Development of a Hybrid System Based on the CIELAB Colour Space and Artificial Neural Networks for Monitoring pH and Acidity During Yogurt Fermentation
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Sample Preparation
2.3. Inoculum Preparation
2.4. Yogurt Fermentation Process
2.5. Physicochemical Analysis of Yogurt During Fermentation
2.5.1. pH Measurement
2.5.2. Lactic Acid Concentration Measurement
- ml NaOH: Volume of NaOH used;
- N: Normality of NaOH (0.1);
- mEq: Milliequivalent of lactic acid (mEq = 0.09);
- Sample weight (g).
2.5.3. Colour Measurement in the CIELAB System
2.6. Model Design, Training, and Implementation
3. Results and Discussion
3.1. Monitoring of pH During Yogurt Fermentation
3.2. Monitoring of Acidity During Yogurt Fermentation
3.3. Colour Behaviour During Fermentation
3.4. Development of ANN Models for the Prediction of pH and Acidity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marete, P.K.; Mariga, A.M.; Huka, G.; Musalia, L.; Marete, E.; Mathara, J.M.; Arimi, J.M. Effects of Optimizing Fermentation Time and Stabilizers Using Response Surface Methodology on Physicochemical Properties of Camel Milk Yoghurt. Appl. Food Res. 2024, 4, 100469. [Google Scholar] [CrossRef]
- Lim, T.W.; Lim, R.L.H.; Pui, L.P.; Tan, C.P.; Ho, C.W. Evaluating the Potential of Stabilised Betacyanins from Fermented Red Dragon Fruit (Hylocereus polyrhizus) Drink: Sustainable Colouration and Antioxidant Enhancement of Stirred Yoghurt. Future Foods 2024, 10, 100452. [Google Scholar] [CrossRef]
- Zhang, X.; Zheng, Y.; Zhou, C.; Cao, J.; Zhang, Y.; Wu, Z.; Pan, D.; Cai, Z.; Xia, Q. Combining Thermosonication Microstress and Pineapple Peel Extract Addition to Achieve Quality and Post-Acidification Control in Yogurt Fermentation. Ultrason. Sonochem. 2024, 105, 106857. [Google Scholar] [CrossRef]
- Akarca, G.; Denizkara, A.J. Changes of Quality in Yoghurt Produced under Magnetic Field Effect during Fermentation and Storage Processes. Int. Dairy J. 2024, 150, 105841. [Google Scholar] [CrossRef]
- Ouyang, K.; Xie, H.; Wu, K.; Xiong, H.; Zhao, Q. Improving Fermented Milk Products Using PH-Responsive Whey Protein Fibrils: A Case Study on Stirred Yogurt. Food Biosci. 2024, 60, 104507. [Google Scholar] [CrossRef]
- Rahman, M.S.; Emon, D.D.; Nupur, A.H.; Mazumder, M.A.R.; Iqbal, A.; Alim, M.A. Isolation and Characterization of Probiotic Lactic Acid Bacteria from Local Yogurt and Development of Inulin-Based Synbiotic Yogurt with the Isolated Bacteria. Appl. Food Res. 2024, 4, 100457. [Google Scholar] [CrossRef]
- Du, H.; Wang, X.; Yang, H.; Zhu, F.; Cheng, J.; Peng, X.; Lin, Y.; Liu, X. Effects of Mulberry Pomace Polysaccharide Addition before Fermentation on Quality Characteristics of Yogurt. Food Control 2023, 153, 109900. [Google Scholar] [CrossRef]
- Wang, R.; Ma, C.; Wang, K. Comparison of the Physicochemical Property and Volatile Flavour Compounds of Yoghurt Made from Ultra-Pasteurised and Membrane-Filtered Milk. LWT 2024, 203, 116338. [Google Scholar] [CrossRef]
- Li, D.; Cui, Y.; Wu, X.; Li, J.; Min, F.; Zhao, T.; Zhang, J.; Zhang, J. Graduate Student Literature Review: Network of Flavor Compounds Formation and Influence Factors in Yogurt. J. Dairy Sci. 2024, 107, 8874–8886. [Google Scholar] [CrossRef] [PubMed]
- Miranda-Mejía, G.A.; Martín del Campo-Barba, S.T.; Arredondo-Ochoa, T.; Tejada-Ortigoza, V.; Morales-de la Peña, M. Low-Intensity Pulsed Electric Fields Pre-Treatment on Yogurt Starter Culture: Effects on Fermentation Time and Quality Attributes. Innov. Food Sci. Emerg. Technol. 2024, 95, 103708. [Google Scholar] [CrossRef]
- Yankey, S.; Mensah, E.O.; Ankar-Brewoo, G.M.; Ellis, W.O. Optimized Fermentation Conditions for Dragon Fruit Yogurt. Food Humanit. 2023, 1, 343–348. [Google Scholar] [CrossRef]
- Pacco, H.C. Simulation in the Temperature Parameters Control in the Yogurt Manufacturing Process. Procedia Comput. Sci. 2023, 217, 286–295. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, S.; Zhang, A.; Zhang, H.; Wang, R.; Wang, X.; Hu, Y.; Ma, H.; Zhou, C. Green Efficient Preparation and On-Line Monitoring: Hybrid Effect of Okra Pectin and Controlled-Temperature Ultrasound on Physicochemical Properties of Low-Fat Yogurt. J. Food Eng. 2024, 370, 111963. [Google Scholar] [CrossRef]
- Zang, J.; Pan, X.; Zhang, Y.; Tu, Y.; Xu, H.; Tang, D.; Zhang, Q.; Chen, J.; Yin, Z. Mechanistic Insights into Gel Formation of Egg-Based Yoghurt: The Dynamic Changes in Physicochemical Properties, Microstructure, and Intermolecular Interactions during Fermentation. Food Res. Int. 2023, 172, 113097. [Google Scholar] [CrossRef] [PubMed]
- Gorla, G.; Ferrer, A.; Giussani, B. Process Understanding and Monitoring: A Glimpse into Data Strategies for Miniaturized NIR Spectrometers. Anal. Chim. Acta 2023, 1281, 341902. [Google Scholar] [CrossRef]
- Liu, S.; Contreras, F.; Alemán, R.S.; Fuentes, J.M.; Arango, O.; Castillo, M. Validation of an Optical Technology for the Determination of PH in Milk during Yogurt Manufacture. Foods 2024, 13, 2766. [Google Scholar] [CrossRef]
- García-Pérez, F.J.; Lario, Y.; Fernández-López, J.; Sayas, E.; Pérez-Alvarez, J.A.; Sendra, E. Effect of Orange Fiber Addition on Yogurt Color during Fermentation and Cold Storage. Color Res. Appl. 2005, 30, 457–463. [Google Scholar] [CrossRef]
- Nayak, J.; Vakula, K.; Dinesh, P.; Naik, B.; Pelusi, D. Intelligent Food Processing: Journey from Artificial Neural Network to Deep Learning. Comput. Sci. Rev. 2020, 38, 100297. [Google Scholar] [CrossRef]
- Denholm, S.J.; Brand, W.; Mitchell, A.P.; Wells, A.T.; Krzyzelewski, T.; Smith, S.L.; Wall, E.; Coffey, M.P. Predicting Bovine Tuberculosis Status of Dairy Cows from Mid-Infrared Spectral Data of Milk Using Deep Learning. J. Dairy Sci. 2020, 103, 9355–9367. [Google Scholar] [CrossRef] [PubMed]
- Safari, R.; Sheikhlou, M.; Esmaeilpour, M.; Jafarzadeh, H.; Pour, A.S. Application of Artificial Neural Networks to Predict Milk Production in Holstein Cows. J. Rumin. Res. 2024, 12, 111–128. [Google Scholar]
- Bisutti, V.; Mota, L.F.M.; Giannuzzi, D.; Toscano, A.; Amalfitano, N.; Schiavon, S.; Pegolo, S.; Cecchinato, A. Infrared Spectroscopy Coupled with Machine Learning Algorithms for Predicting the Detailed Milk Mineral Profile in Dairy Cattle. Food Chem. 2024, 461, 140800. [Google Scholar]
- Zedda, L.; Perniciano, A.; Loddo, A.; Di Ruberto, C. Understanding Cheese Ripeness: An Artificial Intelligence-Based Approach for Hierarchical Classification. Knowl. Based Syst. 2024, 295, 111833. [Google Scholar] [CrossRef]
- Bi, K.; Qiu, T.; Huang, Y. A Deep Learning Method for Yogurt Preferences Prediction Using Sensory Attributes. Processes 2020, 8, 518. [Google Scholar] [CrossRef]
- Batista, L.F.; Marques, C.S.; Pires, A.C.d.S.; Minim, L.A.; Soares, N.d.F.F.; Vidigal, M.C.T.R. Artificial Neural Networks Modeling of Non-Fat Yogurt Texture Properties: Effect of Process Conditions and Food Composition. Food Bioprod. Process. 2021, 126, 164–174. [Google Scholar] [CrossRef]
- Sofu, A.; Ekinci, F.Y. Estimation of Storage Time of Yogurt with Artificial Neural Network Modeling. J. Dairy Sci. 2007, 90, 3118–3125. [Google Scholar] [CrossRef]
- Aït-Kaddour, A.; Abdelbaky, H.M.; Hamdy, S.M.; Boubellouta, T.; Abou-El-Karam, S.; Abdelmentolb, H.S. Discrimination of Thermally Treated Milk Using Fluorescence Spectroscopy Combined with PCA and Artificial Neural Networks. J. Food Compos. Anal. 2025, 107952. [Google Scholar] [CrossRef]
- Tarr, B.; Tőzsér, J.; Szabó, I.; Revoly, A. Estimation of Milk Casein Content Using Machine Learning Models and Feeding Simulations. Dairy 2025, 6, 35. [Google Scholar] [CrossRef]
- Alvarado, U.; Zamora, A.; Arango, O.; Saldo, J.; Castillo, M. Prediction of Riboflavin and Ascorbic Acid Concentrations in Skimmed Heat-Treated Milk Using Front-Face Fluorescence Spectroscopy. J. Food Eng. 2022, 318, 110869. [Google Scholar] [CrossRef]
- Matela, K.S.; Pillai, M.K.; Thamae, T. Evaluation of PH, Titratable Acidity, Syneresis and Sensory Profiles of Some Yoghurt Samples from the Kingdom of Lesotho. Food Res. 2019, 3, 693–697. [Google Scholar] [CrossRef] [PubMed]
- McDermott, A.; Visentin, G.; McParland, S.; Berry, D.P.; Fenelon, M.A.; De Marchi, M. Effectiveness of Mid-Infrared Spectroscopy to Predict the Color of Bovine Milk and the Relationship between Milk Color and Traditional Milk Quality Traits. J. Dairy Sci. 2016, 99, 3267–3273. [Google Scholar] [CrossRef] [PubMed]
- Muncan, J.; Tei, K.; Tsenkova, R. Real-Time Monitoring of Yogurt Fermentation Process by Aquaphotomics near-Infrared Spectroscopy. Sensors 2020, 21, 177. [Google Scholar] [CrossRef]
- Soukoulis, C.; Panagiotidis, P.; Koureli, R.; Tzia, C. Industrial Yogurt Manufacture: Monitoring of Fermentation Process and Improvement of Final Product Quality. J. Dairy Sci. 2007, 90, 2641–2654. [Google Scholar] [CrossRef] [PubMed]
- De Brabandere, A.G.; De Baerdemaeker, J.G. Effects of Process Conditions on the PH Development during Yogurt Fermentation. J. Food Eng. 1999, 41, 221–227. [Google Scholar] [CrossRef]
- Hovjecki, M.; Radovanovic, M.; Miloradovic, Z.; Barukcic Jurina, I.; Mirkovic, M.; Sredovic Ignjatovic, I.; Miocinovic, J. Fortification of Goat Milk Yogurt with Goat Whey Protein Concentrate—Effect on Rheological, Textural, Sensory and Microstructural Properties. Food Biosci. 2023, 56, 103393. [Google Scholar] [CrossRef]
- Lee, W.J.; Lucey, J.A. Structure and Physical Properties of Yogurt Gels: Effect of Inoculation Rate and Incubation Temperature. J. Dairy Sci. 2004, 87, 3153–3164. [Google Scholar] [CrossRef]
- Lee, W.J.; Lucey, J.A. Formation and Physical Properties of Yogurt. Asian-Australas J. Anim. Sci. 2010, 23, 1127–1136. [Google Scholar] [CrossRef]
- Aldaw Ibrahim, I.; Naufalin, R.; Erminawati; Dwiyanti, H. Effect of Fermentation Temperature and Culture Concentration on Microbial and Physicochemical Properties of Cow and Goat Milk Yogurt. In Earth and Environmental Science, Proceedings of the 2nd International Conference on Life and Applied Sciences for Sustainable Rural Development, Purwokerto, Indonesia, 20–22 November 2019; Institute of Physics Publishing: Bristol, UK, 2019; Volume 406. [Google Scholar]
- Peng, Y.; Horne, D.S.; Lucey, J.A. Impact of Preacidification of Milk and Fermentation Time on the Properties of Yogurt. J. Dairy Sci. 2009, 92, 2977–2990. [Google Scholar] [CrossRef]
- Aguirre-Ezkauriatza, E.J.; Galarza-González, M.G.; Uribe-Bujanda, A.I.; Ríos-Licea, M.; López-Pacheco, F.; Hernández-Brenes, C.M.; Alvarez, M.M. Effect of Mixing During Fermentation in Yogurt Manufacturing. J. Dairy Sci. 2008, 91, 4454–4465. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Yu, X.; Zhao, X.; Liu, C.; Li, T.; Mu, S.; Zhang, L.; Chen, Z.; Zhang, Z.; Song, Z.; et al. Fermentation Characteristics and Postacidification of Yogurt by Streptococcus Thermophilus CICC 6038 and Lactobacillus delbrueckii ssp. Bulgaricus CICC 6047 at Optimal Inoculum Ratio. J. Dairy Sci. 2024, 107, 123–140. [Google Scholar] [CrossRef] [PubMed]
- Sodini, I.; Lucas, A.; Oliveira, M.N.; Remeuf, F.; Corrieu, G. Effect of Milk Base and Starter Culture on Acidification, Texture, and Probiotic Cell Counts in Fermented Milk Processing. J. Dairy Sci. 2002, 85, 2479–2488. [Google Scholar] [CrossRef]
- Kristo, E.; Biliaderis, C.G.; Tzanetakis, N. Modelling of Rheological, Microbiological and Acidification Properties of a Fermented Milk Product Containing a Probiotic Strain of Lactobacillus paracasei. Int. Dairy J. 2003, 13, 517–528. [Google Scholar] [CrossRef]
- Gobierno del Perú Decreto Supremo, N.° 007-2017-MINAGRI: Reglamento de La Leche y Productos Lácteos 2017. Available online: https://www.gob.pe/institucion/midagri/normas-legales (accessed on 11 July 2025).
- Codex Alimentarius Commission. Codex Standar for Fermented Milks (CXS 243-2003); Amended in 2022; FAO/WHO: Rome, Italy, 2022; Available online: https://www.fao.org/fao-who-codexalimentarius (accessed on 11 July 2025).
- Xiang, J.; Liu, F.; Wang, B.; Chen, L.; Liu, W.; Tan, S. A Literature Review on Maillard Reaction Based on Milk Proteins and Carbohydrates in Food and Pharmaceutical Products: Advantages, Disadvantages, and Avoidance Strategies. Foods 2021, 10, 1998. [Google Scholar] [CrossRef]
- Milovanovic, B.; Tomovic, V.; Djekic, I.; Miocinovic, J.; Solowiej, B.G.; Lorenzo, J.M.; Barba, F.J.; Tomasevic, I. Colour Assessment of Milk and Milk Products Using Computer Vision System and Colorimeter. Int. Dairy J. 2021, 120, 105084. [Google Scholar] [CrossRef]
- Cheng, N.; Barbano, D.M.; Drake, M.A. Effect of Pasteurization and Fat, Protein, Casein to Serum Protein Ratio, and Milk Temperature on Milk Beverage Color and Viscosity. J. Dairy Sci. 2019, 102, 2022–2043. [Google Scholar] [CrossRef]
- Vieira, P.; Pinto, C.A.; Lopes-da-Silva, J.A.; Remize, F.; Barba, F.J.; Marszałek, K.; Delgadillo, I.; Saraiva, J.A. A Microbiological, Physicochemical, and Texture Study during Storage of Yoghurt Produced under Isostatic Pressure. LWT 2019, 110, 152–157. [Google Scholar] [CrossRef]
- Du, H.; Yang, H.; Wang, X.; Zhu, F.; Tang, D.; Cheng, J.; Liu, X. Effects of Mulberry Pomace on Physicochemical and Textural Properties of Stirred-Type Flavored Yogurt. J. Dairy Sci. 2021, 104, 12403–12414. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, Y.; Xu, M.; Yao, Y.; Wu, N.; Du, H.; Tu, Y. Effects of Strong Alkali Treatment on the Physicochemical Properties, Microstructure, Protein Structures, and Intermolecular Forces in Egg Yolks, Plasma, and Granules. Food Chem. 2020, 311, 125998. [Google Scholar] [CrossRef]
- Ramezani, M.; Ferrentino, G.; Morozova, K.; Scampicchio, M. Multiple Light Scattering Measurements for Online Monitoring of Milk Fermentation. Foods 2021, 10, 1582. [Google Scholar] [CrossRef] [PubMed]
- Aliakbarian, B.; Bagnasco, L.; Perego, P.; Leardi, R.; Casale, M. UV-VIS Spectroscopy for Monitoring Yogurt Stability during Storage Time. Anal. Methods 2016, 8, 5962–5969. [Google Scholar] [CrossRef]
- Arango, O.; Trujillo, A.J.; Castillo, M. Inline Control of Yoghurt Fermentation Process Using a near Infrared Light Backscatter Sensor. J. Food Eng. 2020, 277, 109885. [Google Scholar] [CrossRef]
Maximum Number of Neurons per Hidden Layer | Performance Metrics | Number of Hidden Layers | ||||
---|---|---|---|---|---|---|
1 | 2 | 4 | 6 | 8 | ||
4 | MAPE | 0.129 | 0.080 | 0.072 | 0.331 | 0.082 |
RMSE | 0.027 | 0.011 | 0.008 | 0.238 | 0.012 | |
R2 | 0.885 | 0.955 | 0.964 | −0.002 | 0.951 | |
8 | MAPE | 0.082 | 0.077 | 0.075 | 0.088 | 0.091 |
RMSE | 0.011 | 0.010 | 0.009 | 0.012 | 0.012 | |
R2 | 0.954 | 0.956 | 0.961 | 0.951 | 0.950 | |
12 | MAPE | 0.076 | 0.072 | 0.070 | 0.322 | 0.119 |
RMSE | 0.010 | 0.009 | 0.008 | 0.240 | 0.021 | |
R2 | 0.959 | 0.963 | 0.967 | −0.010 | 0.910 | |
16 | MAPE | 0.082 | 0.070 | 0.074 | 0.068 | 0.320 |
RMSE | 0.009 | 0.009 | 0.009 | 0.008 | 0.237 | |
R2 | 0.960 | 0.964 | 0.961 | 0.968 | 0.000 | |
20 | MAPE | 0.086 | 0.078 | 0.072 | 0.091 | 0.319 |
RMSE | 0.010 | 0.010 | 0.008 | 0.014 | 0.242 | |
R2 | 0.957 | 0.957 | 0.965 | 0.942 | −0.019 | |
24 | MAPE | 0.895 | 0.914 | 0.876 | 0.895 | −0.053 |
RMSE | 0.078 | 0.077 | 0.080 | 0.323 | 0.324 | |
R2 | 0.959 | 0.961 | 0.952 | −0.011 | −0.016 | |
28 | MAPE | 0.074 | 0.102 | 0.319 | 0.319 | 0.322 |
RMSE | 0.008 | 0.007 | 0.238 | 0.244 | 0.237 | |
R2 | 0.965 | 0.969 | −0.001 | −0.030 | 0.000 | |
32 | MAPE | 0.076 | 0.072 | 0.321 | 0.320 | 0.319 |
RMSE | 0.009 | 0.009 | 0.244 | 0.245 | 0.239 | |
R2 | 0.961 | 0.963 | −0.029 | −0.031 | −0.008 |
Maximum Number of Neurons per Hidden Layer | Performance Metrics | Number of Hidden Layers | ||||
---|---|---|---|---|---|---|
1 | 2 | 4 | 6 | 8 | ||
4 | MAPE | 0.036 | 0.036 | 0.105 | 0.105 | 0.107 |
RMSE | 0.002 | 0.002 | 0.018 | 0.019 | 0.017 | |
R2 | 0.862 | 0.862 | 0.064 | 0.149 | 0.020 | |
8 | MAPE | 0.035 | 0.041 | 0.037 | 0.106 | 0.105 |
RMSE | 0.002 | 0.003 | 0.002 | 0.018 | 0.019 | |
R2 | 0.864 | 0.822 | 0.855 | 0.071 | 0.105 | |
12 | MAPE | 0.036 | 0.036 | 0.105 | 0.105 | 0.106 |
RMSE | 0.002 | 0.002 | 0.020 | 0.017 | 0.017 | |
R2 | 0.852 | 0.858 | 0.183 | 0.031 | 0.002 | |
16 | MAPE | 0.037 | 0.036 | 0.037 | 0.105 | 0.106 |
RMSE | 0.003 | 0.002 | 0.002 | 0.018 | 0.018 | |
R2 | 0.852 | 0.853 | 0.855 | 0.053 | 0.061 | |
20 | MAPE | 0.036 | 0.105 | 0.039 | 0.106 | 0.105 |
RMSE | 0.002 | 0.018 | 0.003 | 0.018 | 0.019 | |
R2 | 0.866 | 0.058 | 0.829 | 0.039 | 0.107 | |
24 | MAPE | 0.040 | 0.042 | 0.113 | 0.105 | 0.105 |
RMSE | 0.003 | 0.003 | 0.026 | 0.019 | 0.018 | |
R2 | 0.829 | 0.808 | 0.539 | 0.118 | 0.085 | |
28 | MAPE | 0.105 | 0.105 | 0.108 | 0.053 | 0.105 |
RMSE | 0.018 | 0.017 | 0.017 | 0.005 | 0.017 | |
R2 | 0.060 | 0.023 | 0.009 | 0.734 | 0.026 | |
32 | MAPE | 0.105 | 0.105 | 0.035 | 0.105 | 0.105 |
RMSE | 0.017 | 0.019 | 0.002 | 0.019 | 0.019 | |
R2 | 0.004 | 0.139 | 0.868 | 0.102 | 0.141 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alvarado, U.; Tacuri, J.; Coloma, A.; Gallegos Rojas, E.; Callo, H.; Valencia-Sullca, C.; Rafael, N.C.; Castillo, M. Development of a Hybrid System Based on the CIELAB Colour Space and Artificial Neural Networks for Monitoring pH and Acidity During Yogurt Fermentation. Dairy 2025, 6, 41. https://doi.org/10.3390/dairy6040041
Alvarado U, Tacuri J, Coloma A, Gallegos Rojas E, Callo H, Valencia-Sullca C, Rafael NC, Castillo M. Development of a Hybrid System Based on the CIELAB Colour Space and Artificial Neural Networks for Monitoring pH and Acidity During Yogurt Fermentation. Dairy. 2025; 6(4):41. https://doi.org/10.3390/dairy6040041
Chicago/Turabian StyleAlvarado, Ulises, Jhon Tacuri, Alejandro Coloma, Edgar Gallegos Rojas, Herbert Callo, Cristina Valencia-Sullca, Nancy Curasi Rafael, and Manuel Castillo. 2025. "Development of a Hybrid System Based on the CIELAB Colour Space and Artificial Neural Networks for Monitoring pH and Acidity During Yogurt Fermentation" Dairy 6, no. 4: 41. https://doi.org/10.3390/dairy6040041
APA StyleAlvarado, U., Tacuri, J., Coloma, A., Gallegos Rojas, E., Callo, H., Valencia-Sullca, C., Rafael, N. C., & Castillo, M. (2025). Development of a Hybrid System Based on the CIELAB Colour Space and Artificial Neural Networks for Monitoring pH and Acidity During Yogurt Fermentation. Dairy, 6(4), 41. https://doi.org/10.3390/dairy6040041