State-Level Geographic Disparities and Temporal Patterns in Milk Somatic Cell Counts Across the United States, 2011–2023
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Statistical Analysis
2.2.1. Temporal Analysis
2.2.2. Calculation of Measures of Spatial Clustering
2.3. Cartographic Displays
3. Results
3.1. Temporal Distribution
3.2. Spatial Clustering of mwSCCs
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| SCC | Somatic Cell Counts |
| BTSCC | Bulk Tank Somatic Cell Counts |
| mwSCC | Median weighted Somatic Cell Counts |
| nmwSCC | National median weighted Somatic Cell Counts |
| DHIA | Dairy Herd Improvement Association |
| LISA | Local Moran’s I |
References
- Heikkilä, A.-M.; Nousiainen, J.; Pyörälä, S. Costs of clinical mastitis with special reference to premature culling. J. Dairy Sci. 2012, 95, 139–150. [Google Scholar] [CrossRef]
- Hogeveen, H.; Huijps, K.; Lam, T. Economic aspects of mastitis: New developments. N. Z. Vet. J. 2011, 59, 16–23. [Google Scholar] [CrossRef]
- Huth, P.; DiRienzo, D.; Miller, G. Major scientific advances with dairy foods in nutrition and health. J. Dairy Sci. 2006, 89, 1207–1221. [Google Scholar] [CrossRef] [PubMed]
- Tunick, M.H.; Van Hekken, D.L. Dairy products and health: Recent insights. J. Agric. Food Chem. 2015, 63, 9381–9388. [Google Scholar] [CrossRef] [PubMed]
- Barbano, D.M.; Ma, Y.; Santos, M.V.d. Influence of raw milk quality on fluid milk shelf life. J. Dairy Sci. 2006, 89, E15–E19. [Google Scholar] [CrossRef] [PubMed]
- Kelly, P.; Woonton, B.; Smithers, G. Improving the sensory quality, shelf-life and functionality of milk. In Functional and Speciality Beverage Technology; Elsevier: Amsterdam, The Netherlands, 2009; pp. 170–231. [Google Scholar]
- Rysstad, G.; Kolstad, J. Extended shelf life milk—Advances in technology. Int. J. Dairy Technol. 2006, 59, 85–96. [Google Scholar] [CrossRef]
- Tolle, A. A monograph on bovine mastitis. Ann. Bull. Int. Dairy Fed. Part 1971, 1. [Google Scholar] [CrossRef]
- Reneau, J.K. Effective use of dairy herd improvement somatic cell counts in mastitis control. J. Dairy Sci. 1986, 69, 1708–1720. [Google Scholar] [CrossRef]
- Hand, K.; Godkin, A.; Kelton, D. Milk production and somatic cell counts: A cow-level analysis. J. Dairy Sci. 2012, 95, 1358–1362. [Google Scholar] [CrossRef]
- Hadrich, J.; Wolf, C.; Lombard, J.; Dolak, T. Estimating milk yield and value losses from increased somatic cell count on US dairy farms. J. Dairy Sci. 2018, 101, 3588–3596. [Google Scholar] [CrossRef]
- Norman, H.; Miller, R.; Wright, J.; Wiggans, G. Herd and state means for somatic cell count from dairy herd improvement. J. Dairy Sci. 2000, 83, 2782–2788. [Google Scholar] [CrossRef]
- Rodrigues, A.; Caraviello, D.; Ruegg, P. Management of Wisconsin dairy herds enrolled in milk quality teams. J. Dairy Sci. 2005, 88, 2660–2671. [Google Scholar] [CrossRef]
- Damm, M.; Holm, C.; Blaabjerg, M.; Bro, M.N.; Schwarz, D. Differential somatic cell count—A novel method for routine mastitis screening in the frame of Dairy Herd Improvement testing programs. J. Dairy Sci. 2017, 100, 4926–4940. [Google Scholar] [CrossRef]
- Deng, Z.; Hogeveen, H.; Lam, T.J.; Van der Tol, R.; Koop, G. Performance of online somatic cell count estimation in automatic milking systems. Front. Vet. Sci. 2020, 7, 221. [Google Scholar] [CrossRef]
- Cicconi-Hogan, K.; Gamroth, M.; Richert, R.; Ruegg, P.; Stiglbauer, K.; Schukken, Y. Associations of risk factors with somatic cell count in bulk tank milk on organic and conventional dairy farms in the United States. J. Dairy Sci. 2013, 96, 3689–3702. [Google Scholar] [CrossRef] [PubMed]
- RStudio: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/ (accessed on 15 February 2023).
- tidyr: Tidy Messy Data. 2024. Available online: https://CRAN.R-project.org/package=tidyr (accessed on 15 February 2023).
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. dplyr: A Grammar of Data Manipulation, R Package Version 1.1.4. 2025. Available online: https://dplyr.tidyverse.org/ (accessed on 15 February 2023).
- Benjamini, Y.; Yekutieli, D. The control of the false discovery rate in multiple testing under dependency. Ann. Stat. 2001, 29, 1165–1188. [Google Scholar] [CrossRef]
- broom: Convert Statistical Objects into Tidy Tibbles. 2024. Available online: https://CRAN.R-project.org/package=broom (accessed on 15 February 2023).
- Bogdan, M.; Ghosh, J.K.; Tokdar, S.T. A comparison of the Benjamini-Hochberg procedure with some Bayesian rules for multiple testing. In Beyond Parametrics in Interdisciplinary Research: Festschrift in Honor of Professor Pranab K. Sen; Institute of Mathematical Statistics: Beachwood, OH, USA, 2008; Volume 1, pp. 211–231. [Google Scholar]
- ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; Available online: https://ggplot2.tidyverse.org (accessed on 15 February 2023).
- Anselin, L.; Syabri, I.; Kho, Y. GeoDa: An introduction to spatial data analysis. In Handbook of Applied Spatial Analysis: Software Tools, Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2009; pp. 73–89. [Google Scholar]
- Greenberg, C.J. ArcView GIS Version 3.1. Bull. Med. Libr. Assoc. 1999, 87, 499. [Google Scholar]
- Bureau, U.C. Cartographic Boundary Shapefiles-States. Available online: https://www.census.gov/geographies/mapping-files/time-series/geo/carto-boundary-file.html (accessed on 1 March 2023).
- Ruegg, P.L. A 100-Year Review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [PubMed]
- El-Sayed, A.; Kamel, M. Bovine mastitis prevention and control in the post-antibiotic era. Trop. Anim. Health Prod. 2021, 53, 236. [Google Scholar]
- Reps, N.; Sherman, G. NE1048: Mastitis Resistance to Enhance Dairy Food Safety; USDA: Washington, DC, USA, 2007. [Google Scholar]
- Haxhiaj, K.; Wishart, D.S.; Ametaj, B.N. Mastitis: What it is, current diagnostics, and the potential of metabolomics to identify new predictive biomarkers. Dairy 2022, 3, 722–746. [Google Scholar] [CrossRef]
- U.S. Department of Agriculture; National Agricultural Statistics Service (NASS). Table 17. Milk cow herd size by inventory and sales: 2017. In 2017 Census of Agriculture; Publication AC-17-A-51; United States National Level Data: Washington, DC, USA, 2019; Volume 1, Chapter 1. [Google Scholar]
- U.S. Department of Agriculture; National Agricultural Statistics Service (NASS). Table 17. Milk Cow Herd Size by Inventory and Sales: 2022. In 2022 Census of Agriculture; U.S. National Level Data: Washington, DC, USA, 2022; Volume 1, Chapter 1. [Google Scholar]
- Higginbotham, G.; Berry, S.; Lanka, K.; VerBoort, W.; Seldin, R.; Dei, C. Dairy producers value DHIA milk testing, but some deterred by cost. Calif. Agric. 1997, 51, 31–34. [Google Scholar] [CrossRef]
- Becker, C.; Collier, R.; Stone, A. Invited review: Physiological and behavioral effects of heat stress in dairy cows. J. Dairy Sci. 2020, 103, 6751–6770. [Google Scholar] [CrossRef]
- Guinn, J.M.; Nolan, D.; Krawczel, P.; Petersson-Wolfe, C.; Pighetti, G.; Stone, A.; Ward, S.; Bewley, J.; Costa, J.H. Comparing dairy farm milk yield and components, somatic cell score, and reproductive performance among United States regions using summer to winter ratios. J. Dairy Sci. 2019, 102, 11777–11785. [Google Scholar] [CrossRef]
- Qingbin, W.; Liu, C.-q.; Zhao, Y.-f.; Kitsos, A.; Cannella, M.; Wang, S.-K.; Lei, H. Impacts of the COVID-19 pandemic on the dairy industry: Lessons from China and the United States and policy implications. J. Integr. Agric. 2020, 19, 2903–2915. [Google Scholar] [CrossRef]
- De Vries, A.; Cole, J. Profitable dairy cow traits for hot climatic conditions. In Breeding for Robustness in Cattle; Wageningen Academic: Wageningen, The Netherlands, 2009; pp. 225–245. [Google Scholar]
- Wenz, J.; Jensen, S.; Lombard, J.; Wagner, B.; Dinsmore, R. Herd management practices and their association with bulk tank somatic cell count on United States dairy operations. J. Dairy Sci. 2007, 90, 3652–3659. [Google Scholar] [CrossRef]
- DeLong, K.L.; Lambert, D.M.; Schexnayder, S.; Krawczel, P.; Fly, M.; Garkovich, L.; Oliver, S. Farm business and operator variables associated with bulk tank somatic cell count from dairy herds in the southeastern United States. J. Dairy Sci. 2017, 100, 9298–9310. [Google Scholar] [CrossRef] [PubMed]
- Tančin, V.; Mikláš, Š.; Mačuhová, L. Possible physiological and environmental factors affecting milk production and udder health of dairy cows: A review. Slovak J. Anim. Sci. 2018, 51, 32–40. [Google Scholar]
- Sargeant, J.M.; Schukken, Y.H.; Leslie, K.E. Ontario bulk milk somatic cell count reduction program: Progress and outlook. J. Dairy Sci. 1998, 81, 1545–1554. [Google Scholar] [CrossRef]
- West, J.W. Effects of heat-stress on production in dairy cattle. J. Dairy Sci. 2003, 86, 2131–2144. [Google Scholar] [CrossRef] [PubMed]
- Do Amaral, B.; Connor, E.; Tao, S.; Hayen, M.; Bubolz, J.; Dahl, G. Heat stress abatement during the dry period influences metabolic gene expression and improves immune status in the transition period of dairy cows. J. Dairy Sci. 2011, 94, 86–96. [Google Scholar] [CrossRef]
- Hammami, H.; Bormann, J.; M’hamdi, N.; Montaldo, H.H.; Gengler, N. Evaluation of heat stress effects on production traits and somatic cell score of Holsteins in a temperate environment. J. Dairy Sci. 2013, 96, 1844–1855. [Google Scholar] [CrossRef]
- Mukherjee, D.; Bravo-Ureta, B.E.; De Vries, A. Dairy productivity and climatic conditions: Econometric evidence from South-eastern United States. Aust. J. Agric. Resour. Econ. 2013, 57, 123–140. [Google Scholar] [CrossRef]
- Rakib, M.R.H.; Zhou, M.; Xu, S.; Liu, Y.; Khan, M.A.; Han, B.; Gao, J. Effect of heat stress on udder health of dairy cows. J. Dairy Res. 2020, 87, 315–321. [Google Scholar] [CrossRef]
- Jattawa, D.; Koonawootrittriron, S.; Elzo, M.; Suwanasopee, T. Somatic cells count and its genetic association with milk yield in dairy cattle raised under Thai tropical environmental conditions. Asian-Australas. J. Anim. Sci. 2012, 25, 1216. [Google Scholar] [CrossRef]
- Negri, R.; dos Santos Daltro, D.; Cobuci, J.A. Heat stress effects on somatic cell score of Holstein cattle in tropical environment. Livest. Sci. 2021, 247, 104480. [Google Scholar] [CrossRef]
- Stefan, G.; Baraitareanu, S. Approaches of Milking Biosecurity and Milking Parlour Hygiene in Dairy Farms; InTechOpen: London, UK, 2023. [Google Scholar]
- Herndon, C. How the Southeast is different. Hoard’s Dairym. 2011, 20, 2016. [Google Scholar]
- Schewe, R.; Kayitsinga, J.; Contreras, G.; Odom, C.; Coats, W.; Durst, P.; Hovingh, E.; Martinez, R.; Mobley, R.; Moore, S. Herd management and social variables associated with bulk tank somatic cell count in dairy herds in the eastern United States. J. Dairy Sci. 2015, 98, 7650–7665. [Google Scholar] [CrossRef] [PubMed]
- Ruegg, P.L. New perspectives in udder health management. Vet. Clin. Food Anim. Pract. 2012, 28, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Baumgart-Getz, A.; Prokopy, L.S.; Floress, K. Why farmers adopt best management practice in the United States: A meta-analysis of the adoption literature. J. Environ. Manag. 2012, 96, 17–25. [Google Scholar] [CrossRef]
- Abdi, R.D.; Gillespie, B.E.; Ivey, S.; Pighetti, G.M.; Almeida, R.A.; Kerro Dego, O. Antimicrobial resistance of major bacterial pathogens from dairy cows with high somatic cell count and clinical mastitis. Animals 2021, 11, 131. [Google Scholar] [CrossRef]
- Saini, V.; McClure, J.T.; Scholl, D.; DeVries, T.; Barkema, H. Herd-level association between antimicrobial use and antimicrobial resistance in bovine mastitis Staphylococcus aureus isolates on Canadian dairy farms. J. Dairy Sci. 2012, 95, 1921–1929. [Google Scholar] [CrossRef]
- Xiong, Y.; Barkema, H.W.; Yang, J.; Kastelic, J.P.; Nobrega, D.B.; Li, X.; Tong, X.; Fan, Z.; Gao, J. Antimicrobial Resistance and Use on Chinese Dairy Farms: Awareness and Opinions Regarding Selective Treatments of Farm Managers. Antibiotics 2024, 13, 854. [Google Scholar] [CrossRef]
- Karp, B.E.; Tate, H.; Plumblee, J.R.; Dessai, U.; Whichard, J.M.; Thacker, E.L.; Hale, K.R.; Wilson, W.; Friedman, C.R.; Griffin, P.M. National antimicrobial resistance monitoring system: Two decades of advancing public health through integrated surveillance of antimicrobial resistance. Foodborne Pathog. Dis. 2017, 14, 545–557. [Google Scholar] [CrossRef]
- Sharma, C.; Rokana, N.; Chandra, M.; Singh, B.P.; Gulhane, R.D.; Gill, J.P.S.; Ray, P.; Puniya, A.K.; Panwar, H. Antimicrobial resistance: Its surveillance, impact, and alternative management strategies in dairy animals. Front. Vet. Sci. 2018, 4, 237. [Google Scholar]
- Miller, R.; Norman, H.; Wiggans, G.; Wright, J. National Survey of Herd Average Somatic Cell Counts on DHI Test Days; CDCC: Bowie, MD, USA, 1999. [Google Scholar]
- Lombard, J.E.; Norman, H.D.; Kopral, C.A.; Rodriguez, J.M.; Wright, J.R. European Union bulk tank SCC standards and proposed US standards: Compliance based on data from four federal milk marketing orders. In Proceedings of the 3rd International Symposium on Mastitis and Milk Quality, St. Louis, MO, USA, 22–24 September 2011; National Mastitis Council: Verona, WI, USA, 2011; pp. 5–9. [Google Scholar]
- Ott, S.L. Costs of herd-level production losses associated with subclinical mastitis in US dairy cows. In Proceedings of the Annual Meeting—National Mastitis Council Incorporated, Arlington, VA, USA, 14–17 February 1999; National Mastitis Council Incorporated: New Prague, MN, USA, 1999; Volume 38, pp. 152–153. [Google Scholar]
- Jones, G.M.; Bailey, T.L. Understanding the Basics of Mastitis; Virginia Tech: Blacksburg, VA, USA, 2009. [Google Scholar]
- Cha, E.; Bar, D.; Hertl, J.; Tauer, L.; Bennett, G.; González, R.; Schukken, Y.; Welcome, F.; Gröhn, Y. The cost and management of different types of clinical mastitis in dairy cows estimated by dynamic programming. J. Dairy Sci. 2011, 94, 4476–4487. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Arnold, L.; Stowe, C.; Harmon, R.; Bewley, J. Estimating US dairy clinical disease costs with a stochastic simulation model. J. Dairy Sci. 2017, 100, 1472–1486. [Google Scholar] [CrossRef] [PubMed]
- USDA. All Milk Prices Survey. 2023. Available online: https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Milk/index.php (accessed on 1 May 2023).
- Extension, P.S. Dairy Risk-Management Education: Understanding Your Milk Check. 2023. Available online: https://extension.psu.edu/dairy-risk-management-education-understanding-your-milk-check (accessed on 1 May 2023).
- DHI Participation as of January 1, 2018 DHI Report K-1. Available online: https://queries.uscdcb.com/publish/dhi/dhi18/partall.html (accessed on 1 May 2023).




| Year | Median SCCs | Percent Change | Number of Test Days |
|---|---|---|---|
| 2011 | 224.0 | NA | 135,407 |
| 2012 | 208.0 | −7.14 | 132,492 |
| 2013 | 200.0 | −3.85 | 128,614 |
| 2014 | 193.0 | −3.50 | 126,406 |
| 2015 | 193.5 | 0.26 | 123,261 |
| 2016 | 186.0 | −3.88 | 117,104 |
| 2017 | 191.0 | 2.69 | 112,769 |
| 2018 | 189.0 | −1.05 | 103,741 |
| 2019 | 174.0 | −7.94 | 93,197 |
| 2020 | 165.0 | −5.17 | 73,028 |
| 2021 | 170.0 | 3.03 | 87,721 |
| 2022 | 172.0 | 1.18 | 83,515 |
| 2023 | 168.0 | −2.33 | 78,621 |
| Overall | 189.0 | −25.0 | 1,395,876 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vidlund, J.; Odoi, A.; Zaretzki, R.; Okafor, C.C. State-Level Geographic Disparities and Temporal Patterns in Milk Somatic Cell Counts Across the United States, 2011–2023. Dairy 2025, 6, 59. https://doi.org/10.3390/dairy6050059
Vidlund J, Odoi A, Zaretzki R, Okafor CC. State-Level Geographic Disparities and Temporal Patterns in Milk Somatic Cell Counts Across the United States, 2011–2023. Dairy. 2025; 6(5):59. https://doi.org/10.3390/dairy6050059
Chicago/Turabian StyleVidlund, Jessica, Agricola Odoi, Russell Zaretzki, and Chika C. Okafor. 2025. "State-Level Geographic Disparities and Temporal Patterns in Milk Somatic Cell Counts Across the United States, 2011–2023" Dairy 6, no. 5: 59. https://doi.org/10.3390/dairy6050059
APA StyleVidlund, J., Odoi, A., Zaretzki, R., & Okafor, C. C. (2025). State-Level Geographic Disparities and Temporal Patterns in Milk Somatic Cell Counts Across the United States, 2011–2023. Dairy, 6(5), 59. https://doi.org/10.3390/dairy6050059

