE Trans. Ind. Inform. 2013, 10. [Google Scholar] [CrossRef]
- Garcia, P.; Torreglosa, J.P.; Fernandez, L.M.; Jurado, F. Control strategies for high-power electric vehicles powered by hydrogen fuel cell, battery and supercapacitor. Expert Syst. Appl. 2013, 40, 4791–4804. [Google Scholar] [CrossRef]
- Zhao, H.; Burke, A.F. Fuel cell powered vehicles using supercapacitors-device characteristics, control strategies, and simulation results. Fuel Cells 2010, 10, 879–896. [Google Scholar] [CrossRef] [Green Version]
- Thounthong, P.; Raël, S.; Davat, B. Control strategy of fuel cell/supercapacitors hybrid power sources for electric vehicle. J. Power Sources 2006, 158, 806–814. [Google Scholar] [CrossRef]
- Behdani, A.; Naseh, M.R. Power management and nonlinear control of a fuel cell e supercapacitor hybrid automotive vehicle with working condition algorithm. Int. J. Hydrog. Energy 2017, 42, 24347–24357. [Google Scholar] [CrossRef]
- Roda, V.; Nigro, N.M.; Carignano, M.G.; Costa-Castell, R.; Junco, S.; Feroldi, D. Energy management strategy for fuel cell-supercapacitor hybrid vehicles based on prediction of energy demand. J. Power Sources 2017, 360. [Google Scholar] [CrossRef] [Green Version]
- Li, T.; Liu, H.; Zhao, D.; Wang, L. Design and analysis of a fuel cell supercapacitor hybrid construction vehicle. Int. J. Hydrog. Energy 2016, 41, 12307–12319. [Google Scholar] [CrossRef]
- Feroldi, D.; Carignano, M. Sizing for fuel cell/supercapacitor hybrid vehicles based on stochastic driving cycles. Appl. Energy 2016, 183, 645–658. [Google Scholar] [CrossRef]
- Allaoua, B.; Asnoune, K.; Mebarki, B. Energy management of PEM fuel cell/supercapacitor hybrid power sources for an electric vehicle. Int. J. Hydrog. Energy 2017, 42, 21158–21166. [Google Scholar] [CrossRef]
- El Fadil, H.; Giri, F.; Guerrero, J.M.; Member, S. Modeling and Nonlinear Control of a Fuel Cell/Supercapacitor Hybrid Energy Storage System for Electric Vehicles. IEEE Trans. Veh. Technol. 2014, 63, 3011–3018. [Google Scholar] [CrossRef] [Green Version]
- Thounthong, P.; Pierfederici, S.; Martin, J.; Hinaje, M.; Davat, B. Modeling and Control of Fuel Cell/Supercapacitor Hybrid Source Based on Differential Flatness Control. IEEE Trans. Veh. Technol. 2010, 59, 2700–2710. [Google Scholar] [CrossRef]
- Benyahia, N.; Denoun, H.; Zaouia, M.; Rekioua, T.; Benamrouche, N. Power system simulation of fuel cell and supercapacitor based electric vehicle using an interleaving technique. Int. J. Hydrog. Energy 2015, 40, 15806–15814. [Google Scholar] [CrossRef]
- Ziaeinejad, S.; Sangsefidi, Y.; Mehrizi-Sani, A. Fuel Cell-Based Auxiliary Power Unit: EMS, Sizing, and Current Estimator-Based Controller. IEEE Trans. Veh. Technol. 2016, 65, 4826–4835. [Google Scholar] [CrossRef]
- Geng, Z.; Hong, T.; Qi, K.; Ambrosio, J.; Gu, D. Modular regenerative emulation system for DC-DC converters in hybrid fuel cell vehicle applications. IEEE Trans. Veh. Technol. 2018, 67, 9233–9240. [Google Scholar] [CrossRef]
- Snoussi, J.; Elghali, S.B.; Benbouzid, M.; Mimouni, M.F. Optimal sizing of energy storage systems using frequency-separation-based energy management for fuel cell hybrid electric vehicles. IEEE Trans. Veh. Technol. 2018, 67, 9337–9346. [Google Scholar] [CrossRef]
- Odeim, F.; Roes, J.; Heinzel, A. Power Management Optimization of a Fuel Cell/Battery/Supercapacitor Hybrid System for Transit Bus Applications. IEEE Trans. Veh. Technol. 2016, 65, 5783–5788. [Google Scholar] [CrossRef]
- Depature, C.; Lhomme, W.; Sicard, P.; Bouscayrol, A.; Boulon, L. Real-Time Backstepping Control for Fuel Cell Vehicle Using Supercapacitors. IEEE Trans. Veh. Technol. 2018, 67, 306–314. [Google Scholar] [CrossRef]
- Wu, W.; Partridge, J.S.; Bucknall, R.W.G. Stabilised control strategy for PEM fuel cell and supercapacitor propulsion system for a city bus. Int. J. Hydrog. Energy 2018. [Google Scholar] [CrossRef]
- Wu, W.; Partridge, J.S.; Bucknall, R.W.G. Simulation of a stabilised control strategy for PEM fuel cell and supercapacitor hybrid propulsion system for a city bus. Int. J. Hydrog. Energy 2018, 3. [Google Scholar] [CrossRef]
- Wu, W.; Partridge, J.; Bucknall, R. Development and Evaluation of a Degree of Hybridisation Identification Strategy for a Fuel Cell Supercapacitor Hybrid Bus. Energies 2019, 12, 142. [Google Scholar] [CrossRef] [Green Version]
- O’Hayre, R.; Cha, S.-W.; Colella, W.; Prinz, F.B. Fuel Cell Fundamentals; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Xie, C.; Xu, X.; Bujilo, P.; Shen, D.; Zhao, H.; Quan, S. Fuel cell and lithium iron phosphate battery hybrid powertrain with an ultracapacitor bank using direct parallel structure. J. Power Sources 2015, 279, 487. [Google Scholar] [CrossRef]
- Barbir, F. PEM Fuel Cells Theory and Practice; Elsevier Academic Press: Cambridge, MA, USA, 2005. [Google Scholar]
- HyFLEET:Cute. The HyFLEET: CUTE Project Partners: Uniting for Progress; Clean Urban Transport for Europe: Ulm, Germany, 2009; pp. 1–52. [Google Scholar]
- Tyler, T.; Core, R.D. Present at the Fuel Cell Bus Workshop 2011, San Francisco, CA, USA, 24 February 2011.
- Hua, T.; Ahluwalia, R.; Eudy, L.; Singer, G.; Jermer, B.; Asselin-Miller, N.; Wessel, S.; Patterson, T.; Marcinkoski, J. Status of hydrogen fuel cell electric buses worldwide. J. Power Sources 2014, 269, 975–993. [Google Scholar] [CrossRef] [Green Version]
- Binder, M.; Faltenbacher, M.; Kentzler, M.; Schuckert, M. CUTE—Deliverable No. 8: Final Report; Clean Urban Transport for Europe: Ulm, Germany, 2006; pp. 1–85. [Google Scholar]
- London Fuel Cell Bus Trial 2007. Available online: https://www.yumpu.com/en/document/view/27649118/london-hyfleetcute-experience-international-fuel-cell-bus (accessed on 20 July 2019).
- Trihybus, T. TriHyBus and Triple Hybrid. 2010, pp. 1–24. Available online: www.h2fc-fair.com (accessed on 23 July 2019).
- Doucek, A.; Janík, L. TriHyBus: The First Fuel Cells Hydrogen Bus in New EU Countries. ESC Trans. 2011, 32, 49–53. [Google Scholar] [CrossRef]
- Eudy, L.; Post, M. Fuel Cell Buses in U.S. Transit Fleets : Current Status 2014; National Renewable Energy Laboratory: Golden, CO, USA, 2014.
- Eudy, L.; Renewable, N.; Chandler, K. National Fuel Cell Bus Program : Proterra Fuel Cell Hybrid Bus Report, Columbia Demonstration; United States. Federal Transit Administration: Washington, DC, USA, 2011.
- Mohrdieck, C. Next Generation Fuel Cell Technology for Passenger Cars and Buses. In Proceedings of the 24th Electric Vehicle Symposium, Stravanger, Norway, 13–16 May 2009; pp. 209–213. [Google Scholar]
- Eudy, L.; Chandler, K. SunLine Transit Agency Advanced Technology Fuel Cell Bus Evaluation: Fourth Results Report; National Renewable Energy Laboratory: Golden, CO, USA, 2013.
- Pistoria, G. Lithium-Ion Batteries, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2014; ISBN 9780444595133. [Google Scholar]
- Slavík, J. Electric Buses in Urban Transport—The Situation and Development Trends. J. Traffic Transp. Eng. 2014, 2, 45–58. [Google Scholar]
- Lipman, T.E.; Gray-Stewart, A.L.; Lidicker, J. Driver Response to Hydrogen Fuel Cell Buses in a Real-World Setting. Transp. Res. Rec. 2015, 2502, 48–52. [Google Scholar] [CrossRef]
- Eudy, L.; Post, M. Zero Emission Bay Area (ZEBA) Fuel Cell Bus Demonstration Results : Fourth Report; NREL: Golden, CO, USA, 2015.
- Zaetta, R.; Madden, B. Hydrogen Fuel Cell Bus Technology State of the Art Review. 2011. Available online: http://s3.amazonaws.com/zanran_storage/nexthylights.eu/ContentPages/2481166193.pdf (accessed on 20 July 2019).
- Presentation of Emerging Conclusions Detailed Project’s Presentation 2014. Available online: https://www.eltis.org/sites/default/files/case-studies/documents/chic_emerging_conclusions_update_december_2014_fv.pdf (accessed on 20 July 2019).
- Ally, J.; Pryor, T.; Pigneri, A. The role of hydrogen in Australia’s transport energy mix. Int. J. Hydrog. Energy 2015, 40, 4426–4441. [Google Scholar] [CrossRef] [Green Version]
- Chandler, K.; Eudy, L. Cover Photo Credit; NREL: Golden, CO, USA, 2010.
- Costa, C. AC Transit Demos Three Prototype Fuel Cell Buses; NREL: Golden, CO, USA, 2006.
- Eudy, L.; Post, M. American Fuel Cell Bus Project Evaluation: Second Report; NREL: Golden, CO, USA, 2015.
- Collaborative, I.F. All Active Demonstrations. 2014. Available online: http://www.gofuelcellbus.com/index.php/project/cologne-apts (accessed on 8 June 2018).
- Lu, K. Materials and Energy Conversion, Harvesting and Storage; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
Profile No. | Average Power | Duration | Notes |
---|---|---|---|
1 | 16.03 kW | 1860 s | Highest power route |
2 | 5.65 kW | 3000 s | Lowest power route |
3 | 10.70 kW | 6400 s | First three routes |
4 | 9.45 kW | 69,100 s | Whole day |
Profile No. | Ifc_out | Pfc_out | SC | HTV | LTV |
---|---|---|---|---|---|
1 | 28.0 A | 17.63 kW | 65 F (2.08 kWh) | 90% | 60% |
2 | 9.9 A | 6.22 kW | 44 F (1.41 kWh) | 90% | 60% |
3 | 18.7 A | 11.77 kW | 124 F (3.97 (kWh) | 90% | 60% |
4 | 16.5 A | 10.39 kW | 506 F (16.2 kWh) | 90% | 60% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Partridge, J.S.; Wu, W.; Bucknall, R.W.G. Investigation on the Impact of Degree of Hybridisation for a Fuel Cell Supercapacitor Hybrid Bus with a Fuel Cell Variation Strategy. Vehicles 2020, 2, 1-17. https://doi.org/10.3390/vehicles2010001
Partridge JS, Wu W, Bucknall RWG. Investigation on the Impact of Degree of Hybridisation for a Fuel Cell Supercapacitor Hybrid Bus with a Fuel Cell Variation Strategy. Vehicles. 2020; 2(1):1-17. https://doi.org/10.3390/vehicles2010001
Chicago/Turabian StylePartridge, Julius S., Wei Wu, and Richard W. G. Bucknall. 2020. "Investigation on the Impact of Degree of Hybridisation for a Fuel Cell Supercapacitor Hybrid Bus with a Fuel Cell Variation Strategy" Vehicles 2, no. 1: 1-17. https://doi.org/10.3390/vehicles2010001
APA StylePartridge, J. S., Wu, W., & Bucknall, R. W. G. (2020). Investigation on the Impact of Degree of Hybridisation for a Fuel Cell Supercapacitor Hybrid Bus with a Fuel Cell Variation Strategy. Vehicles, 2(1), 1-17. https://doi.org/10.3390/vehicles2010001