A Novel Method for Clutch Pressure Sensor Fault Diagnosis
Abstract
:1. Introduction
2. Modeling the Clutch Pressure System
2.1. Establishment of Mathematical Model
2.2. Input Feedforward Design
2.2.1. Input Feedforward
2.2.2. Proof of System Stability
2.3. Model Parameter Identification Based on GA Algorithm
2.3.1. Input Signal Principal Component Extraction Based on Wavelet Packet Transform
2.3.2. Genetic Algorithm
- (1)
- Coding (generating initial population).
- (2)
- Fitness function.
- (3)
- Genetic operator (selection, crossover, and mutation).
- (4)
- Operation parameters.
3. Fault Observer
4. Verification
4.1. Constant Output Fault
4.2. Pulse Fault
4.3. Bias Fault
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lucke, M.; Stief, A.; Chioua, M.; Ottewill, J.R.; Thornhill, N.F. Fault detection and identification combining process measurements and statistical alarms. Control Eng. Pract. 2020, 94, 104195. [Google Scholar] [CrossRef]
- Choi, U.M.; Lee, J.S.; Blaabjerg, F.; Lee, K.B. Open-Circuit Fault Diagnosis and Fault-Tolerant Control for a Grid-Connected NPC Inverter. IEEE Trans. Power Electron. 2016, 31, 7234–7247. [Google Scholar] [CrossRef]
- Jaradat, M.A.; Langari, R. A hybrid intelligent system for fault detection and sensor fusion. Appl. Soft Comput. 2009, 9, 415–422. [Google Scholar] [CrossRef]
- Cui, X.; Wang, S.; Li, T.; Shi, J. System Reliability Assessment Based on Energy Dissipation: Modeling and Application in Electro-Hydrostatic Actuation System. Energy Fuels 2019, 12, 3275. [Google Scholar] [CrossRef] [Green Version]
- Ni, S.X.; Zhang, Y.F.; Yi, H.; Liang, X.F. Intelligent Fault Diagnosis Method Based on Fault Tree. J. Shanghai Jiaotong Univ. 2008, 42, 1372–1375. [Google Scholar]
- Barik, M.A.; Gargoom, A.; Mahmud, M.A.; Haque, M.E.; Al-Khalidi, H.; Oo, A.M. A Decentralized Fault Detection Technique for Detecting Single Phase to Ground Faults in Power Distribution Systems with Resonant Grounding. IEEE Trans. Power Deliv. 2018, 33, 2462–2473. [Google Scholar] [CrossRef]
- Lei, Y.; Yang, B.; Du, Z.; Lu, N. Deep Transfer Diagnosis Method for Machinery in Big Data Era. J. Mech. Eng. 2019, 55, 1–8. [Google Scholar] [CrossRef]
- Sylvain, V.; Teodor, T.; Abdessamad, K. Fault detection and identification with a new feature selection based on mutual information. J. Process Control 2008, 18, 479–490. [Google Scholar]
- Yu, P. Hydrodynamics, 2nd ed.; Science Press: Beijing, China, 2016; pp. 53–74. [Google Scholar]
- Li, H. Hydraulic Control System, 1st ed.; National Defense Industry Press: Beijing, China, 1990; pp. 53–70. [Google Scholar]
- Eriksson, L.; Nielsen, L. Modeling and Control of Engines and Drivelines, 1st ed.; Wiley: Hoboken, NJ, USA, 2014. [Google Scholar]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lv, Z.; Wu, G. A Novel Method for Clutch Pressure Sensor Fault Diagnosis. Vehicles 2020, 2, 191-209. https://doi.org/10.3390/vehicles2010011
Lv Z, Wu G. A Novel Method for Clutch Pressure Sensor Fault Diagnosis. Vehicles. 2020; 2(1):191-209. https://doi.org/10.3390/vehicles2010011
Chicago/Turabian StyleLv, Zhichao, and Guangqiang Wu. 2020. "A Novel Method for Clutch Pressure Sensor Fault Diagnosis" Vehicles 2, no. 1: 191-209. https://doi.org/10.3390/vehicles2010011
APA StyleLv, Z., & Wu, G. (2020). A Novel Method for Clutch Pressure Sensor Fault Diagnosis. Vehicles, 2(1), 191-209. https://doi.org/10.3390/vehicles2010011