Differences in the Proteolytic System of Lactic Acid Bacteria Affect the Release of DPP-IV Inhibitory Peptides from Whey Proteins
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Culture Preparation
2.3. Fermentation
2.4. Kinetic Parameters of the Microbial Growth
2.5. Proteolytic Profile Analysis
2.5.1. Free Amino Groups’ Analysis
2.5.2. Tris-Tricine Polyacrylamide Electrophoresis (Tris-Tricine-SDS-PAGE)
2.6. DPP-IV Inhibitory Activity
2.7. Statistic Analysis
3. Results and Discussion
3.1. Microbial Growth and Lactic Acid Production
3.2. Free Amino Groups Analysis by TNBS
3.3. Analysis of Profile Peptides by Tris-Tricine-SDS-PAGE
3.4. DPP-IV Inhibitory Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nongonierma, A.B.; FitzGerald, R.J. Susceptibility of milk protein-derived peptides to dipeptidyl peptidase IV (DPP-IV) hydrolysis. Food Chem. 2014, 145, 845–852. [Google Scholar] [CrossRef] [PubMed]
- Flatt, P.R.; Bailey, C.J.; Green, B.D. Dipeptidyl peptidase IV (DPP IV) and related molecules in type 2 diabetes. Front. Biosci. 2008, 13, 3648–3660. [Google Scholar] [CrossRef] [PubMed]
- Nongonierma, A.B.; FitzGerald, R.J. Features of dipeptidyl peptidase IV (DPP-IV) inhibitory peptides from dietary proteins. J. Food Biochem. 2019, 43, e12451. [Google Scholar] [CrossRef] [PubMed]
- Green, B.D.; Flatt, P.R.; Bailey, C.J. Dipeptidyl peptidase IV (DPP IV) inhibitors: A newly emerging drug class for the treatment of type 2 diabetes. Diabetes Vasc. Dis. Res. 2006, 3, 159–165. [Google Scholar] [CrossRef] [PubMed]
- Drucker, D.J.; Nauck, M.A. The incretin system: Glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet 2006, 368, 1696–1705. [Google Scholar] [CrossRef] [PubMed]
- Berger, J.P.; SinhaRoy, R.; Pocai, A.; Kelly, T.M.; Scapin, G.; Gao, Y.-D.; Pryor, K.A.D.; Wu, J.K.; Eiermann, G.J.; Xu, S.S. A comparative study of the binding properties, dipeptidyl peptidase-4 (DPP-4) inhibitory activity and glucose-lowering efficacy of the DPP-4 inhibitors alogliptin, linagliptin, saxagliptin, sitagliptin and vildagliptin in mice. Endocrinol. Diabetes Metabol. 2018, 1, e00002. [Google Scholar] [CrossRef]
- Jia, C.; Hussain, N.; Ujiroghene, O.J.; Pang, X.; Zhang, S.; Lu, J.; Liu, L.; Lv, J. Generation and characterization of dipeptidyl peptidase-IV inhibitory peptides from trypsin-hydrolyzed α-lactalbumin-rich whey proteins. Food Chem. 2020, 318, 126333. [Google Scholar] [CrossRef]
- Olvera-Rosales, L.B.; Cruz-Guerrero, A.E.; García-Garibay, J.M.; Gómez-Ruíz, L.C.; Contreras-López, E.; Guzmán-Rodríguez, F.; González-Olivares, L.G. Bioactive peptides of whey: Obtaining, activity, mechanism of action, and further applications. Crit. Rev. Food Sci. Nut. 2022, 1–31. [Google Scholar] [CrossRef]
- Silveira, S.T.; Martínez-Maqueda, D.; Recio, I.; Hernández-Ledesma, B. Dipeptidyl peptidase-IV inhibitory peptides generated by tryptic hydrolysis of a whey protein concentrate rich in β-lactoglobulin. Food Chem. 2013, 141, 1072–1077. [Google Scholar] [CrossRef]
- Solieri, L.; Valentini, M.; Cattivelli, A.; Sola, L.; Helal, A.; Martini, S.; Tagliazucchi, D. Fermentation of whey protein concentrate by Streptococcus thermophilus strains releases peptides with biological activities. Process Biochem. 2022, 121, 590–600. [Google Scholar] [CrossRef]
- Helal, A.; Pierri, S.; Tagliazucchi, D.; Solieri, L. Effect of Fermentation with Streptococcus thermophilus Strains on In Vitro Gastro-Intestinal Digestion of Whey Protein Concentrates. Microorganisms 2023, 11, 1742. [Google Scholar] [CrossRef] [PubMed]
- Schägger, H.; Aquila, H.; Von Jagow, G. Coomassie blue-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for direct visualization of polypeptides during electrophoresis. Anal. Biochem. 1988, 173, 201–205. [Google Scholar] [CrossRef] [PubMed]
- González-Olivares, L.G.; Añorve-Morga, J.; Castañeda-Ovando, A.; Contreras-López, E.; Jaimez-Ordaz, J. Peptide separation of commercial fermented milk during refrigerated storage. Food Sci. Technol. 2014, 34, 674–679. [Google Scholar] [CrossRef]
- Nongonierma, A.B.; FitzGerald, R.J. Structure activity relationship modelling of milk protein-derived peptides with dipeptidyl peptidase IV (DPP-IV) inhibitory activity. Peptides 2016, 79, 1–7. [Google Scholar] [CrossRef]
- Liu, E.; Zheng, H.; Shi, T.; Ye, L.; Konno, T.; Oda, M.; Shen, H.; Ji, Z.-S. Relationship between Lactobacillus bulgaricus and Streptococcus thermophilus under whey conditions: Focus on amino acid formation. Int. Dairy J. 2016, 56, 141–150. [Google Scholar] [CrossRef]
- Castañeda-Ovando, A.; Pérez-Escalante, E.; Rodríguez-Serrano, G.M.; Martínez-Ramírez, X.; Contreras-López, E.; Jaimez-Ordaz, J.; Añorve-Morga, J.; Nieto-Velázquez, S.; Ramírez-Godínez, J.; González-Olivares, L.G. Selenium accumulation by Lactobacillus isolated from commercial fermented milk: Minimum inhibitory concentration and kinetic growth changes. RMIQ 2022, 21, Bio2824. [Google Scholar] [CrossRef]
- Jensen, M.P.; Ardö, Y. Variation in aminopeptidase and aminotransferase activities of six cheese related Lactobacillus helveticus strains. Int. Dairy J. 2010, 20, 149–155. [Google Scholar] [CrossRef]
- Raveschot, C.; Cudennec, B.; Coutte, F.; Flahaut, C.; Fremont, M.; Drider, D.; Dhulster, P. Production of Bioactive Peptides by Lactobacillus Species: From Gene to Application. Front. Microbiol. 2018, 9, 2354. [Google Scholar] [CrossRef]
- Rodríguez-Serrano, G.M.; Garcia-Garibay, J.M.; Cruz-Guerrero, A.E.; Gomez-Ruiz, L.C.; Ayala-Nino, A.; Castaneda-Ovando, A.; Gonzalez-Olivares, L.G. Proteolytic system of Streptococcus thermophilus. J. Microbiol. Biotechnol. 2018, 28, 1581–1588. [Google Scholar] [CrossRef]
- Sun, J.; Chen, H.; Qiao, Y.; Liu, G.; Leng, C.; Zhang, Y.; Lv, X.; Feng, Z. The nutrient requirements of Lactobacillus rhamnosus GG and their application to fermented milk. J. Dairy Sci. 2019, 102, 5971–5978. [Google Scholar] [CrossRef]
- Sebastián-Nicolas, J.L.; Contreras-López, E.; Ramírez-Godínez, J.; Cruz-Guerrero, A.E.; Rodríguez-Serrano, G.M.; Añorve-Morga, J.; Jaimez-Ordaz, J.; Castañeda-Ovando, A.; Pérez-Escalante, E.; Ayala-Niño, A. Milk fermentation by Lacticaseibacillus rhamnosus GG and Streptococcus thermophilus SY-102: Proteolytic profile and ace-inhibitory activity. Fermentation 2021, 7, 215. [Google Scholar] [CrossRef]
- Yu, Y.; Yu, W.; Jin, Y. Peptidomic analysis of milk fermented by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. Food Hydrocoll. Health 2021, 1, 100033. [Google Scholar] [CrossRef]
- Courtin, P.; Monnet, V.; Rul, F. Cell-wall proteinases PrtS and PrtB have a different role in Streptococcus thermophilus/Lactobacillus bulgaricus mixed cultures in milk. Microbiology 2002, 148, 3413–3421. [Google Scholar] [CrossRef] [PubMed]
- Chang, O.K.; Roux, É.; Awussi, A.A.; Miclo, L.; Jardin, J.; Jameh, N.; Dary, A.; Humbert, G.; Perrin, C. Use of a free form of the Streptococcus thermophilus cell envelope protease PrtS as a tool to produce bioactive peptides. Int. Dairy J. 2014, 38, 104–115. [Google Scholar] [CrossRef]
- Griffiths, M.W.; Tellez, A.M. Lactobacillus helveticus: The proteolytic system. Front. Microbiol. 2013, 4, 30. [Google Scholar] [CrossRef]
- Xu, Q.; Hong, H.; Wu, J.; Yan, X. Bioavailability of bioactive peptides derived from food proteins across the intestinal epithelial membrane: A review. Trends Food Sci. Technol. 2019, 86, 399–411. [Google Scholar] [CrossRef]
- Hu, T.; Cui, Y.; Qu, X. Analysis of the proteolytic system of Streptococcus thermophilus strains CS5, CS9, CS18 and CS20. Int. Dairy J. 2021, 118, 105025. [Google Scholar] [CrossRef]
- Hafeez, Z.; Cakir-Kiefer, C.; Lecomte, X.; Miclo, L.; Dary-Mourot, A. The X-prolyl dipeptidyl-peptidase PepX of Streptococcus thermophilus initially described as intracellular is also responsible for peptidase extracellular activity. J. Dairy Sci. 2019, 102, 113–123. [Google Scholar] [CrossRef]
- Hafeez, Z.; Cakir-Kiefer, C.; Girardet, J.M.; Jardin, J.; Perrin, C.; Dary, A.; Miclo, L. Hydrolysis of milk-derived bioactive peptides by cell-associated extracellular peptidases of Streptococcus thermophilus. Appl. Microbiol. Biotechnol. 2013, 97, 9787–9799. [Google Scholar] [CrossRef]
- Yu, Y.; Jin, Y.; Wang, F.; Yan, J.; Qi, Y.; Ye, M. Protein digestomic analysis reveals the bioactivity of deer antler velvet in simulated gastrointestinal digestion. Food Res. Int. 2017, 96, 182–190. [Google Scholar] [CrossRef]
- Kareb, O.; Aïder, M. Whey and its derivatives for probiotics, prebiotics, synbiotics, and functional foods: A critical review. Probiotics Antimicrob. Prot. 2019, 11, 348–369. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Espla, M.D.; Rul, F. PepS from Streptococcus thermophilus: A new member of the aminopeptidase T family of thermophilic bacteria. Eur. J. Biochem. 1999, 263, 502–510. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.; Mandal, S.; Tomar, S.K.; Anand, S. Food protein-derived bioactive peptides in management of type 2 diabetes. Eur. J. Nut. 2015, 54, 863–880. [Google Scholar] [CrossRef] [PubMed]
- Velarde-Salcedo, A.J.; Barrera-Pacheco, A.; Lara-González, S.; Montero-Morán, G.M.; Díaz-Gois, A.; de Mejia, E.G.; de La Rosa, A.P.B. In vitro inhibition of dipeptidyl peptidase IV by peptides derived from the hydrolysis of amaranth (Amaranthus hypochondriacus L.) proteins. Food Chem. 2013, 136, 758–764. [Google Scholar] [CrossRef]
- Martin, M.; Hagemann, D.; Henle, T.; Deussen, A. The angiotensin converting enzyme-inhibitory effects of the peptide isoleucine-tryptophan after oral intake via whey hydrolysate in men. J. Hypertens. 2018, 36, e220. [Google Scholar] [CrossRef]
L. rhamnosus GG | S. thermophilus SY-102 | Coculture | ||||
---|---|---|---|---|---|---|
Time (h) | Log CFU | Lactic Acid (g/L) | Log CFU | Lactic Acid (g/L) | Log CFU | Lactic Acid (g/L) |
0 | 9.3 ± 0.00 | 1.44 ± 0.00 | 9.2 ± 0.00 | 1.25 ± 0.00 | 9.4 ± 0.00 | 1.62 ± 0.00 |
3 | 8.5 ± 0.00 | 1.62 ± 0.00 | 8.6 ± 0.00 | 1.44 ± 0.00 | 9.3 ± 0.00 | 1.98 ± 0.00 |
6 | 8.3 ± 0.00 | 1.62 ± 0.00 | 9.5 ± 0.00 | 1.44 ± 0.00 | 8.8 ± 0.00 | 2.16 ± 0.00 |
9 | 8.5 ± 0.00 | 2.16 ± 0.00 | 9.5 ± 0.00 | 1.44 ± 0.00 | 8.8 ± 0.00 | 2.34 ± 0.00 |
12 | 8.8 ± 0.10 | 2.07 ± 0.09 | 9.5 ± 0.20 | 1.62 ± 0.00 | 8.8 ± 0.10 | 2.52 ± 0.00 |
15 | 9.3 ± 0.00 | 2.34 ± 0.00 | 9.3 ± 0.00 | 1.62 ± 0.00 | 8.9 ± 0.00 | 2.52 ± 0.00 |
18 | 9.9 ± 0.00 | 2.70 ± 0.00 | 9.3 ± 0.00 | 1.62 ± 0.00 | 9.5 ± 0.00 | 3.00 ± 0.00 |
21 | 10.3± 0.00 | 3.20 ± 0.00 | 8.3 ± 0.00 | 1.98 ± 0.00 | 10.0± 0.00 | 3.78 ± 0.00 |
24 | 9.3 ± 0.10 | 3.74 ± 0.04 | 8.3 ± 0.00 | 1.98 ± 0.00 | 10.4± 0.10 | 2.61 ± 0.09 |
27 | 9.5 ± 0.00 | 4.10 ± 0.00 | 8.6 ± 0.00 | 2.34 ± 0.00 | 10.3± 0.00 | 2.52 ± 0.00 |
30 | 9.9 ± 0.00 | 4.50 ± 0.00 | 8.4 ± 0.00 | 2.34 ± 0.00 | 10.3± 0.00 | 2.80 ± 0.00 |
33 | 9.9 ± 0.00 | 4.50 ± 0.00 | 8.3 ± 0.00 | 2.52 ± 0.00 | 9.0 ± 0.00 | 2.80 ± 0.00 |
36 | 9.4 ± 0.10 | 5.20 ± 0.00 | 8.3 ± 0.00 | 2.61 ± 0.09 | 9.0 ± 0.10 | 3.24 ± 0.00 |
kinetic parameters | ||||||
Growth rate (µ) | 0.322 h−1 | 0.123 h−1 | 0.233 h−1 | |||
Generation time (g) | 2.14 | 5.61 | 2.97 | |||
Growth rate constant (k) | 0.467 g/h | 0.178 g/h | 0.336 g/h |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olvera-Rosales, L.B.; Cruz-Guerrero, A.E.; Jaimez-Ordaz, J.; Pérez-Escalante, E.; Quintero-Lira, A.; Ramírez-Moreno, E.; Contreras-López, E.; González-Olivares, L.G. Differences in the Proteolytic System of Lactic Acid Bacteria Affect the Release of DPP-IV Inhibitory Peptides from Whey Proteins. Dairy 2023, 4, 515-526. https://doi.org/10.3390/dairy4030035
Olvera-Rosales LB, Cruz-Guerrero AE, Jaimez-Ordaz J, Pérez-Escalante E, Quintero-Lira A, Ramírez-Moreno E, Contreras-López E, González-Olivares LG. Differences in the Proteolytic System of Lactic Acid Bacteria Affect the Release of DPP-IV Inhibitory Peptides from Whey Proteins. Dairy. 2023; 4(3):515-526. https://doi.org/10.3390/dairy4030035
Chicago/Turabian StyleOlvera-Rosales, Laura Berenice, Alma Elizabeth Cruz-Guerrero, Judith Jaimez-Ordaz, Emmanuel Pérez-Escalante, Aurora Quintero-Lira, Esther Ramírez-Moreno, Elizabeth Contreras-López, and Luis Guillermo González-Olivares. 2023. "Differences in the Proteolytic System of Lactic Acid Bacteria Affect the Release of DPP-IV Inhibitory Peptides from Whey Proteins" Dairy 4, no. 3: 515-526. https://doi.org/10.3390/dairy4030035
APA StyleOlvera-Rosales, L. B., Cruz-Guerrero, A. E., Jaimez-Ordaz, J., Pérez-Escalante, E., Quintero-Lira, A., Ramírez-Moreno, E., Contreras-López, E., & González-Olivares, L. G. (2023). Differences in the Proteolytic System of Lactic Acid Bacteria Affect the Release of DPP-IV Inhibitory Peptides from Whey Proteins. Dairy, 4(3), 515-526. https://doi.org/10.3390/dairy4030035