Characterization of Quesillo Caquetá with Protected Designation of Origin (PDO): Mineral Composition and Carbohydrate, Fatty Acid, and Peptide Profiles
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples of Quesillo Caquetá
2.2. Physicochemical Analysis
2.3. Determination of Minerals
2.4. Analysis of Carbohydrates
2.5. Determination of Fatty Acids
2.6. Determination of Proteins and Peptides
2.6.1. Preparation of Water-Soluble Extracts
2.6.2. SDS-PAGE Electrophoresis
2.6.3. Liquid Chromatography Coupled to Tandem Mass Spectrometry (LC-MS/MS)
2.7. Statistical Analysis
3. Results
3.1. Physicochemical Analysis of Milk and Quesillo Caquetá
3.2. Mineral Composition
3.3. Carbohydrate Profile
3.4. Fatty Acid Profile
3.5. Protein Profile
3.6. Peptide Profile
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ramírez-Navas, J.S.; Osorio-Londoño, M.; Rodríguez De Stouvenel, A. El Quesillo: Un Queso Colombiano de Pasta Hilada. Tecnol. Láctea Latinoam. 2010, 60, 63–67. [Google Scholar]
- Ramírez-Navas, J.S.; Rodríguez-Stouvenel, A. Characterization of Colombian Quesillo Cheese by Spectrocolorimetry. Vitae—Food Sci. Technol. Eng. 2012, 19, 178–185. [Google Scholar] [CrossRef]
- Torrijos Rivera, R. Cifras de Contexto Ganadero Caquetá 2024; Ed. Comité Departamental de Ganaderos del Caquetá: Florencia, Caquetá, Colombia, 2024; Available online: https://udlaedu-my.sharepoint.com/:b:/g/personal/and_grajales_udla_edu_co/EUmRgUGCy9NJltWjT5Zoa88B_y4ONWY4C9Pf7EpcJSrDPQ?e=y4KYKM (accessed on 25 August 2025).
- Colombian Ministry of Agriculture and Rural Development. Precios Derivados En Planta Resolucion 017-2002, Colombian Ministry of Agriculture and Rural Development: Bogotá, Colombia, 2024.
- Dias, C.; Mendes, L. Protected Designation of Origin (PDO), Protected Geographical Indication (PGI) and Traditional Speciality Guaranteed (TSG): A Bibiliometric Analysis. Food Res. Int. 2018, 103, 492–508. [Google Scholar] [CrossRef]
- Cardin, M.; Cardazzo, B.; Mounier, J.; Novelli, E.; Coton, M.; Coton, E. Authenticity and Typicity of Traditional Cheeses: A Review on Geographical Origin Authentication Methods. Foods 2022, 11, 3379. [Google Scholar] [CrossRef]
- Bouroutzika, E.; Proikakis, S.; Anagnostopoulos, A.K.; Katsafadou, A.I.; Fthenakis, G.C.; Tsangaris, G.T. Proteomics Analysis in Dairy Products: Cheese, a Review. Appl. Sci. 2021, 11, 7622. [Google Scholar] [CrossRef]
- Valletta, M.; Ragucci, S.; Landi, N.; Di Maro, A.; Pedone, P.V.; Russo, R.; Chambery, A. Mass Spectrometry-Based Protein and Peptide Profiling for Food Frauds, Traceability and Authenticity Assessment. Food Chem. 2021, 365, 130456. [Google Scholar] [CrossRef] [PubMed]
- Białek, A.; Białek, M.; Lepionka, T.; Czerwonka, M.; Czauderna, M. Chemometric Analysis of Fatty Acids Profile of Ripening Chesses. Molecules 2020, 25, 1814. [Google Scholar] [CrossRef] [PubMed]
- Manuelian, C.L.; Currò, S.; Penasa, M.; Cassandro, M.; De Marchi, M. Characterization of Major and Trace Minerals, Fatty Acid Composition, and Cholesterol Content of Protected Designation of Origin Cheeses. J. Dairy Sci. 2017, 100, 3384–3395. [Google Scholar] [CrossRef]
- Danezis, G.P.; Tsiplakou, E.; Pappa, E.C.; Pappas, A.C.; Mavrommatis, A.; Sotirakoglou, K.; Georgiou, C.A.; Zervas, G. Fatty Acid Profile and Physicochemical Properties of Greek Protected Designation of Origin Cheeses, Implications for Authentication. Eur. Food Res. Technol. 2020, 246, 1741–1753. [Google Scholar] [CrossRef]
- Biancolillo, A.; Reale, S.; Foschi, M.; Bertini, E.; Antonelli, L.; D’Archivio, A.A. Characterization and Authentication of “Ricotta” Whey Cheeses through GC-FID Analysis of Fatty Acid Profile and Chemometrics. Molecules 2022, 27, 7401. [Google Scholar] [CrossRef]
- Reis Lima, M.J.; Bahri, H.; Sá Morais, J.; Veloso, A.C.A.; Fontes, L.; Lemos, E.T.; Peres, A.M. Assessing Serra Da Estrela PDO Cheeses’ Origin-Production Date Using Fatty Acids Profiles. J. Food Meas. Charact. 2019, 13, 2988–2997. [Google Scholar] [CrossRef]
- Rocchetti, G.; Michelini, S.; Pizzamiglio, V.; Masoero, F.; Lucini, L. A Combined Metabolomics and Peptidomics Approach to Discriminate Anomalous Rind Inclusion Levels in Parmigiano Reggiano PDO Grated Hard Cheese from Different Ripening Stages. Food Res. Int. 2021, 149, 110654. [Google Scholar] [CrossRef] [PubMed]
- Guerreiro, J.S.; Barros, M.; Fernandes, P.; Pires, P.; Bardsley, R. Principal Component Analysis of Proteolytic Profiles as Markers of Authenticity of PDO Cheeses. Food Chem. 2013, 136, 1526–1532. [Google Scholar] [CrossRef]
- Fontenele, M.A.; Bastos, M.d.S.R.; dos Santos, K.M.O.; Bemquerer, M.P.; do Egito, A.S. Peptide Profile of Coalho Cheese: A Contribution for Protected Designation of Origin (PDO). Food Chem. 2017, 219, 382–390. [Google Scholar] [CrossRef]
- Creydt, M.; Fischer, M. Omics Approaches for Food Authentication. Electrophoresis 2018, 39, 1569–1581. [Google Scholar] [CrossRef]
- Gonçalves, B.H.R.F.; Silva, G.D.J.; Pontes, S.F.O.; Fontan, R.D.C.I.; Egito, A.S.D.; Ferrão, S.P.B. Evaluation of the Peptide Profile with a View to Authenticating Buffalo Mozzarella Cheese. Int. J. Food Sci. Technol. 2016, 51, 1586–1593. [Google Scholar] [CrossRef]
- Ministerio de Salud de Colombia Resolución 1804 de 1989. Características Productos Lácteos, Quesos. Ministerio de Salud de Colombia: Bogotá, Colombia. Available online: https://www.minsalud.gov.co/sites/rid/Lists/BibliotecaDigital/RIDE/DE/DIJ/Resolucion-1804-de-1989.pdf (accessed on 27 August 2025).
- ISO 9868-1; Milk and Milk Products—Determination of Nitrogen Content. Part 1: Kjeldahl Principle and Crude Protein Calculation. The International Organization for Standardization: Geneva, Switzerland, 2014.
- AOAC 933.05; Gerber Method for Fat Determination in Milk. Association of Official Analytical Chemists: Washington, DC, USA, 2019.
- AOAC 926.08; Method for Moisture in Cheese. Association of Official Analytical Chemists: Washington, DC, USA, 2019.
- ISO 5545; Rennet Caseins and Caseinates—Determination of Ash. The International Organization for Standardization: Geneva, Switzerland, 2014.
- AOAC 920.39; Method for Determining the Fat Crude or Ether Extract. Association of Official Analytical Chemists: Washington, DC, USA, 2019.
- Alvarez, M.D.; Fuentes, R.; Guerrero, G.; Canet, W. Characterization of Commercial Spanish Hummus Formulation: Nutritional Composition, Rheology, and Structure. Int. J. Food Prop. 2017, 20, 845–863. [Google Scholar] [CrossRef]
- Corzo, N.; Villamiel, M.; Arias, M.; Jiménez-Perez, S.; Morales, F.J. The Maillard Reaction during the Ripening of Manchego Cheese. Food Chem. 2000, 71, 255–258. [Google Scholar] [CrossRef]
- Lee, M.R.F.; Tweed, J.K.S.; Kim, E.J.; Scollan, N.D. Beef, Chicken and Lamb Fatty Acid Analysis—A Simplified Direct Bimethylation Procedure Using Freeze-Dried Material. Meat Sci. 2012, 92, 863–866. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Ruiz, J.Á.; Ramos, M.; Recio, I. Angiotensin-Converting Enzyme-Inhibitory Peptides in Manchego Cheeses Manufactured with Different Starter Cultures. Int. Dairy J. 2002, 12, 697–706. [Google Scholar] [CrossRef]
- Miralles, B.; del Barrio, R.; Cueva, C.; Recio, I.; Amigo, L. Dynamic Gastric Digestion of a Commercial Whey Protein Concentrate. J. Sci. Food Agric. 2018, 98, 1873–1879. [Google Scholar] [CrossRef]
- Manguy, J.; Jehl, P.; Dillon, E.T.; Davey, N.E.; Shields, D.C.; Holton, T.A. Peptigram: A Web-Based Application for Peptidomics Data Visualization. J. Proteome Res. 2017, 16, 712–719. [Google Scholar] [CrossRef]
- Nielsen, S.D.; Beverly, R.L.; Qu, Y.; Dallas, D.C. Milk Bioactive Peptide Database: A Comprehensive Database of Milk Protein-Derived Bioactive Peptides and Novel Visualization. Food Chem. 2017, 232, 673–682. [Google Scholar] [CrossRef] [PubMed]
- Oliveros, J.C. Venny. An Interactive Tool for Comparing Lists with Venn’s Diagrams. Available online: https://bioinfogp.cnb.csic.es/tools/venny/index.html (accessed on 22 June 2025).
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; González, L.; Tablada, M.; Robledo, C.W. InfoStat Software Estadístico; Universidad Nacional de Córdoba, Argentina. 2020. Available online: https://www.infostat.com.ar/index.php?mod=page%26id=34 (accessed on 25 August 2025).
- Qin, N.; Faludi, G.; Beauclercq, S.; Pitt, J.; Desnica, N.; Pétursdóttir, Á.; Newton, E.E.; Angelidis, A.; Givens, I.; Juniper, D.; et al. Macromineral and Trace Element Concentrations and Their Seasonal Variation in Milk from Organic and Conventional Dairy Herds. Food Chem. 2021, 359, 129865. [Google Scholar] [CrossRef] [PubMed]
- Stocco, G.; Summer, A.; Malacarne, M.; Cecchinato, A.; Bittante, G. Detailed Macro- and Micromineral Profile of Milk: Effects of Herd Productivity, Parity, and Stage of Lactation of Cows of 6 Dairy and Dual-Purpose Breeds. J. Dairy Sci. 2019, 102, 9727–9739. [Google Scholar] [CrossRef] [PubMed]
- Denholm, S.J.; Sneddon, A.A.; McNeilly, T.N.; Bashir, S.; Mitchell, M.C.; Wall, E. Phenotypic and Genetic Analysis of Milk and Serum Element Concentrations in Dairy Cows. J. Dairy Sci. 2019, 102, 11180–11192. [Google Scholar] [CrossRef]
- Londoño-Ospina, M. Aprovechamiento Del Suero Ácido de Queso Doble Crema Para La Elaboración de Quesillo Utilizando Tres Métodos de Complementación de Acidez Con Tres Ácidos Orgánicos. Perspect. En Nutr. Humana 2006, 16, 11–20. [Google Scholar] [CrossRef]
- Pulido, R.; Pinzón, D.M.; Tarazona Díaz, M.P. Nutritional, Microbiological and Sensorial Characterization of Fresh Cheese. Nutr. Clin. Diet. Hosp. 2018, 38, 74–79. [Google Scholar] [CrossRef]
- Sandoval-Copado, J.; Orozco-Villafuerte, J.; Pedrero-Fuehrer, D.; Colín-Cruz, M.A. Sensory Profile Development of Oaxaca Cheese and Relationship with Physicochemical Parameters. J. Dairy Sci. 2016, 99, 7075–7084. [Google Scholar] [CrossRef]
- Arteaga-Márquez, M.R.; Hernández-Hernández, H.L.; Peñate-Quiroz, C.D. Elaboration of a Processed Cheese Spread Obtained from Costeño Cheese. Inf. Tecnol. 2020, 31, 187–194. [Google Scholar] [CrossRef]
- Ochoa-Flores, A.A.; Hernández-Becerra, J.A.; Velázquez-Martínez, J.R.; Piña-Gutiérrez, J.M.; Hernández-Castellano, L.E.; Toro-Mujica, P.; Chay-Canul, A.J.; Vargas-Bello-Pérez, E. Chemical and Fatty Acid Composition of Manchego Type and Panela Cheeses Manufactured from Either Hair Sheep Milk or Cow Milk. J. Dairy Sci. 2021, 104, 7457–7465. [Google Scholar] [CrossRef]
- De Oliveira, I.L.S.; do Nascimento Rangel, A.H.; Madruga, R.C.; de Lima Júnior, D.M.; da Silva Gomes, R.D.; Sales, D.C.; De Oliveira, J.P.F.; da Silva Bezerra, J. Physicochemical Composition, Yield and Sensory Acceptance of Coalho Cheese Obtained from Zebu’s Cow Milk. Rev. Mex. Cienc. Pecu. 2021, 12, 337–352. [Google Scholar] [CrossRef]
- Jana, A.H.; Mandal, P.K. Manufacturying and Quality of Mozzarella Cheese: A Review. Int. J. Dairy Sci. 2011, 6, 199–226. [Google Scholar] [CrossRef]
- Nogueira Silva, N.F.; Siqueira De Aguiar, K.; Pimentel Filho, N.D.J.; De Paula Ferreira, I.E.; Lanzoni Troiani, C.A.; Artigiani Lima Tribst, A.; Fernandes De Carvalho, A. Milk Quality, Production Process and Physicochemical Characteristics of Porungo, an Artisanal Cheese from the State of Sao Paulo, Brazil. J. Dairy Res. 2020, 87, 480–483. [Google Scholar] [CrossRef]
- Satric, A.; Miloradovic, Z.; Mirkovic, M.; Mirkovic, N.; Miocinovic, J. Quality Characteristics of ‘Pasta-Filata’ Serbian Kačkavalj Cheese and Regulatory Compliance Assessment. Mljekarstvo 2023, 73, 38–49. [Google Scholar] [CrossRef]
- Cortes Macias, E.T.; Peña Gomez, N.; Amorocho Cruz, C.M.; Gutierrez Guzman, N. Evolución de Parámetros Fisicoquímicos de Quesillo Huilense En Almacenamiento Refrigerado. Biotecnol. Sect. Agropecu. Agroind. 2016, 14, 110. [Google Scholar] [CrossRef]
- Smith, J.R.; Carr, A.J.; Golding, M.; Reid, D. Mozzarella Cheese—A Review of the Structural Development During Processing. Food Biophys. 2018, 13, 1–10. [Google Scholar] [CrossRef]
- Ramírez-López, C.; Vélez-Ruiz, J.F. Quesos Frescos: Propiedades, Métodos de Determinación y Factores Que Afectan Su Calidad. Temas Sel. Ing. Aliment. 2012, 6, 131–148. [Google Scholar]
- Bähler, B.; Kunz, A.; Hinrichs, J. Hot Brining of Pasta Filata Cheese: Effect of Sodium and Calcium Chloride on Composition, Yield, and Hardness. Dairy Sci. Technol. 2016, 96, 703–714. [Google Scholar] [CrossRef]
- Superintendencia de Industria y Comercio. Resolución 0068463 de 2011 Denominación de Orígen Queso Caquetá; Superintendencia de Industria y Comercio: Bogotá, Colombia, 2011. [Google Scholar]
- Amenu, B.; Deeth, H. The Impact of Milk Composition on Cheddar Cheese Manufacture. Artic. Aust. J. Dairy Technol. 2007, 62, 171–184. [Google Scholar]
- Amalfitano, N.; Patel, N.; Haddi, M.-L.; Benabid, H.; Pazzola, M.; Vacca, G.M.; Tagliapietra, F.; Schiavon, S.; Bittante, G. Detailed Mineral Profile of Milk, Whey, and Cheese from Cows, Buffaloes, Goats, Ewes and Dromedary Camels, and Efficiency of Recovery of Minerals in Their Cheese. J. Dairy Sci. 2024, 107, 8887–8907. [Google Scholar] [CrossRef] [PubMed]
- Manuelian, C.L.; Pozza, M.; Franzoi, M.; Righi, F.; Schmutz, U.; De Marchi, M. Comparison of Chemical Composition of Organic and Conventional Italian Cheeses from Parallel Production. J. Dairy Sci. 2023, 106, 6646–6654. [Google Scholar] [CrossRef]
- Smith, S.; Smith, T.J.; Drake, M.A. Short Communication: Flavor and Flavor Stability of Cheese, Rennet, and Acid Wheys. J. Dairy Sci. 2016, 99, 3434–3444. [Google Scholar] [CrossRef]
- Fox, P.F.; Guineee, T.P.; Cogann, T.M.; Mcsweeney, P.L.H. Overview of Cheese Manufacture. In Fundamentals of Cheese Science Second Edition; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Wu, Q.; Cheung, C.K.W.; Shah, N.P. Towards Galactose Accumulation in Dairy Foods Fermented by Conventional Starter Cultures: Challenges and Strategies. Trends Food Sci. Technol. 2015, 41, 24–36. [Google Scholar] [CrossRef]
- Cebeci, A.; Yalcin, B.; Esra Gunes, F.; Yaman, M. Determination of Carbohydrate Amounts of Various Cheese Types Presented to Sale in the Market. Int. J. Food Sci. Nutr. 2020, 5, 30–35. [Google Scholar]
- Ahmed, M.E.; Hammam, A.R.A.; Ali, A.E.F.; Alsaleem, K.A.; Elfaruk, M.S.; Kamel, D.G.; Moneeb, A.H.M. Measurement of Carbohydrates and Organic Acids in Varieties of Cheese Using High-Performance Liquid Chromatography. Food Sci. Nutr. 2023, 11, 2081–2085. [Google Scholar] [CrossRef]
- McCarthy, C.M.; Wilkinson, M.G.; Kelly, P.M.; Guinee, T.P. Effect of Salt and Fat Reduction on the Composition, Lactose Metabolism, Water Activity and Microbiology of Cheddar Cheese. Dairy Sci. Technol. 2015, 95, 587–611. [Google Scholar] [CrossRef]
- Vénica, C.I.; Wolf, V.I.; Bergamini, C.V.; Perotti, M.C. Effect of the Incorporation of β-Galactosidase in the GOS Production during Manufacture of Soft Cheese. Food Res. Int. 2020, 137, 109654. [Google Scholar] [CrossRef]
- Portnoi, P.A.; MacDonald, A. The Lactose and Galactose Content of Cheese Suitable for Galactosaemia: New Analysis. In JIMD Reports; Springer: Berlin/Heidelberg, Germany, 2016; Volume 29, pp. 85–87. [Google Scholar]
- Hanus, O.; Samkova, E.; Křížova, L.; Hasoňova, L.; Kala, R. Role of Fatty Acids in Milk Fat and the Influence of Selected Factors on Their Variability—A Review. Molecules 2018, 23, 1636. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.H.; Khalifa, S.A.; Gan, R.Y.; Shah, N.; Ayyash, M. Fatty Acids, Lipid Quality Parameters, and Amino Acid Profiles of Unripened and Ripened Cheeses Produced from Different Milk Sources. J. Food Compos. Anal. 2023, 123, 105588. [Google Scholar] [CrossRef]
- Renes, E.; Gómez-Cortés, P.; de la Fuente, M.A.; Linares, D.M.; Tornadijo, M.E.; Fresno, J.M. CLA-Producing Adjunct Cultures Improve the Nutritional Value of Sheep Cheese Fat. Food Res. Int. 2019, 116, 819–826. [Google Scholar] [CrossRef]
- Gómez-Cortés, P.; Juárez, M.; de la Fuente, M.A. Milk Fatty Acids and Potential Health Benefits: An Updated Vision. Trends Food Sci. Technol. 2018, 81, 1–9. [Google Scholar] [CrossRef]
- Metzger, L.E.; Barbano, D.M.; Rudan, M.A.; Kindstedt, P.S.; Guo, M.R. Whiteness Change during Heating and Cooling of Mozzarella Cheese. J. Dairy Sci. 2000, 83, 1–10. [Google Scholar] [CrossRef]
- Escobedo-Avellaneda, Z.; Espiricueta-Candelaria, R.S.; Calvo-Segura, S.; Welti-Chanes, J.; Chuck-Hernández, C. Changes Induced by High Hydrostatic Pressure in Acidified and Non-Acidified Milk during Oaxaca Cheese Production. Int. J. Food Sci. Technol. 2021, 56, 4639–4649. [Google Scholar] [CrossRef]
- Silva, R.A.; Bezerra, V.S.; Pimentel, M.D.C.B.; Porto, A.L.F.; Cavalcanti, M.T.H.; Filho, J.L.L. Proteomic and Peptidomic Profiling of Brazilian Artisanal “Coalho” Cheese. J. Sci. Food Agric. 2016, 96, 4337–4344. [Google Scholar] [CrossRef] [PubMed]
- Magenis, R.B.; Prudêncio, E.S.; Molognoni, L.; Daguer, H. A Control Method to Inspect the Compositional Authenticity of Minas Frescal Cheese by Gel Electrophoresis. J. Agric. Food Chem. 2014, 62, 8333–8339. [Google Scholar] [CrossRef]
- Özcan Yardım, D.; Durak, M.Z. Identification of Antihypertensive Bioactive Peptides in the Herby and White Cheeses Produced from Different Milk Types. Eur. Food Res. Technol. 2023, 249, 2265–2272. [Google Scholar] [CrossRef]
- Öztürk, H.İ.; Konak Göktepe, Ç.; Akın, N. Proteolysis Pattern and Functional Peptides in Artisanal Tulum Cheeses Produced from Mut Province in Turkey. LWT 2021, 149, 111642. [Google Scholar] [CrossRef]
- Miralles, B. Detección de Caseinato y Suero En Leche y Productos Lácteos Mediante Técnicas Electroforéticas, Cromatográficas y Espectroscópicas; Universidad Complutense de Madrid: Madrid, Spain, 2001; ISBN 8466920145. [Google Scholar]
- Barac, M.; Pesic, M.; Zilic, S.; Smiljanic, M.; Ignjatovic, I.S.; Vucic, T.; Kostic, A.; Milincic, D. The Influence of Milk Type on the Proteolysis and Antioxidant Capacity of White-Brined Cheese Manufactured from High-Heat-Treated Milk Pretreated with Chymosin. Foods 2019, 8, 128. [Google Scholar] [CrossRef]
- Cruz-Huerta, E.; García-Nebot, M.J.; Miralles, B.; Recio, I.; Amigo, L. Caseinophosphopeptides Released after Tryptic Hydrolysis versus Simulated Gastrointestinal Digestion of a Casein-Derived by-Product. Food Chem. 2015, 168, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Mirzapour-Kouhdasht, A.; Garcia-Vaquero, M. Cardioprotective Peptides from Milk Processing and Dairy Products: From Bioactivity to Final Products Including Commercialization and Legislation. Foods 2022, 11, 1270. [Google Scholar] [CrossRef]
- Atanasova, J.; Dalgalarrondo, M.; Iliev, I.; Moncheva, P.; Todorov, S.D.; Ivanova, I.V. Formation of Free Amino Acids and Bioactive Peptides During the Ripening of Bulgarian White Brined Cheeses. Probiotics Antimicrob. Proteins 2021, 13, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Norberg, S.; O’Connor, P.M.; Stanton, C.; Ross, R.P.; Hill, C.; Fitzgerald, G.F.; Cotter, P.D. Altering the Composition of Caseicins A and B as a Means of Determining the Contribution of Specific Residues to Antimicrobial Activity. Appl. Environ. Microbiol. 2011, 77, 2496–2501. [Google Scholar] [CrossRef]
- Jiang, X.; Pan, D.; Zhang, T.; Liu, C.; Zhang, J.; Su, M.; Wu, Z.; Zeng, X.; Sun, Y.; Guo, Y. Novel Milk Casein–Derived Peptides Decrease Cholesterol Micellar Solubility and Cholesterol Intestinal Absorption in Caco-2 Cells. J. Dairy Sci. 2020, 103, 3924–3936. [Google Scholar] [CrossRef]
- Quirós, A.; Hernández-Ledesma, B.; Ramos, M.; Amigo, L.; Recio, I. Angiotensin-Converting Enzyme Inhibitory Activity of Peptides Derived from Caprine Kefir. J. Dairy Sci. 2005, 88, 3480–3487. [Google Scholar] [CrossRef] [PubMed]
- Birkemo, G.A.; O’Sullivan, O.; Ross, R.P.; Hill, C. Antimicrobial Activity of Two Peptides Casecidin 15 and 17, Found Naturally in Bovine Colostrum. J. Appl. Microbiol. 2009, 106, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Gobbetti, M.; Ferranti, P.; Smacchi, E.; Goffredi, F.; Addeo, F. Production of Angiotensin-I-Converting-Enzyme-Inhibitory Peptides in Fermented Milks Started by Lactobacillus delbrueckii Subsp. Bulgaricus SS1 and Lactococcus lactis Subsp. Cremoris FT4. Appl. Environ. Microbiol. 2000, 66, 3898–3904. [Google Scholar] [CrossRef]
- Coste, M.; Rochet, V.; Léonil, J.; Mollé, D.; Bouhallab, S.; Tomé, D. Identification of C-Terminal Peptides of Bovine β-Casein That Enhance Proliferation of Rat Lymphocytes. Immunol. Lett. 1992, 33, 41–46. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, M.; Zhao, B.; Yang, F. Isolation of Antioxidant Peptides from Yak Casein Hydrolysate. RSC Adv. 2020, 10, 19844–19851. [Google Scholar] [CrossRef]
- Sanchón, J.; Fernández-Tomé, S.; Miralles, B.; Hernández-Ledesma, B.; Tomé, D.; Gaudichon, C.; Recio, I. Protein Degradation and Peptide Release from Milk Proteins in Human Jejunum. Comparison with in Vitro Gastrointestinal Simulation. Food Chem. 2018, 239, 486–494. [Google Scholar] [CrossRef]
- Sforza, S.; Cavatorta, V.; Lambertini, F.; Galaverna, G.; Dossena, A.; Marchelli, R. Cheese Peptidomics: A Detailed Study on the Evolution of the Oligopeptide Fraction in Parmigiano-Reggiano Cheese from Curd to 24 Months of Aging. J. Dairy Sci. 2012, 95, 3514–3526. [Google Scholar] [CrossRef] [PubMed]





| Milk Origin | Milk Protein (%) | Milk Fat (%) | Milk Moisture (%) | Milk Ash (%) | Quesillo Protein (%) | Quesillo Fat (%) | Quesillo Lactose (%) | Quesillo Moisture (%) | Quesillo Ash (%) |
|---|---|---|---|---|---|---|---|---|---|
| Northern region | 3.38 ± 0.46 a | 3.51 ± 0.51 a | 87.51 ± 0.39 a | 0.59 ± 0.06 a | 22.74 ± 2.02 a | 25.85 ± 2.48 a | 0.38 ± 0.08 a | 48.02 ± 2.44 a | 4.69 ± 0.4 a |
| Southern region | 3.20 ± 0.41 a | 3.43 ± 0.49 a | 87.34 ± 1.97 a | 0.62 ± 0.01 a | 20.73 ± 2.29 a | 24.56 ± 2.51 a | 0.37 ± 0.03 a | 48.41 ± 2.74 a | 4.12 ± 0.53 ab |
| Central region | 3.45 ± 0.44 a | 3.67 ± 0.41 a | 87.31 ± 0.54 a | 0.54 ± 0.03 b | 22.56 ± 1.96 a | 25.81 ± 2.5 a | 0.42 ± 0.03 a | 48.34 ± 2.37 a | 3.82 ± 0.63 b |
| Mean | 3.34 | 3.53 | 87.39 | 0.58 | 22.01 | 25.40 | 0.39 | 48.26 | 4.21 |
| SD | 0.13 | 0.12 | 0.11 | 0.04 | 1.11 | 0.73 | 0.05 | 0.21 | 0.44 |
| SE | 0.08 | 0.09 | 0.21 | 0.01 | 0.41 | 0.46 | 0.1 | 0.45 | 0.12 |
| LI (95%) | 3.19 | 3.37 | 86.96 | 0.56 | 21.21 | 24.49 | 0.38 | 47.34 | 3.94 |
| LS (95%) | 3.51 | 3.72 | 87.81 | 0.6 | 22.89 | 26.37 | 0.42 | 49.18 | 4.42 |
| Milk Origin | Ca (mg/kg) | Mg (mg/kg) | Na (mg/kg) | K (mg/kg) | P (mg/kg) | S (mg/kg) | F (mg/kg) |
|---|---|---|---|---|---|---|---|
| Northern region | 13,170.32 a | 547.24 a | 24,938.38 a | 4334.49 a | 7844.82 a | 2956.71 a | 35.42 a |
| Southern region | 12,645.18 a | 498.82 a | 18,340.69 b | 4512.21 ab | 7313.93 a | 2788.27 a | 29.60 a |
| Central region | 14,994.70 a | 625.00 a | 17,241.50 b | 4276.80 b | 8741.40 a | 2471.50 b | 27.07 a |
| Media | 12,696.91 | 515.14 | 19,172.85 | 4249.44 | 7506.76 | 2634.28 | 30.45 |
| SD | 1937.20 | 73.29 | 6044.73 | 503.22 | 1055.58 | 397.61 | 14.46 |
| SE | 359.73 | 13.61 | 1122.48 | 93.44 | 196.02 | 73.83 | 2.68 |
| LI (95%) | 11,960.04 | 487.26 | 16,873.56 | 4058.03 | 7105.24 | 2483.03 | 24.95 |
| LS (95%) | 13,433.78 | 543.01 | 21,472.14 | 4440.86 | 7908.27 | 2785.52 | 35.95 |
| Milk Origin | Galactose (%) | Glucose (%) | Lactose (%) |
|---|---|---|---|
| Northern region | 0.0061 a | 0.0045 a | 0.3889 a |
| Southern region | 0.0056 a | 0.0032 b | 0.3729 a |
| Central region | 0.0065 a | 0.0032 b | 0.4249 a |
| Media | 0.0061 | 0.0036 | 0.3976 |
| SD | 0.0018 | 0.0010 | 0.0543 |
| SE | 0.0003 | 0.0002 | 0.0148 |
| LI (95%) | 0.0054 | 0.0032 | 0.3818 |
| LS (95%) | 0.0068 | 0.004 | 0.4216 |
| Milk Origin | C4:0 (mg/g) | C6:0 (mg/g) | C8:0 (mg/g) | C10:0 (mg/g) | C12:0 (mg/g) | C14:0 (mg/g) | C14:1n5 (mg/g) | C15:0 (mg/g) | C16:0 (mg/g) | C16:1n7 (mg/g) | C17:0 (mg/g) | C18:0 (mg/g) | C18:1n7c (mg/g) | C18:1n9c (mg/g) | C18:2n6c (mg/g) | C18:3n3 (mg/g) | C20:0 (mg/g) | C22:5n3 (mg/g) | C24:0 (mg/g) |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Northern region | 3.34 a | 3.32 a | 2.59 a | 6.09 a | 7.94 a | 29.63 a | 3.12 a | 3.78 a | 83.29 a | 4.08 a | 3.00 a | 36.46 a | 1.23 a | 64.21 a | 2.57 a | 1.43 a | 0.61 a | 0.38 a | 0.29 a |
| Southern region | 3.96 ab | 3.73 a | 2.75 a | 6.12 a | 7.91 a | 32.15 a | 3.46 a | 4.03 ab | 90.99 a | 5.04 ab | 3.12 a | 42.30 ab | 1.49 a | 83.18 b | 2.87 a | 1.70 a | 0.63 a | 0.41 a | 0.33 ab |
| Central region | 4.10 b | 3.86 a | 2.81 a | 6.37 a | 8.10 a | 33.63 a | 3.22 a | 4.62 b | 95.08 a | 4.73 b | 3.43 a | 47.02 b | 1.42 a | 86.52 b | 2.65 a | 1.62 a | 0.71 a | 0.41 a | 0.37 b |
| Media | 3.82 | 3.65 | 2.72 | 6.21 | 7.99 | 31.93 | 3.27 | 4.18 | 90.15 | 4.63 | 3.20 | 42.28 | 1.38 | 78.56 | 2.70 | 1.59 | 0.65 | 0.40 | 0.33 |
| SD | 0.67 | 0.59 | 0.43 | 1.01 | 1.31 | 4.94 | 0.60 | 0.72 | 14.58 | 0.84 | 0.50 | 7.48 | 0.25 | 15.86 | 0.42 | 0.29 | 0.11 | 0.07 | 0.07 |
| E.E. | 0.13 | 0.11 | 0.08 | 0.19 | 0.24 | 0.92 | 0.11 | 0.13 | 2.71 | 0.16 | 0.09 | 1.39 | 0.05 | 2.95 | 0.08 | 0.05 | 0.02 | 0.01 | 0.01 |
| LI (95%) | 3.56 | 3.42 | 2.56 | 5.82 | 7.5 | 30.05 | 3.04 | 3.91 | 84.6 | 4.31 | 3.01 | 39.43 | 1.29 | 72.53 | 2.54 | 1.48 | 0.61 | 0.38 | 0.3 |
| LS (95%) | 4.08 | 3.87 | 2.89 | 6.59 | 8.49 | 33.81 | 3.49 | 4.45 | 95.7 | 4.95 | 3.39 | 45.12 | 1.47 | 84.59 | 2.85 | 1.7 | 0.7 | 0.43 | 0.36 |
| Number | Sequence | Start | End | Intensity QS01 | Intensity QS02 | Intensity QS03 |
|---|---|---|---|---|---|---|
| 1 | YQEPVLGPVRGPFPI | 193 | 207 | 22978050 | 107105224 | 77210424 |
| 2 | EPVLGPVRGPFPI | 195 | 207 | 5833453 | 27649486 | 18185422 |
| 3 | DKIHPF | 47 | 52 | 4059615 | 0 | 14462428 |
| 4 | QEPVLGPVRGPFPI | 194 | 207 | 5007563 | 22074542 | 15666052 |
| 5 | YQEPVLGPVRGPFP | 193 | 206 | 2204103 | 9304819 | 7733808 |
| 6 | TEDELQ | 41 | 46 | 545337 | 0 | 0 |
| 7 | DMPIQA | 184 | 189 | 542603 | 0 | 3411825 |
| 8 | PVLGPVRGPFPI | 196 | 207 | 1021324 | 4875456 | 2878405 |
| 9 | RDMPIQA | 183 | 189 | 363613 | 0 | 1700509 |
| 10 | QTEDELQ | 40 | 46 | 273054 | 0 | 0 |
| 11 | PKYPVE | 112 | 117 | 3884674 | 0 | 14763512 |
| 12 | RELEEL | 1 | 6 | 332085 | 0 | 0 |
| 13 | LVYPF | 58 | 62 | 1413056 | 16987532 | 0 |
| 14 | YQEPVLGPVRGPFPII | 193 | 208 | 0 | 13667837 | 31468718 |
| 15 | HQPHQPLPPTVMFP | 145 | 158 | 0 | 0 | 0 |
| 16 | EPVLGPVRGPFPII | 195 | 208 | 0 | 0 | 5876803 |
| 17 | LYQEPVLGPVRGPFPI | 192 | 207 | 0 | 0 | 2599456 |
| 18 | QEPVLGPVRGPFPII | 194 | 208 | 0 | 9009855 | 5832609 |
| 19 | LYQEPVLGPVRGPFPIIV | 192 | 209 | 0 | 0 | 2563002 |
| 20 | SLVYPF | 57 | 62 | 0 | 5961057 | 0 |
| 21 | EPVLGPVRGPFPIIV | 195 | 209 | 0 | 5190198 | 0 |
| 22 | PPFLQPE | 85 | 91 | 0 | 3873344 | 0 |
| 23 | LYQEPVLGPVRG | 192 | 203 | 0 | 5487993 | 0 |
| 24 | QEPVLGPVRGPFP | 194 | 206 | 0 | 2163573 | 0 |
| Number | Sequence | Start | End | Intensity QS01 | Intensity QS02 | Intensity QS03 |
|---|---|---|---|---|---|---|
| 1 | VAPFPEV | 25 | 31 | 2053264 | 11122722 | 6810040 |
| 2 | LNENLL | 16 | 21 | 4669787 | 0 | 19567706 |
| 3 | VAPFPE | 25 | 30 | 3197942 | 27383044 | 11915839 |
| 4 | LNENLLR | 16 | 22 | 2180919 | 0 | 9464832 |
| 5 | LNENL | 16 | 20 | 1129119 | 0 | 4455311 |
| 6 | PSERYL | 87 | 92 | 775512 | 0 | 0 |
| 7 | VPSERYLGYLEQL | 86 | 98 | 1961827 | 0 | 0 |
| 8 | APFPEVF | 26 | 32 | 7256723 | 53539488 | 29527050 |
| 9 | ENLLR | 18 | 22 | 1025609 | 0 | 3879812 |
| 10 | NENLLR | 17 | 22 | 5827762 | 0 | 16625182 |
| 11 | FPEVF | 28 | 32 | 1413056 | 17086124 | 6379934 |
| 12 | NLLRF | 19 | 23 | 979692 | 0 | 0 |
| 13 | VLNENLL | 15 | 21 | 7390921 | 28096668 | 22359282 |
| 14 | NENLL | 17 | 21 | 1129119 | 0 | 4455311 |
| 15 | VLNENL | 15 | 20 | 3407464 | 0 | 20375008 |
| 16 | ENLLRF | 18 | 23 | 2936114 | 11236863 | 8094072 |
| 17 | EKVNEL | 35 | 40 | 0 | 0 | 6765997 |
| 18 | DVPSERYLGYLEQL | 85 | 98 | 0 | 0 | 3434836 |
| 19 | KEKVNEL | 34 | 40 | 0 | 0 | 6254037 |
| 20 | KVNELS | 36 | 41 | 0 | 0 | 1386371 |
| 21 | APFPEV | 26 | 31 | 0 | 7307102 | 3155615 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grajales-Zuleta, A.; Estrada, S.; Hermosa, A.; Recio, I.; Miralles, B.; Villamiel, M. Characterization of Quesillo Caquetá with Protected Designation of Origin (PDO): Mineral Composition and Carbohydrate, Fatty Acid, and Peptide Profiles. Dairy 2025, 6, 52. https://doi.org/10.3390/dairy6050052
Grajales-Zuleta A, Estrada S, Hermosa A, Recio I, Miralles B, Villamiel M. Characterization of Quesillo Caquetá with Protected Designation of Origin (PDO): Mineral Composition and Carbohydrate, Fatty Acid, and Peptide Profiles. Dairy. 2025; 6(5):52. https://doi.org/10.3390/dairy6050052
Chicago/Turabian StyleGrajales-Zuleta, Andrés, Sandra Estrada, Andrea Hermosa, Isidra Recio, Beatriz Miralles, and Mar Villamiel. 2025. "Characterization of Quesillo Caquetá with Protected Designation of Origin (PDO): Mineral Composition and Carbohydrate, Fatty Acid, and Peptide Profiles" Dairy 6, no. 5: 52. https://doi.org/10.3390/dairy6050052
APA StyleGrajales-Zuleta, A., Estrada, S., Hermosa, A., Recio, I., Miralles, B., & Villamiel, M. (2025). Characterization of Quesillo Caquetá with Protected Designation of Origin (PDO): Mineral Composition and Carbohydrate, Fatty Acid, and Peptide Profiles. Dairy, 6(5), 52. https://doi.org/10.3390/dairy6050052

