Development and Characterization of Cultured Buttermilk Fortified with Spirulina plantensis and Its Physico-Chemical and Functional Characteristics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Cultured Buttermilk
2.2. Physico-Chemical Analysis
2.3. Antioxidant Analysis
2.3.1. DPPH Inhibition Activity
2.3.2. Analysis of Total Phenolic Content
2.3.3. Analysis of Pigments
2.4. Sensory Evaluation
2.5. Enumeration of Microorganisms
2.6. Statistical Analysis
3. Results and Discussion
3.1. Composition of Spirulina Powder
3.2. Preparation of Cultured Buttermilk
3.3. Physicochemical Analysis
3.4. Antioxidant Properties
3.4.1. DPPH Radical Scavenging Activity
3.4.2. Chlorophyll Content
3.4.3. Carotenoid Content
3.4.4. C Phycocyanin Content
Purity of C-Phycocyanin
3.4.5. Total Phenolic Content (TPC)
3.5. Enumeration of Microorganism
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bourrie, B.C.T.; Willing, B.P.; Cotter, P.D. The microbiota and health promoting characteristics of the fermented beverage kefir. Front. Microbiol. 2016, 7, 647. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.; Ye, X.; Shen, D.; Ma, C. Modulatory effects of gut microbiota on constipation: The commercial beverage yakult shapes stool consistency. J. Neurogastroenterol. Motil. 2019, 25, 475–477. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamang, J.P.; Cotter, P.D.; Endo, A.; Han, N.S.; Kort, R.; Liu, S.Q.; Mayo, B.; Westerik, N.; Hutkins, R. Fermented Foods in a Global Age: East meets West. Compr. Rev. Food Sci. Food Saf. 2020, 19, 184–217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barnett, J.A. A history of research on yeasts 2: Louis Pasteur and his contemporaries, 1850–1880. Yeast 2000, 16, 755–771. [Google Scholar] [CrossRef]
- Rombaut, R.; Van Camp, J.; Dewettinck, K. Phospho- and sphingolipid distribution during processing of milk, butter and whey. Int. J. Food Sci. Technol. 2006, 41, 435–443. [Google Scholar] [CrossRef]
- Gebreselassie, N.; Abrahamsen, R.K.; Beyene, F.; Abay, F.; Narvhus, J.A. Chemical composition of naturally fermented buttermilk. Int. J. Dairy Technol. 2016, 69, 200–208. [Google Scholar] [CrossRef]
- Mudgil, D.; Barak, S.; Darji, P. Development and characterization of functional cultured buttermilk utilizing Aloe vera juice. Food Biosci. 2016, 15, 105–109. [Google Scholar] [CrossRef]
- Nirgude, R.; Binorkar, S.V.; Parlikar, G.R.; Kirte, M.C.; Savant, D.P. Therapeutic and nutritional values of takra (buttermilk). Int. Res. J. Pharm. 2013, 4, 29–31. [Google Scholar]
- O’Connell, J.; Fox, P. Heat Stability of Buttermilk. J. Dairy Sci. 2000, 83, 1728–1732. [Google Scholar] [CrossRef]
- Ghanshyambhai, M.R.; Balakrishnan, S.; Aparnathi, K.D. Standardization of the method for utilization of paneer whey in cultured buttermilk. J. Food Sci. Technol. 2015, 52, 2788–2796. [Google Scholar] [CrossRef] [Green Version]
- Devi, M.C.A. Role of milk & milk products in traditional medicinal systems. Indian Dairym. 2010, 62, 114–119. [Google Scholar]
- Naidu, K.A. Vitamin C in human health and disease is still a mystery? An overview. Nutr. J. 2003, 2, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gahruie, H.H.; Eskandari, M.H.; Mesbahi, G.; Hanifpour, M.A. Scientific and technical aspects of yogurt fortification: A review. Food Sci. Hum. Wellness 2015, 4, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Carocho, M.; Barreiro, M.F.; Morales, P.; Ferreira, I.C. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Compr. Rev. Food Sci. Food Saf. 2014, 13, 377–399. [Google Scholar] [CrossRef]
- Randhawa, S.; Bahna, S.L. Hypersensitivity reactions to food additives. Curr. Opin. Allergy Clin. Immunol. 2009, 9, 278–283. [Google Scholar] [CrossRef]
- Seyidoglu, N.; Inan, S.; Aydin, C. A prominent superfood: Spirulina platensis. Superfood and functional food the development of superfoods and their roles as medicine. Biology 2017, 22, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Cai, J.; Lovatelli, A.; Aguilar-Manjarrez, J.; Cornish, L.; Dabbadie, L.; Desrochers, A.; Diffey, S.; Garrido Gamarro, E.; Geehan, J.; Hurtado, A.; et al. Seaweeds and Microalgae: An Overview for Unlocking Their Potential in Global Aquaculture Development; FAO Fisheries and Aquaculture Circular: Rome, Italy, 2021; p. 1229. [Google Scholar] [CrossRef]
- Satyaraj, E.; Reynolds, A.; Engler, R.; Labuda, J.; Sun, P. Supplementation of diets with spirulina influences immune and gut function in dogs. Front. Nutr. 2021, 8, 667072. [Google Scholar] [CrossRef]
- Karkos, P.D.; Leong, S.C.; Sivaji, N.; Assimakopoulos, D.A. Spirulina in clinical practice: Evidence-based human applications. Evid.-Based Complement. Altern. Med. 2011, 2011, 531053. [Google Scholar] [CrossRef] [Green Version]
- Thajuddin, N.; Subramanian, G. Cyanobacterial biodiversity and potential applications in biotechnology. Curr. Sci. 2005, 89, 47–57. [Google Scholar]
- Usharani, G.; Srinivasan, G.; Sivasakthi, S.; Saranraj, P. Antimicrobial activity of Spirulina platensis solvent extracts against pathogenic bacteria and fungi. Adv. Biol. Res. 2015, 9, 292–298. [Google Scholar]
- Beheshtipour, H.; Mortazavian, A.M.; Haratian, P.; Khosravi-Darani, K. Effects of Chlorella vulgaris and Arthrospira platensis addition on viability of probiotic bacteria in yogurt and its biochemical properties. Eur. Food Res. Technol. 2012, 235, 719–728, Erratum in Eur. Food Res. Technol. 2012, 235, 1213. [Google Scholar] [CrossRef]
- Çelekli, A.; Alslibi, Z.A.; Üseyin Bozkurt, H. Influence of incorporated Spirulina platensis on the growth of microflora and physicochemical properties of ayran as a functional food. Algal Res. 2019, 44, 101710. [Google Scholar] [CrossRef]
- Atik, D.S.; Gürbüz, B.; Bölük, E.; Palabıyık, I. Development of vegan kefir fortified with Spirulina platensis. Food Biosci. 2021, 42, 101050. [Google Scholar] [CrossRef]
- Barkallah, M.; Dammak, M.; Louati, I.; Hentati, F.; Hadrich, B.; Mechichi, T.; Ayadi, M.A.; Fendri, I.; Attia, H.; Abdelkafi, S. Effect of Spirulina platensis fortification on physicochemical, textural, antioxidant and sensory properties of yogurt during fermentation and storage. LWT 2017, 84, 323–330. [Google Scholar] [CrossRef]
- Debbabi, H.; Boubaker, B.; Gmati, T.; Chouaibi, M.; Boubaker, A.; Snoussi, A. Yogurt enrichment with Spirulina (Arthrospira platensis): Effect of storage on physicochemical parameters. In Recent Advances in Environmental Science from the Euro-Mediterranean and Surrounding Regions: Proceedings of the Euro-Mediterranean Conference for Environmental Integration (EMCEI-1), Sousse, Tunisia, 22–25 November 2017; pp. 1267–1268; Springer International Publishing: Berlin/Heidelberg, Germany, 2018. [Google Scholar] [CrossRef]
- Arslan, R.; Aksay, S. Investigation of sensorial and physicochemical properties of yoghurt colored with phycocyanin of Spirulina platensis. J. Food Process. Preserv. 2022, 46, e15941. [Google Scholar] [CrossRef]
- Agustini, T.W.; Soetrisnanto, D.; Ma’ruf, W.F. Study on chemical, physical, microbiological and sensory of yoghurt enriched by Spirulina platensis. Int. Food Res. J. 2017, 24, 367–371. [Google Scholar]
- Sengupta, S.; Koley, H.; Dutta, S.; Bhowal, J. Hypocholesterolemic effect of Spirulina platensis (SP) fortified functional soy yogurts on diet-induced hypercholesterolemia. J. Funct. Foods 2018, 48, 54–64. [Google Scholar] [CrossRef]
- Tiepo, C.B.V.; Gottardo, F.M.; Mortari, L.M.; Bertol, C.D.; Reinehr, C.O.; Colla, L.M. Addition of Spirulina platensis in handmade ice cream: Phisicochemical and sensory effects/Adição de Spirulina platensis em sorvete caseiro: Efeitos físico-químicos e sensoriais. Braz. J. Dev. 2021, 7, 88106–88123. [Google Scholar] [CrossRef]
- Rasouli, F.; Berenji, S.; Shahab Lavasani, A. Optimization of traditional Iranian ice cream formulation enriched with spirulina using response surface methodology. J. Food Technol. Nutr. 2017, 14, 15–28. [Google Scholar]
- Malik, P.; Kempanna, C.; Paul, A. Quality characteristics of ice cream enriched with Spirulina powder. Int. J. Food Nutr. Sci. 2013, 2, 44–50. [Google Scholar]
- Bosnea, L.; Terpou, A.; Pappa, E.; Kondyli, E.; Mataragas, M.; Markou, G.; Katsaros, G. Incorporation of Spirulina platensis on traditional greek soft cheese with respect to its nutritional and sensory perspectives. In Proceedings of the 1st International Electronic Conference on Food Science and Functional Foods, Online, 10–25 November 2020; Volume 70, p. 99. [Google Scholar]
- Terpou, A.; Bosnea, L.; Mataragkas, M.; Markou, G. Influence of Incorporated Arthrospira (Spirulina) platensis on the Growth of Microflora and Physicochemical Properties of Feta-Type Cheese as Functional Food. In Proceedings of the 1st International Electronic Conference on Food Science and Functional Foods, Online, 10–25 November 2020; Volume 70, p. 97. [Google Scholar]
- Kumar, A.; Mohanty, V.; Yashaswini, P. Development of high protein nutrition bar enriched with Spirulina plantensis for undernourished children. Curr. Res. Nutr. Food Sci. J. 2018, 6, 835–844. [Google Scholar] [CrossRef] [Green Version]
- Kreitlow, S.; Mundt, S.; Lindequist, U. Cyanobacteria—A potential source of new biologically active substances. In Progress in Industrial Microbiology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 35, pp. 61–63. [Google Scholar] [CrossRef]
- Rodas, B.A.; Angulo, J.O.; De la Cruz, J.; Garcia, H.S. Preparation of probiotic buttermilk with Lactobacillus reuteri. Milchwissenschaft 2002, 57, 26. [Google Scholar]
- IS: 1224, (Part-I); Indian Standards. Determination of Fat by Gerber Method. Indian Standards Institution: New Delhi, India, 1981.
- Sehgal, S. A Laboratory Manual of Food Analysis; Wiley: New Delhi, India, 2020. [Google Scholar]
- Cunniff, P.A. Official Methods of Analysis of AOAC International, 16th ed.; Association of Official Analysis Chemists: Arlington, MA, USA, 1998. [Google Scholar]
- Kang, H.-M.; Saltveit, M.E. Antioxidant capacity of lettuce leaf tissue increases after wounding. J. Agric. Food Chem. 2002, 50, 7536–7541. [Google Scholar] [CrossRef]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolbdic-phosphotungstic acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Kumar, P.; Ramakritinan, C.M.; Kumaraguru, A.K. Solvent extraction and spectrophotometric determination of pigments of some algal species from the shore of puthumadam, southeast coast of India. Int. J. Ocean. Oceanogr. 2010, 4, 29–34. [Google Scholar]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of Total Carotenoids and Chlorophylls a and b of Leaf Extracts in Different Solvents. Biochem Soc Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Pan-Utai, W.; Iamtham, S. Extraction, purification and antioxidant activity of phycobiliprotein from Arthrospira platensis. Process Biochem. 2019, 82, 189–198. [Google Scholar] [CrossRef]
- Basiri, S.; Haidary, N.; Shekarforoush, S.S.; Niakousari, M. Flaxseed mucilage: A natural stabilizer in stirred yogurt. Carbohydr. Polym. 2018, 187, 59–65. [Google Scholar] [CrossRef]
- Marth, E.H. Standard Methods for the Examination of Dairy Products, 14th ed.; American Public Health Association: Washington, DC, USA, 1978. [Google Scholar]
- Koli, D.K.; Rudra, S.G.; Bhowmik, A.; Pabbi, S. Nutritional, functional, textural and sensory evaluation of Spirulina enriched green pasta: A potential dietary and health supplement. Foods 2022, 11, 979. [Google Scholar] [CrossRef]
- Tańska, M.; Konopka, I.; Ruszkowska, M. Sensory, physico-chemical and water sorption properties of corn extrudates enriched with Spirulina. Plant Foods Hum. Nutr. 2017, 72, 250–257. [Google Scholar] [CrossRef] [Green Version]
- El-Hameed, M.K.A.; El-Maatti, S.M.A.; El-Saidy, S.M.; Ahmed, S.M. Effect of adding Spirulina platensis in pasta products (spaghetti). Zagazig J. Agric. Res. 2018, 45, 293–300. [Google Scholar] [CrossRef]
- Hidayati, J.R.; Yudiati, E.; Pringgenies, D.; Oktaviyanti, D.T.; Kusuma, A.P. Comparative study on antioxidant activities, total phenolic compound and pigment contents of tropical Spirulina platensis, Gracilaria arcuata and Ulva lactuca extracted in different solvents polarity. In E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2020; Volume 147, p. 03012. [Google Scholar] [CrossRef]
- Mehta, B.M.; de Oliveira, M.N. 11 Fermented Dairy Products. In Fermentation: Effects on Food Properties; CRC Press: Boca Raton, FL, USA, 2012; p. 259. [Google Scholar]
- Ásványi-Molnár, N.; Sipos-Kozma, Z.S.; Tóth, Á.; Ásványi, B.; Varga, L. Development of functional dairy food enriched in spirulina (Arthrospira platensis). Tejgazdasag 2009, 69, 15–22. [Google Scholar]
- Gyenis, B.; Szigeti, J.F.; Asvanyi-Molnar, N.; Varga, L. Use of dried microalgal biomasses to stimulate acid production and growth of Lactobacillus plantarum and Enterococcus faecium in milk. Acta Agrar. 2005, 9, 53–59. [Google Scholar]
- Varga, L.; Szigeti, J.; Kovács, R.; Földes, T.; Buti, S. Influence of a Spirulina platensis Biomass on the Microflora of Fermented ABT Milks During Storage (R1). J. Dairy Sci. 2002, 85, 1031–1038. [Google Scholar] [CrossRef]
- Patel, P.; Jethani, H.; Radha, C.; Vijayendra, S.V.N.; Mudliar, S.N.; Sarada, R.; Chauhan, V.S. Development of a carotenoid enriched probiotic yogurt from fresh biomass of Spirulina and its characterization. J. Food Sci. Technol. 2019, 56, 3721–3731. [Google Scholar] [CrossRef]
- Shimamatsu, H. Mass production of Spirulina, an edible microalga. Hydrobiologia 2004, 512, 39–44. [Google Scholar] [CrossRef]
- Lupatini, A.L.; Colla, L.M.; Canan, C.; Colla, E. Potential application of microalga Spirulina platensis as a protein source. J. Sci. Food Agric. 2017, 97, 724–732. [Google Scholar] [CrossRef] [PubMed]
- Üstün-Aytekin, Ö.; Çoban, I.; Aktaş, B. Nutritional value, sensory properties, and antioxidant activity of a traditional kefir produced with Arthrospira platensis. J. Food Process. Preserv. 2022, 46, e16380. [Google Scholar] [CrossRef]
- Khaledabad, M.A.; Ghasempour, Z.; Kia, E.M.; Bari, M.R.; Zarrin, R. Probiotic yoghurt functionalised with microalgae and zedo gum: Chemical, microbiological, rheological and sensory characteristics. Int. J. Dairy Technol. 2019, 73, 67–75. [Google Scholar] [CrossRef]
- Ozturkoglu-Budak, S.; Akal, C.; Yetisemiyen, A. Effect of dried nut fortification on functional, physicochemical, textural, and microbiological properties of yogurt. J. Dairy Sci. 2016, 99, 8511–8523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fradinho, P.; Niccolai, A.; Soares, R.; Rodolfi, L.; Biondi, N.; Tredici, M.R.; Sousa, I.; Raymundo, A. Effect of Arthrospira platensis (spirulina) incorporation on the rheological and bioactive properties of gluten-free fresh pasta. Algal Res. 2020, 45, 101743. [Google Scholar] [CrossRef]
- Ismaiel, M.M.S.; El-Ayouty, Y.M.; Piercey-Normore, M. Role of pH on antioxidants production by Spirulina (Arthrospira) platensis. Braz. J. Microbiol. 2016, 47, 298–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goiris, K.; Muylaert, K.; Fraeye, I.; Foubert, I.; De Brabanter, J.; De Cooman, L. Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. J. Appl. Phycol. 2012, 24, 1477–1486. [Google Scholar] [CrossRef]
- Anbarasan, V.; Kishor Kumar, V.; Satheesh Kumar, P.; Venkatachalam, T. In vitro evaluation of antioxidant activity of blue green algae S. platensis. Int. J. Pharm. Sci. Res. 2011, 2, 2616–2618. [Google Scholar]
- Marzorati, S.; Schievano, A.; Idà, A.; Verotta, L. Carotenoids, chlorophylls and phycocyanin from Spirulina: Supercritical CO2 and water extraction methods for added value products cascade. Green Chem. 2019, 22, 187–196. [Google Scholar] [CrossRef]
- Shimamatsu, H. A pond for edible Spirulina production and its hydraulic studies. In Twelfth International Seaweed Symposium; Springer: Dordrecht, The Netherlands, 1987; pp. 83–89. [Google Scholar] [CrossRef]
- Szmejda, K.; Duliński, R.; Byczyński, Ł.; Karbowski, A.; Florczak, T.; Żyła, K. Analysis of the selected antioxidant compounds in ice cream supplemented with Spirulina (Arthrospira platensis) extract. Biotechnol. Food Sci. 2018, 82, 41–48. [Google Scholar]
- Khandual, S.; Sanchez, E.O.L.; Andrews, H.E.; de la Rosa, J.D.P. Phycocyanin content and nutritional profile of Arthrospira platensis from Mexico: Efficient extraction process and stability evaluation of phycocyanin. BMC Chem. 2021, 15, 24. [Google Scholar] [CrossRef]
- Rito-Palomares, M.; Nuñez, L.; Amador, D. Practical application of aqueous two-phase systems for the development of a prototype process for c-phycocyanin recovery from Spirulina maxima. J. Chem. Technol. Biotechnol. 2001, 76, 1273–1280. [Google Scholar] [CrossRef]
- Niccolai, A.; Shannon, E.; Abu-Ghannam, N.; Biondi, N.; Rodolfi, L.; Tredici, M.R. Lactic acid fermentation of Arthrospira platensis (spirulina) biomass for probiotic-based products. J. Appl. Phycol. 2019, 31, 1077–1083. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.-G.; Hou, C.-W.; Lee, S.-Y.; Chuang, Y.; Lin, C.-C. Antioxidant effects and UVB protective activity of Spirulina (Arthrospira platensis) products fermented with lactic acid bacteria. Process Biochem. 2011, 46, 1405–1410. [Google Scholar] [CrossRef]
- Güldas¸, M.; Irkin, R. Influence of Spirulina platensis powder on the microflora of yoghurt and acidophilus milk. Mljekarstvo 2010, 60, 237–243. [Google Scholar]
- Sudheendra, C.V.K. Development of Synbiotic Lassi Added with Carrot Juice. Ph.D. Thesis, Agricultural University, Anand, India, 2010. [Google Scholar]
- Akalin, A.; Unal, G.; Dalay, M. Influence of Spirulina platensis biomass on microbiological viability in traditional and probiotic yogurts during refrigerated storage. Ital. J. Food Sci. 2009, 21, 357–364. [Google Scholar]
- De Caire, G.Z.; Parada, J.L.; Zaccaro, M.C.; De Cano, M.M.S. Effect of Spirulina platensis biomass on the growth of lactic acid bacteria in milk. World J. Microbiol. Biotechnol. 2000, 16, 563–565. [Google Scholar] [CrossRef]
- Gupta, S.; Gupta, C.; Garg, A.P.; Prakash, D. Prebiotic efficiency of blue green algae on probiotics microorganisms. J. Microbiol. Exp. 2017, 4, 00120. [Google Scholar] [CrossRef] [Green Version]
Components | Value (%) |
---|---|
Moisture | 5.12 ± 0.03 |
Protein | 59.27 ± 0.02 |
Total solids | 94.88 ± 0.03 |
Ash contents | 7.02 ± 0.03 |
% DPPH inhibition | 89.00 ± 1.02 |
Total Phenolic Content (TPC) | 11.26 ± 0.04 mg GAE/100 g |
Parameters | T0 | T1 | p Value |
---|---|---|---|
Total Solids (g/100 g on dry weight basis) | 9.73 ± 0.01 | 9.87 ± 0.01 b | 0.004 |
Protein (g/100 g on dry weight basis) | 1.71 ± 0.02 | 1.83 ± 0.01 b | 0.003 |
Fat (g/100 g on dry weight basis) | 0.70 ± 0.01 | 0.733 ± 0.02 | 0.065 |
Carbohydrate (g/100 g on dry weight basis) | 6.56 ± 0.01 | 6.59 ± 0.02 b | 0.001 |
Energy (Kcal/100 mL) | 39.45 ± 0.18 | 40.29 ± 0.11 b | 0.007 |
Ash (g/100 g on dry weight basis) | 0.70 ± 0.02 | 0.76 ± 0.03 a | 0.042 |
Calcium (mg/100 g on dry weight basis) | 74.59 ± 0.97 | 82.06 ± 1.02 b | 0.001 |
Viscosity (cP) | 20.2 ± 0.01 | 21.9 ± 0.01 b | 0.008 |
Parameters | T0 | T1 | p Value |
---|---|---|---|
DPPH–scavenging activity (%) | 41.99 ± 0.81 | 48.19 ± 0.26 a | <0.001 |
Chlorophyll (mg/g on dry weight basis) | 0.30 ± 0.02 | 30.91 ± 0.04 a | <0.001 |
Carotenoid (mg/g on dry weight basis) | 0 | 8.24 ± 0.02 a | <0.001 |
C-Phycocyanin (mg/g on dry weight basis) | 0 | 0.30 ± 0.01 a | <0.001 |
Total Phenolic Content (mg/g GAE) | 2.44 ± 0.01 | 4.21 ± 0.03 a | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rose, H.; Bakshi, S.; Kanetkar, P.; Lukose, S.J.; Felix, J.; Yadav, S.P.; Gupta, P.K.; Paswan, V.K. Development and Characterization of Cultured Buttermilk Fortified with Spirulina plantensis and Its Physico-Chemical and Functional Characteristics. Dairy 2023, 4, 271-284. https://doi.org/10.3390/dairy4020019
Rose H, Bakshi S, Kanetkar P, Lukose SJ, Felix J, Yadav SP, Gupta PK, Paswan VK. Development and Characterization of Cultured Buttermilk Fortified with Spirulina plantensis and Its Physico-Chemical and Functional Characteristics. Dairy. 2023; 4(2):271-284. https://doi.org/10.3390/dairy4020019
Chicago/Turabian StyleRose, Hency, Shiva Bakshi, Prajasattak Kanetkar, Smitha J. Lukose, Jude Felix, Satya Prakash Yadav, Pankaj Kumar Gupta, and Vinod Kumar Paswan. 2023. "Development and Characterization of Cultured Buttermilk Fortified with Spirulina plantensis and Its Physico-Chemical and Functional Characteristics" Dairy 4, no. 2: 271-284. https://doi.org/10.3390/dairy4020019
APA StyleRose, H., Bakshi, S., Kanetkar, P., Lukose, S. J., Felix, J., Yadav, S. P., Gupta, P. K., & Paswan, V. K. (2023). Development and Characterization of Cultured Buttermilk Fortified with Spirulina plantensis and Its Physico-Chemical and Functional Characteristics. Dairy, 4(2), 271-284. https://doi.org/10.3390/dairy4020019