Effect of TMR Physical Structure and Ruminal pH Environment on Production and Milk Quality
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Site and Animal Management
2.2. Feeding and Diet Composition
2.3. Data Collection and Measurements
2.3.1. TMR Physical Structure
2.3.2. Rumen pH Monitoring
2.3.3. Milk Production and Composition
2.3.4. Dry Matter Intake
2.4. Statistical Analysis
3. Results and Discussion
3.1. Associations Between TMR Structure and Metabolic Indicators
3.2. Effects of TMR Structure on Milk Production and Quality
3.3. Influence of TMR Particle Size on Rumen pH and Dry Matter Intake
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AC | Acetone |
ANOVA | Analysis of Variance |
BHB | β-hydroxybutyrate |
DMI | Dry Matter Intake |
F | Milk Fat |
F/L | Fat-to-Lactose Ratio |
F/P | Fat-to-Protein Ratio |
F/S | Fat-to-Dry Matter Ratio |
F/SNF | Fat-to-Solids Non-Fat Ratio |
L | Lactose |
M | Milk Yield |
NEB | Negative Energy Balance |
OA | Oleic Acid |
PCA | Principal Component Analysis |
peNDF | Physically Effective Neutral Detergent Fiber |
PSD | Particle Size Distribution |
PSPS | Penn State Particle Separator |
RpH7a | Rumen pH 7 days average (3 days before TMR analysis, 3 days after TMR analysis) |
RpHd | Rumen pH on the day of TMR structure analysis |
SARA | Subclinical ruminal acidosis |
SC | Somatic Cell Cunt |
SCK | Subclinical ketosis |
TMR | Total Mixed Ration |
U | Milk Urea |
VFAs | Volatile Fatty Acids |
References
- Berthiller, G.D.C. Review of Dairy Production, Processing, and Strategies for Milk Marketing Development. Int. J. Agric. Life Sci. 2024, 10, 455–458. [Google Scholar] [CrossRef]
- Spina, A.A.; Iommelli, P.; Morello, A.R.; Britti, D.; Pelle, N.; Poerio, G.; Morittu, V.M. Particle Size Distribution and Feed Sorting of Hay-Based and Silage-Based Total Mixed Ration of Calabrian Dairy Herds. Dairy 2024, 5, 106–117. [Google Scholar] [CrossRef]
- Ali, A.; Harahap, A.E.; Juliantoni, J. Evaluation of Nutrient and Digestibility of Agricultural Waste Total Mixed Ration Silage as Ruminant Feed. Bul. Peternak. 2023, 47, 237–241. [Google Scholar] [CrossRef]
- Repetto, J.L.; Ciancio, E.; Castro, G.; Santana, Á.; Cajarville, C. Performance and Rumen Fermentation in Finishing Steers Fed a Total Mixed Ration Supplemented with a Blend of Essential Oils, Tannins, and Bioflavonoids or Monensin. Animals 2025, 15, 594. [Google Scholar] [CrossRef]
- Li, W.; Ye, B.; Wu, B.; Yi, X.; Li, X.; A, R.; Cui, X.; Zhou, Z.; Cheng, Y.; Zhu, X.; et al. Effect of Total Mixed Ration on Growth Performance, Rumen Fermentation, Nutrient Digestion, and Rumen Microbiome in Angus Beef Cattle during the Growing and Fattening Phases. Fermentation 2024, 10, 205. [Google Scholar] [CrossRef]
- Foggi, G.; Terranova, M.S.; Daghio, M.; Amelchanka, S.L.; Conte, G.; Ineichen, S.; Agnolucci, M.; Viti, C.; Mantino, A.; Buccioni, A.; et al. Evaluation of Ruminal Methane and Ammonia Formation and Microbiota Composition as Affected by Supplements Based on Mixtures of Tannins and Essential Oils Using Rusitec. J. Anim. Sci. Biotechnol. 2024, 15, 48. [Google Scholar] [CrossRef] [PubMed]
- Christensen, R.G.; Halvorson, J.; MacAdam, J.W.; Kronberg, S.L.; Hendrickson, J.R. Forages Containing Plant Secondary Compounds Can Improve Digestibility, Rumen Ammonia and Rumen Metabolites of Pasture: An in Vitro Continuous Culture Case Study. J. Anim. Sci. 2023, 101, 159–160. [Google Scholar] [CrossRef]
- Li, C.; Beauchemin, K.A.; Yang, W. Feeding Diets Varying in Forage Proportion and Particle Length to Lactating Dairy Cows: I. Effects on Ruminal pH and Fermentation, Microbial Protein Synthesis, Digestibility, and Milk Production. J. Dairy Sci. 2020, 103, 4340–4354. [Google Scholar] [CrossRef]
- Shi, R.; Dong, S.; Mao, J.; Wang, J.; Cao, Z.; Wang, Y.; Li, S.; Zhao, G. Dietary Neutral Detergent Fiber Levels Impacting Dairy Cows’ Feeding Behavior, Rumen Fermentation, and Production Performance during the Period of Peak-Lactation. Animals 2023, 13, 2876. [Google Scholar] [CrossRef]
- Humer, E.; Petri, R.M.; Aschenbach, J.R.; Bradford, B.J.; Penner, G.B.; Tafaj, M.; Südekum, K.-H.; Zebeli, Q. Invited Review: Practical Feeding Management Recommendations to Mitigate the Risk of Subacute Ruminal Acidosis in Dairy Cattle. J. Dairy Sci. 2018, 101, 872–888. [Google Scholar] [CrossRef] [PubMed]
- Woolpert, M.E.; Dann, H.M.; Cotanch, K.W.; Melilli, C.; Chase, L.E.; Grant, R.J.; Barbano, D.M. Management Practices, Physically Effective Fiber, and Ether Extract Are Related to Bulk Tank Milk de Novo Fatty Acid Concentration on Holstein Dairy Farms. J. Dairy Sci. 2017, 100, 5097–5106. [Google Scholar] [CrossRef] [PubMed]
- Heinrichs, A.J.; Heinrichs, B.S.; Cavallini, D.; Fustini, M.; Formigoni, A. Limiting Total Mixed Ration Availability Alters Eating and Rumination Patterns of Lactating Dairy Cows. JDS Commun. 2021, 2, 186–190. [Google Scholar] [CrossRef]
- Goulart, R.S.; Vieira, R.A.M.; Daniel, J.L.P.; Amaral, R.C.; Santos, V.P.; Toledo Filho, S.G.; Cabezas-Garcia, E.H.; Tedeschi, L.O.; Nussio, L.G. Effects of Source and Concentration of Neutral Detergent Fiber from Roughage in Beef Cattle Diets: Comparison of Methods to Measure the Effectiveness of Fiber. J. Anim. Sci. 2020, 98, skaa108. [Google Scholar] [CrossRef]
- Hossain, E. Forage Particle Size: It s Implications on Behavior, Performance, Health and Welfare of Dairy Cows. Online J. Anim. Feed. Res. 2021, 11, 72–81. [Google Scholar] [CrossRef]
- Lee, M.; Seo, S.; Tedeschi, L.O. PSXI-23 Development of Sub-Models to Estimate Protein Requirements and Supply of Lactating Dairy Cows Using Machine Learning Algorithms. J. Anim. Sci. 2024, 102, 764–765. [Google Scholar] [CrossRef]
- Bossche, T.V.D.; Goossens, K.; Ampe, B.; Tamassia, L.M.; Boever, J.L.D.; Vandaele, L. Effect of Supplementing an α-Amylase Enzyme or a Blend of Essential Oil Components on the Performance, Nutrient Digestibility and Nitrogen Balance of Dairy Cows. J. Dairy Sci. 2024, 107, 4509–4523. [Google Scholar] [CrossRef]
- Terefe, G.; Walelegne, M. Effect of Feeds and Hygienic Practices on Milk Production and Its Nutritional and Microbiological Quality. CABI Rev. 2024, 19, 0017. [Google Scholar] [CrossRef]
- Verhoef, W.; Zuidhof, S.; Ross, J.A.; Beaugrand, K.; Olson, M. Evaluation of a Novel Dipotassium Phosphate Bolus for Treatment of Metabolic Disorders in Dairy Cattle. Front. Vet. Sci. 2023, 10, 1274183. [Google Scholar] [CrossRef] [PubMed]
- Dhillon, P.K.; Singla, P. Advances in Non-Thermal Membrane Processing for Nutrient Recovery in the Dairy Industry. In Non-Thermal Processing of Functional Foods; CRC Press: Boca Raton, FL, USA, 2024; pp. 223–245. [Google Scholar] [CrossRef]
- Bhimte, A. Role of Vitamin and Minerals Supplementation in Periparturient Dairy Cows. Int. J. Curr. Res. Acad. Rev. 2024, 12, 23–30. [Google Scholar] [CrossRef]
- Kononoff, P.J.; Heinrichs, A.J. The Effect of Reducing Alfalfa Haylage Particle Size on Cows in Early Lactation. J. Dairy Sci. 2003, 86, 1445–1457. [Google Scholar] [CrossRef]
- Dijkstra, J.; Ellis, J.L.; Kebreab, E.; Strathe, A.B.; López, S.; France, J.; Bannink, A. Ruminal pH Regulation and Nutritional Consequences of Low pH. Anim. Feed. Sci. Technol. 2012, 172, 22–33. [Google Scholar] [CrossRef]
- Yansari, A.T.; Valizadeh, R.; Naserian, A.; Christensen, D.A.; Yu, P.; Shahroodi, F.E. Effects of Alfalfa Particle Size and Specific Gravity on Chewing Activity, Digestibility, and Performance of Holstein Dairy Cows. J. Dairy Sci. 2004, 87, 3912–3924. [Google Scholar] [CrossRef]
- Lippke, H.; Ellis, W.C.; Jacobs, B.F. Recovery of Indigestible Fiber from Feces of Sheep and Cattle on Forage Diets1. J. Dairy Sci. 1986, 69, 403–412. [Google Scholar] [CrossRef]
- Danscher, A.M.; Li, S.; Andersen, P.H.; Khafipour, E.; Kristensen, N.B.; Plaizier, J.C. Indicators of Induced Subacute Ruminal Acidosis (SARA) in Danish Holstein Cows. Acta Vet. Scand. 2015, 57, 39. [Google Scholar] [CrossRef] [PubMed]
- Kovács, L.; Szenci, O.; Baumgartner, W.; Hejel, M.; Rózsa, L. Subacute Ruminal Acidosis in Dairy Cows-Physiological Background, Risk Factors and Diagnostic Methods. Vet. Stanica 2020, 51, 5–17. [Google Scholar] [CrossRef]
- Mirzad, A.N.; Haidary, M.H.; Sohail, M.N.; Sahab, M.N.; Alizada, H.; Monis, A.; Monir, T.M.; Upendra, H.A. Effects of Subacute Ruminal Acidosis (SARA) on Epidemiological and Clinicopathological Parameters of Dairy Cattle. Asian J. Dairy Food Res. 2021, 40, 260–266. [Google Scholar] [CrossRef]
- Morar, D.; Văduva, C.; Morar, A.; Imre, M.; Tulcan, C.; Imre, K. Paraclinical Changes Occurring in Dairy Cows with Spontaneous Subacute Ruminal Acidosis under Field Conditions. Animals 2022, 12, 2466. [Google Scholar] [CrossRef]
- Llonch, L.; Castillejos, L.; Ferret, A. Increasing the Content of Physically Effective Fiber in High-Concentrate Diets Fed to Beef Heifers Affects Intake, Sorting Behavior, Time Spent Ruminating, and Rumen pH. J. Anim. Sci. 2020, 98, skaa192. [Google Scholar] [CrossRef]
- Russo, V.M.; Leury, B.J.; Kennedy, E.; Hannah, M.C.; Auldist, M.J.; Morris, G.L.; Wales, W.J. Prior Forage Type Influences Ruminal Responses to a Wheat Grain Challenge in Lactating Dairy Cows. Animals 2021, 11, 3188. [Google Scholar] [CrossRef]
- Khiaosa-ard, R.; Pourazad, P.; Aditya, S.; Humer, E.; Zebeli, Q. Factors Related to Variation in the Susceptibility to Subacute Ruminal Acidosis in Early Lactating Simmental Cows Fed the Same Grain-Rich Diet. Anim. Feed. Sci. Technol. 2018, 238, 111–122. [Google Scholar] [CrossRef]
- Hernández, R.; Chaib De Mares, M.; Jimenez, H.; Reyes, A.; Caro-Quintero, A. Functional and Phylogenetic Characterization of Bacteria in Bovine Rumen Using Fractionation of Ruminal Fluid. Front. Microbiol. 2022, 13, 813002. [Google Scholar] [CrossRef]
- Minami, N.S.; Sousa, R.S.; Oliveira, F.L.C.; Dias, M.R.B.; Cassiano, D.A.; Mori, C.S.; Minervino, A.H.H.; Ortolani, E.L. Subacute Ruminal Acidosis in Zebu Cattle: Clinical and Behavioral Aspects. Animals 2020, 11, 21. [Google Scholar] [CrossRef]
- Maskaľová, I.; Vajda, V.; Bujňák, L. 2,6-Diaminopimelic Acid as a Biological Marker of Rumen Synthesis and Fermentation Capacities in the Transition Period and Early Lactation of Dairy Cows. Acta Vet. Brno 2014, 83, 355–361. [Google Scholar] [CrossRef]
- Zeng, J.; Lv, J.; Duan, H.; Yang, S.; Wu, J.; Yan, Z.; Zhang, R.; Hu, J.; Zhang, Y. Subacute Ruminal Acidosis as a Potential Factor That Induces Endometrium Injury in Sheep. Int. J. Mol. Sci. 2023, 24, 1192. [Google Scholar] [CrossRef]
- Khorrami, B.; Khiaosa-ard, R.; Zebeli, Q. Models to Predict the Risk of Subacute Ruminal Acidosis in Dairy Cows Based on Dietary and Cow Factors: A Meta-Analysis. J. Dairy Sci. 2021, 104, 7761–7780. [Google Scholar] [CrossRef]
- Trevisi, E.; Minuti, A.; Cogrossi, S.; Grossi, P.; Ahmed, S.; Bani, P. Can a Single Rumen Sample Really Diagnose SARA in Commercial Farms? Anim. Prod. Sci. 2014, 54, 1268. [Google Scholar] [CrossRef]
- Kara, K. Milk Urea Nitrogen and Milk Fatty Acid Compositions in Dairy Cows with Subacute Ruminal Acidosis. Veterinární Medicína 2020, 65, 336–345. [Google Scholar] [CrossRef]
- Melendez, P.; Serrano, M.V. Update on Ketosis in Dairy Cattle with Major Emphasis on Subclinical Ketosis and Abdominal Adiposity. Vet. Med. Sci. 2024, 10, e1525. [Google Scholar] [CrossRef]
- Krempaský, M.; Maskaľová, I.; Bujňák, L.; Vajda, V. Ketone Bodies in Blood of Dairy Cows: Prevalence and Monitoring of Subclinical Ketosis. Acta Vet. Brno 2014, 83, 411–416. [Google Scholar] [CrossRef]
- Guliński, P. Ketone Bodies–Causes and Effects of Their Increased Presence in Cows’ Body Fluids: A Review. Vet. World 2021, 14, 1492–1503. [Google Scholar] [CrossRef]
- Zhang, G.; Ametaj, B.N. Ketosis an Old Story Under a New Approach. Dairy 2020, 1, 42–60. [Google Scholar] [CrossRef]
- van Erp-van der Kooij, E.; Derix, J.; van Gorp, S.; Timmermans, A.; Krijnen, C.; Fodor, I.; Dingboom, L. Breath Analysis for Early Detection of Rising Ketone Bodies in Postpartum Dairy Cows Classified as at Risk of Ketosis. Ruminants 2023, 3, 39–54. [Google Scholar] [CrossRef]
- Trebukhov, A.V.; Elenschleger, A.A. Clinical and Biochemical Aspects of Acetonemia (Ketosis) of Dairy Cows. IOP Conf. Ser. Earth Environ. Sci. 2019, 341, 012152. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, B.; Xu, C.; Zhang, H.; Xia, C. Effects of Ketosis in Dairy Cows on Blood Biochemical Parameters, Milk Yield and Composition, and Digestive Capacity. J. Vet. Res. 2019, 63, 555–560. [Google Scholar] [CrossRef]
- Deniz, A.; Aksoy, K.; Metin, M. Transition Period and Subclinical Ketosis in Dairy Cattle: Association with Milk Production, Metabolic and Reproductive Disorders and Economic Aspects. Med. Weter. 2020, 76, 495–502. [Google Scholar] [CrossRef]
- Wang, Y.; Huo, P.; Sun, Y.; Zhang, Y. Effects of Body Condition Score Changes During Peripartum on the Postpartum Health and Production Performance of Primiparous Dairy Cows. Animals 2019, 9, 1159. [Google Scholar] [CrossRef]
- Lean, I.J. Non-Infectious Diseases: Ketosis. In Encyclopedia of Dairy Sciences; Elsevier: Amsterdam, The Netherlands, 2022; pp. 405–413. ISBN 978-0-12-818767-8. [Google Scholar]
- Bujko, J.; Candrák, J.; Žitný, J.; Kasarda, R. Changes in Production and Reproduction Traits in Population of the Slovak Spotted Cattle. Acta Fytotech. Zootech. 2020, 23, 161–166. [Google Scholar] [CrossRef]
- Kasarda, R.; Trakovická, A.; Moravčíková, N.; Šidlová, V.; Kadlečí, O. Research on Diversity, Utilization and Production Quality of Local Breeds in Slovakia. Poljoprivreda 2015, 21, 11–15. [Google Scholar] [CrossRef]
- Strapák, P.; Tančin, V.; Vavrišínová, K.; Grafenau, P.; Bulla, J.; Chrenek, P.; Šimko, M.; Juráček, M.; Polák, P.; Ryba, Š.; et al. Chov Hovädzieho Dobytka, 1st ed.; Slovenská Poľnohospodárska Univerzita: Nitra, Slovakia, 2013; ISBN 978-80-552-0994-4. [Google Scholar]
- AOAC International. Official Methods of Analysis, 22nd ed.; AOAC International: Rockville, MD, USA, 2023. [Google Scholar]
- Heinrichs, J.; Jones, C.M. Penn State Particle Separator. Penn State Extension, 2022. updated 19 December 2022. 2025. Available online: https://extension.psu.edu/penn-state-particle-separator (accessed on 5 September 2025).
- Gesler, P. Chapter 10: Rumen Bolus Technology at Commercial Farms. In Practical Precision Livestock Farming; Brill|Wageningen Academic: Leiden, The Netherlands, 2022; pp. 165–173. ISBN 978-90-8686-382-2. [Google Scholar]
- Slovenský Normalizačný Ústav STN 570536: Stanovenie Zloženia Mlieka Infračerveným Absorpčným Analyzátorom [Determination of Milk Composition Using an Infrared Absorption Analyzer] 1995. Bratislava: Úrad pre Normalizáciu, Metrológiu a Skúšobníctvo SR. Available online: https://eshop.normservis.sk/norma/stn-570536-1.4.1995.html (accessed on 5 September 2025).
- Slovenský Normalizačný Ústav STN EN ISO 13366-2: Mlieko. Stanovenie Počtu Somatických Buniek. Časť 2: Návod Na Obsluhu Zariadenia Na Elektronické Počítanie Častíc Fluorescenčnou Optickou Metódou [Milk. Enumeration of Somatic Cells. Part 2: Guidance on the Operation of Fluoro-Opto-Electronic Particle Counters] 2007. Bratislava: Slovenský Ústav Technickej Normalizácie, Bratislava, Slovensko, 1–13. Available online: https://eshop.normservis.sk/norma/stneniso-13366-2-2007-opravaac-1.10.2007.html (accessed on 5 September 2025).
- Tang, D.; Chen, M.; Huang, X.; Zhang, G.; Zeng, L.; Zhang, G.; Wu, S.; Wang, Y. SRplot: A Free Online Platform for Data Visualization and Graphing. PLoS ONE 2023, 18, e0294236. [Google Scholar] [CrossRef]
- Vranković, L.; Aladrović, J.; Octenjak, D.; Bijelić, D.; Cvetnić, L.; Stojević, Z. Milk Fatty Acid Composition as an Indicator of Energy Status in Holstein Dairy Cows. Arch. Anim. Breed. 2017, 60, 205–212. [Google Scholar] [CrossRef]
- Reus, A.; Mansfeld, R. Predicting Metabolic Health Status Using Milk Fatty Acid Concentrations in Cows—A Review. Milk Sci. Int.-Milchwiss. 2020, 73, 7–15. [Google Scholar]
- Jorjong, S.; van Knegsel, A.T.M.; Verwaeren, J.; Lahoz, M.V.; Bruckmaier, R.M.; De Baets, B.; Kemp, B.; Fievez, V. Milk Fatty Acids as Possible Biomarkers to Early Diagnose Elevated Concentrations of Blood Plasma Nonesterified Fatty Acids in Dairy Cows. J. Dairy Sci. 2014, 97, 7054–7064. [Google Scholar] [CrossRef]
- Karlikova, G.; Sermyagin, A.; Lashneva, I. Assessment of the Metabolic State of Metabolism in Holstein Cows Using Milk Biomarkers. Bull. KSAU 2024, 10, 96–104. [Google Scholar] [CrossRef]
- Koç, A.; Öner, M. A Research on Fertility, Herd Life, Milk Production and Milk Quality Characteristics of Simmental (Fleckvieh) Cows: 1. Reproduction, Herd Life and Milk Production Characteristics. Turk. J. Agric.-Food Sci. Technol. 2023, 11, 2339–2346. [Google Scholar] [CrossRef]
- Rabus, T.; Oehm, A.W.; Knubben-Schweizer, G.; Hoedemaker, M.; Müller, K.; Zablotski, Y. Relationship of Body Condition and Milk Parameters during Lactation in Simmental Cows in Bavaria, Germany. Prev. Vet. Med. 2023, 220, 106042. [Google Scholar] [CrossRef]
- Nasrollahi, S.M.; Imani, M.; Zebeli, Q. A Meta-Analysis and Meta-Regression of the Effect of Forage Particle Size, Level, Source, and Preservation Method on Feed Intake, Nutrient Digestibility, and Performance in Dairy Cows. J. Dairy Sci. 2015, 98, 8926–8939. [Google Scholar] [CrossRef]
- Nasrollahi, S.M.; Ghorbani, G.R.; Khorvash, M.; Yang, W.Z. Effects of Grain Source and Marginal Change in Lucerne Hay Particle Size on Feed Sorting, Eating Behaviour, Chewing Activity, and Milk Production in Mid-lactation Holstein Dairy Cows. J. Anim. Physiol. Anim. Nutr. 2014, 98, 1110–1116. [Google Scholar] [CrossRef] [PubMed]
- Khastayeva, A.Z.; Zhamurova, V.S.; Mamayeva, L.A.; Kozhabergenov, A.T.; Karimov, N.Z.; Muratbekova, K.M. Qualitative Indicators of Milk of Simmental and Holstein Cows in Different Seasons of Lactation. Veter World 2021, 14, 956–963. [Google Scholar] [CrossRef]
- Kurepin, A.A. Feed Consumption and Nutrient Utilization with Different Ratio of Structural Carbohydrates in the Diet of Cows. Zootech. Sci. Belarus 2022, 57, 267–276. [Google Scholar] [CrossRef]
- Haselmann, A.; Zehetgruber, K.; Fuerst-Waltl, B.; Zollitsch, W.; Knaus, W.; Zebeli, Q. Feeding Forages with Reduced Particle Size in a Total Mixed Ration Improves Feed Intake, Total-Tract Digestibility, and Performance of Organic Dairy Cows. J. Dairy Sci. 2019, 102, 8839–8849. [Google Scholar] [CrossRef] [PubMed]
- Kelly, A.; Fox, P.; Cogan, T. From Farm to Table; Oxford University Press (OUP): Oxford, Oxfordshire, UK, 2024. [Google Scholar] [CrossRef]
- Evangelista, C.; Jasinski, F.P.; Basiricò, L.; Turriziani, G.; Bernabucci, U. Particle Size Distribution of Total Mixed Rations Fed to Italian Mediterranean Buffaloes Measured by the PSPS: Impact on Milk Quality and Digestibility. Ital. J. Anim. Sci. 2024, 23, 1535–1550. [Google Scholar] [CrossRef]
- Zebeli, Q.; Ametaj, B.N.; Junck, B.; Drochner, W. Maize Silage Particle Length Modulates Feeding Patterns and Milk Composition in Loose-Housed Lactating Holstein Cows. Livest. Sci. 2009, 124, 33–40. [Google Scholar] [CrossRef]
- Kapusniaková, M.; Juráček, M.; Hanušovský, O.; Rolinec, M.; Gálik, B.; Džima, M.; Duchoň, A.; Vavrišínová, K.; Madajová, V.; Šimko, M. Nutrition of Dairy Cows: How Starch and Fiber Influence Their Overall Activity. Acta Fytotech. Zootech. 2024, 27, 104–109. [Google Scholar] [CrossRef]
- Hou, G.; You, J.; Zhuang, Y.; Gao, D.; Xu, Y.; Jiang, W.; Li, S.; Zhao, X.; Chen, T.; Zhang, S.; et al. Disorders of Acid-Base Balance Promote Rumen Lipopolysaccharide Biosynthesis in Dairy Cows by Modulating the Microbiome. Front. Microbiol. 2024, 15, 1492476. [Google Scholar] [CrossRef]
- Kitkas, G.C.; Valergakis, G.E.; Kritsepi-Konstantinou, M.; Gelasakis, A.I.; Katsoulos, P.D.; Kalaitzakis, E.; Panousis, N.K. Association between Ruminal pH and Rumen Fatty Acids Concentrations of Holstein Cows during the First Half of Lactation. Ruminants 2022, 2, 382–389. [Google Scholar] [CrossRef]
- Fernandes, T.; Manuel, C.; Vahmani, P.; Alves, S.P.; Dugan, M.; Bessa, R.J. 400 Effect of pH on in Vitro Ruminal Metabolism of Trans-10 18:1 and Trans-11 18:1. J. Anim. Sci. 2024, 102, 378–379. [Google Scholar] [CrossRef]
- Kronqvist, C.; Petters, F.; Robertsson, U.; Lindberg, M. Evaluation of Production Parameters, Feed Sorting Behaviour and Social Interactions in Dairy Cows: Comparison of Two Total Mixed Rations with Different Particle Size and Water Content. Livest. Sci. 2021, 251, 104662. [Google Scholar] [CrossRef]
- Allen, M.S. Relationship Between Fermentation Acid Production in the Rumen and the Requirement for Physically Effective Fiber. J. Dairy Sci. 1997, 80, 1447–1462. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei-Aghsaghali, A.; Maheri-Sis, N. Importance of “Physically Effective Fibre” in Ruminant Nutrition: A Review. Ann. Biol. Res. 2011, 2, 262–270. [Google Scholar]
- Zhang, Z.; Li, F.; Li, F.; Wang, Z.; Guo, L.; Weng, X.; Sun, X.; He, Z.; Meng, X.; Liang, Z.; et al. Influence of Dietary Forage Neutral Detergent Fiber on Ruminal Fermentation, Chewing Activity, Nutrient Digestion, and Ruminal Microbiota of Hu Sheep. Animals 2025, 15, 314. [Google Scholar] [CrossRef]
- Banakar, P.; Anand Kumar, N.; Shashank, C. Physically Effective Fibre in Ruminant Nutrition: A Review. J. Pharmacogn. Phytochem. 2018, 7, 303–308. [Google Scholar]
- Zebeli, Q.; Mansmann, D.; Ametaj, B.N.; Steingass, H.; Drochner, W. A Model to Optimise the Requirements of Lactating Dairy Cows for Physically Effective Neutral Detergent Fibre. Arch. Anim. Nutr. 2010, 64, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Xu, X.; Zou, Y.; Yang, Z.; Li, S.; Cao, Z. Changes in Feed Intake, Nutrient Digestion, Plasma Metabolites, and Oxidative Stress Parameters in Dairy Cows with Subacute Ruminal Acidosis and Its Regulation with Pelleted Beet Pulp. J. Anim. Sci. Biotechnol. 2013, 4, 31. [Google Scholar] [CrossRef]
- Oetzel, G.R. Diagnosis and Management of Subacute Ruminal Acidosis in Dairy Herds. Vet. Clin. N. Am. Food Anim. Pract. 2017, 33, 463–480. [Google Scholar] [CrossRef] [PubMed]
Parameter | Unit | Value | Parameter | Unit | Value |
---|---|---|---|---|---|
DM | % | 43.25 ± 1.49 | Ca | % | 0.62 ± 0.14 |
CP | % | 15.55 ± 0.07 | P | % | 0.41 ± 0.01 |
ME | MJ | 6.84 ± 0.09 | Na | % | 0.28 ± 0.02 |
ADF | % | 19.60 ± 1.56 | K | % | 1.22 ± 0.14 |
NDF | % | 30.75 ± 0.92 | Mg | % | 0.26 ± 0.01 |
NDFForage | % | 22.95 ± 0.35 | Cl | % | 0.78 ± 0.09 |
feNDF > 8 | % | 15.34 ± 1.03 | S | % | 0.24 ± 0.01 |
NFC | % | 43.25 ± 0.50 | Zn | mg | 77.00 ± 2.83 |
Starch | % | 24.70 ± 0.57 | Mn | mg | 57.00 ± 2.83 |
CF | % | 3.40 ± 0.14 | Cu | mg | 13.50 ± 0.71 |
CA | % | 7.05 ± 0.64 | I | mg | 0.87 ± 0.04 |
Concentrates | % | 44.35 ± 2.05 | Se | mg | 0.40 ± 0.01 |
Vit. A | m.j. | 133.00 ± 2.83 | |||
Vit. D | m.j. | 26.50 ± 0.71 | |||
Vit. E | mg | 652.00 ± 14.14 |
Parameter | Unit | Value | Parameter | Unit | Value |
---|---|---|---|---|---|
Ca | g | 160.00 | Vit. A | m.j. | 450,000.00 |
P | g | 70.00 | Vit. D3 | m.j | 90,000.00 |
Na | g | 150.00 | Vit. E as alfa-tokoferol | mg | 2200.00 |
K | g | 0.46 | Ca(IO3)2 as I | mg | 150.00 |
Cl | g | 198.96 | CuSO4.5H2O as Cu | mg | 1000.00 |
Mg | g | 65.00 | MnO as Mn | mg | 4300.00 |
S | g | 0.59 | ZnO as Zn | mg | 5800.00 |
CoSO4.7H2O as Co | mg | 20.00 | |||
Na2SeO3 as Se | mg | 30.00 |
Sieve | 19 mm | 8 mm | 4 mm | Pad | 19 + 8 mm |
---|---|---|---|---|---|
m | 0.58 | 50.80 | 19.84 | 28.77 | 51.38 |
s | 0.36 | 5.42 | 2.05 | 5.02 | 5.73 |
Min | 0.17 | 39.72 | 16.70 | 20.66 | 39.89 |
Max | 1.22 | 60.14 | 24.04 | 38.68 | 60.70 |
S | 19 mm | 8 mm | 4 mm | Pad | 19 + 8 mm | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T (%) | <0.4 | 0.4–0.6 | >0.6 | <45.3 | 45.3–55.6 | >55.6 | <18.3 | 18.3–21.2 | >21.2 | <26.8 | 26.8–33.0 | >33.0 | <45.5 | 45.5–56.4 | >56.4 | |
OA mg/L | m | 0.61 a | 0.56 a | 0.38 b | 0.61 a | 0.58 a | 0.38 b | 0.41 a | 0.69 b | 0.46 ab | 0.40 a | 0.54 ab | 0.61 b | 0.58 a | 0.60 a | 0.38 b |
s | 0.31 | 0.33 | 0.17 | 0.31 | 0.34 | 0.17 | 0.23 | 0.35 | 0.23 | 0.15 | 0.35 | 0.32 | 0.32 | 0.33 | 0.17 | |
F/P | m | 1.11 a | 1.03 a | 0.38 b | 1.11 a | 1.04 a | 0.41 b | 0.98 a | 0.70 b | 0.84 ab | 0.37 a | 1.07 b | 1.13 b | 1.07 a | 1.09 a | 0.41 b |
s | 0.34 | 0.46 | 0.42 | 0.34 | 0.48 | 0.43 | 0.36 | 0.71 | 0.43 | 0.44 | 0.38 | 0.35 | 0.34 | 0.47 | 0.43 | |
F/S | m | 0.32 | 0.30 | 0.27 | 0.32 | 0.30 | 0.27 | 0.29 | 0.31 | 0.29 | 0.27 | 0.30 | 0.32 | 0.31 | 0.31 | 0.27 |
s | 0.06 | 0.07 | 0.04 | 0.06 | 0.07 | 0.04 | 0.07 | 0.06 | 0.05 | 0.03 | 0.07 | 0.06 | 0.06 | 0.07 | 0.04 | |
F/SNF | m | 0.46 | 0.43 | 0.37 | 0.46 | 0.44 | 0.37 | 0.40 | 0.45 | 0.41 | 0.37 | 0.43 | 0.47 | 0.45 | 0.45 | 0.37 |
s | 0.12 | 0.15 | 0.07 | 0.12 | 0.15 | 0.07 | 0.14 | 0.12 | 0.11 | 0.06 | 0.15 | 0.13 | 0.13 | 0.15 | 0.07 | |
F/L | m | 0.84 | 0.78 | 0.67 | 0.84 | 0.79 | 0.67 | 0.73 | 0.82 | 0.75 | 0.67 | 0.79 | 0.85 | 0.83 | 0.81 | 0.67 |
s | 0.23 | 0.29 | 0.13 | 0.23 | 0.30 | 0.12 | 0.27 | 0.23 | 0.20 | 0.12 | 0.29 | 0.23 | 0.24 | 0.28 | 0.12 | |
AC mg/L | m | 8.35 a | 9.13 a | 17.35 b | 8.35 a | 8.57 a | 17.32 b | 10.51 | 11.92 | 12.25 | 18.84 a | 6.50 b | 8.78 b | 9.31 a | 7.70 a | 17.32 b |
s | 8.68 | 10.27 | 6.33 | 8.68 | 10.42 | 6.12 | 7.63 | 11.30 | 9.40 | 6.67 | 7.67 | 8.80 | 8.88 | 9.99 | 6.12 | |
BHB mg/L | m | 5.91 a | 14.43 b | 8.06 ab | 5.91 a | 14.39 b | 8.49 ab | 5.13 a | 17.39 b | 5.95 a | 11.71 | 10.21 | 6.11 | 5.94 a | 13.31 b | 8.49 a |
s | 7.21 | 12.12 | 5.71 | 7.21 | 12.58 | 5.79 | 4.89 | 10.24 | 6.77 | 8.06 | 11.63 | 7.42 | 7.63 | 12.14 | 5.79 | |
M kg/day | m | 32.81 a | 35.28 b | 35.75 b | 32.81 a | 35.22 b | 35.77 b | 36.83 a | 34.73 ab | 32.11 b | 35.44 a | 35.33 a | 32.91 b | 32.12 a | 35.51 b | 35.77 b |
s | 5.85 | 7.42 | 5.47 | 5.85 | 7.72 | 5.29 | 5.68 | 6.44 | 6.17 | 5.19 | 7.58 | 6.05 | 5.93 | 7.23 | 5.29 | |
F % | m | 4.11 a | 3.45 ab | 3.27 b | 4.11 a | 3.49 ab | 3.25 b | 3.29 a | 3.92 b | 3.67 b | 3.24 a | 3.51 ab | 4.14 b | 4.02 a | 3.65 ab | 3.25 b |
s | 1.09 | 0.83 | 0.61 | 1.09 | 0.85 | 0.59 | 0.72 | 1.05 | 0.94 | 0.58 | 0.83 | 1.12 | 1.13 | 0.91 | 0.59 | |
P % | m | 3.75 a | 3.39 b | 3.54 ab | 3.75 a | 3.40 b | 3.52 ab | 3.62 a | 3.33 b | 3.74 a | 3.45 a | 3.52 a | 3.73 b | 3.81 a | 3.39 b | 3.52 a |
s | 0.36 | 0.31 | 0.29 | 0.36 | 0.32 | 0.29 | 0.28 | 0.32 | 0.35 | 0.33 | 0.32 | 0.36 | 0.35 | 0.30 | 0.29 | |
L % | m | 4.88 | 4.82 | 4.87 | 4.88 | 4.82 | 4.86 | 4.86 | 4.83 | 4.88 | 4.88 | 4.80 | 4.89 | 4.86 | 4.85 | 4.86 |
s | 0.16 | 0.26 | 0.15 | 0.16 | 0.27 | 0.14 | 0.19 | 0.23 | 0.16 | 0.15 | 0.24 | 0.16 | 0.15 | 0.26 | 0.14 | |
SC 1000/mL | m | 190.63 | 142.07 | 122.40 | 190.63 | 147.79 | 118.63 | 156.88 | 121.67 | 178.80 | 105.44 | 152.93 | 202.40 | 215.71 | 131.19 | 118.63 |
s | 328.42 | 218.16 | 214.80 | 328.42 | 225.23 | 208.07 | 210.42 | 238.71 | 325.34 | 201.16 | 224.29 | 336.43 | 345.01 | 214.53 | 208.07 | |
U mg/1 dL | m | 26.46 a | 18.13 b | 18.28 b | 26.46 a | 18.49 b | 17.96 b | 13.75 a | 26.62 b | 23.35 b | 19.14 a | 17.01 a | 27.22 b | 24.35 a | 21.33 a | 17.96 b |
s | 8.55 | 7.89 | 7.11 | 8.55 | 8.06 | 6.98 | 4.69 | 9.55 | 5.24 | 7.08 | 7.57 | 8.28 | 6.75 | 10.82 | 6.98 |
S | 19 mm | 8 mm | 4 mm | Pad | 19 + 8 mm | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
T (%) | <0.4 | 0.4–0.6 | >0.6 | <45.3 | 45.3–55.6 | >55.6 | <18.3 | 18.3–21.2 | >21.2 | <26.8 | 26.8–33.0 | >33.0 | <45.5 | 45.5–56.4 | >56.4 | |
RpH7a | m | 6.23 a | 6.51 b | 6.11 a | 6.23 a | 6.49 b | 6.15 a | 6.32 a | 6.39 a | 6.13 b | 6.22 a | 6.42 b | 6.21 a | 6.24 a | 6.45 b | 6.15 a |
s | 0.49 | 0.56 | 0.38 | 0.49 | 0.58 | 0.41 | 0.49 | 0.42 | 0.58 | 0.45 | 0.56 | 0.50 | 0.52 | 0.55 | 0.41 | |
RpHd | m | 6.22 a | 6.51 b | 6.10 a | 6.22 a | 6.49 b | 6.15 a | 6.34 a | 6.38 a | 6.10 b | 6.22 | 6.42 | 6.20 | 6.21 a | 6.46 b | 6.15 a |
s | 0.51 | 0.57 | 0.41 | 0.51 | 0.58 | 0.43 | 0.50 | 0.43 | 0.60 | 0.47 | 0.57 | 0.52 | 0.54 | 0.55 | 0.43 | |
<6.2 | % | 35.50 | 24.53 | 39.96 | 35.15 | 24.71 | 40.14 | 30.18 | 28.62 | 41.20 | 36.95 | 27.97 | 35.08 | 31.44 | 28.42 | 40.14 |
6.2–6.8 | % | 38.46 | 27.38 | 34.16 | 38.30 | 25.06 | 36.64 | 41.09 | 34.78 | 24.13 | 34.35 | 32.77 | 32.88 | 31.53 | 31.84 | 36.64 |
>6.8 | % | 25.99 | 64.96 | 9.05 | 25.84 | 57.54 | 16.62 | 31.98 | 38.21 | 29.81 | 30.08 | 44.35 | 25.56 | 25.47 | 57.90 | 16.62 |
DMI kg | m | 21.49 ab | 21.14 a | 22.51 b | 21.49 | 21.33 | 22.27 | 22.52 a | 20.47 b | 22.08 a | 21.82 | 21.88 | 21.43 | 21.82 | 21.06 | 22.27 |
s | 1.37 | 2.12 | 0.03 | 1.37 | 2.07 | 0.99 | 1.09 | 1.75 | 0.84 | 1.50 | 1.76 | 1.39 | 1.12 | 2.06 | 0.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hanušovský, O.; Šimko, M.; Rolinec, M.; Gálik, B.; Kapusniaková, M.; Drotárová, S.; Džima, M.; Zábranský, L.; Juráček, M. Effect of TMR Physical Structure and Ruminal pH Environment on Production and Milk Quality. Dairy 2025, 6, 51. https://doi.org/10.3390/dairy6050051
Hanušovský O, Šimko M, Rolinec M, Gálik B, Kapusniaková M, Drotárová S, Džima M, Zábranský L, Juráček M. Effect of TMR Physical Structure and Ruminal pH Environment on Production and Milk Quality. Dairy. 2025; 6(5):51. https://doi.org/10.3390/dairy6050051
Chicago/Turabian StyleHanušovský, Ondrej, Milan Šimko, Michal Rolinec, Branislav Gálik, Mária Kapusniaková, Stanislava Drotárová, Matúš Džima, Luboš Zábranský, and Miroslav Juráček. 2025. "Effect of TMR Physical Structure and Ruminal pH Environment on Production and Milk Quality" Dairy 6, no. 5: 51. https://doi.org/10.3390/dairy6050051
APA StyleHanušovský, O., Šimko, M., Rolinec, M., Gálik, B., Kapusniaková, M., Drotárová, S., Džima, M., Zábranský, L., & Juráček, M. (2025). Effect of TMR Physical Structure and Ruminal pH Environment on Production and Milk Quality. Dairy, 6(5), 51. https://doi.org/10.3390/dairy6050051