Effect of the Heat Exchanger Type on Stirred Yogurt Properties Formulated at Different Total Solids and Fat Contents
Abstract
:1. Introduction
2. Material and Methods
2.1. Dairy Ingredients
2.2. Yogurt Starter Culture Preparation
2.3. Yogurt Production
2.3.1. Yogurt Mix Preparation
2.3.2. Yogurt Fermentation
2.3.3. Technical Scale Unit and Stirring Operations
2.4. Analyses
2.4.1. Composition Analyses
2.4.2. pH and Titratable Acidity
2.4.3. Induced Syneresis
2.4.4. Firmness
2.4.5. Apparent Viscosity and Hysteresis Loop
2.4.6. Microbiological Counts
2.5. Experimental Plan and Statistics
3. Results and Discussion
3.1. Yogurt Milk Standardization
3.2. Bacterial Counts
3.3. Physico-Chemical Yogurt Properties
3.3.1. Titratable Acidity and pH
3.3.2. Firmness and Rheological Properties
3.3.3. Induced Syneresis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- CODEX STAN 243-2003; Standard for Fermented Milks. Codex-Alimentarius; FAO: Rome, Italy, 2003.
- Tamime, A.Y.; Robinson, R.K. Tamime and Robinson’s Yoghurt: Science and Technology, 3rd ed.; CRC Press: Boca Raton, FL, USA; Woodhead Publishing: Cambridge, UK, 2007. [Google Scholar]
- Chandan, R.C.; O’Rell, K. Principles of yogurt processing. In Manufacturing Yogurt and Fermented Milks; Chandan, R.C., Kilara, A., Eds.; John Wiley & Sons, Inc.: Oxford, UK, 2013; pp. 239–261. [Google Scholar]
- Mokoonlall, A.; Nöbel, S.; Hinrichs, J. Post-processing of fermented milk to stirred products: Reviewing the effects on gel structure. Trends Food Sci. Technol. 2016, 54, 26–36. [Google Scholar] [CrossRef]
- Renan, M.; Guyomarc’h, F.; Arnoult-Delest, V.; Pâquet, D.; Brulé, G.; Famelart, M.H. Rheological properties of stirred yoghurt as affected by gel pH on stirring, storage temperature and pH changes after stirring. Int. Dairy J. 2009, 19, 142–148. [Google Scholar] [CrossRef]
- Gilbert, A.; Turgeon, S.L. Studying stirred yogurt microstructure and its correlation to physical properties: A review. Food Hydrocoll. 2021, 121, 106970. [Google Scholar] [CrossRef]
- Sodini, I.; Remeuf, F.; Haddad, S.; Corrieu, G. The relatives effect of Milk Base, starter, and process on Yogurt texture: A review. Crit. Rev. Food Sci. Nutr. 2004, 44, 113–137. [Google Scholar] [CrossRef] [PubMed]
- Krzeminski, A.; Großhable, K.; Hinrichs, J. Structural properties of stirred yoghurt as influenced by whey proteins. LWT—Food Sci. Technol. 2011, 44, 2134–2140. [Google Scholar] [CrossRef]
- Marafon, A.P.; Sumi, A.; Granato, D.; Alcantara, M.R.; Tamime, A.Y.; Nogueira de Oliveira, M. Effects of partially replacing skimmed milk powder with dairy ingredients on rheology, sensory profiling, and microstructure of probiotic stirred-type yogurt during cold storage. J. Dairy Sci. 2011, 94, 5330–5340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lesme, H.; Rannou, C.; Famelart, M.-H.; Bouhallab, S.; Prost, C. Yogurts enriched with milk proteins: Texture properties, aroma release and sensory perception. Trends Food Sci. Technol. 2020, 98, 140–149. [Google Scholar] [CrossRef]
- Chua, D.; Deeth, H.C.; Oh, H.E.; Bansal, N. Altering the casein to whey protein ratio to enhance structural characteristics and release of major yoghurt volatile aroma compounds of non-fat stirred yoghurts. Int. Dairy J. 2017, 74, 63–73. [Google Scholar] [CrossRef]
- Huppertz, T. Lactose in Yogurt. In Yogurt in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2017; pp. 387–394. [Google Scholar] [CrossRef]
- Laiho, S.; Williams, R.P.W.; Poelman, A.; Appelqvist, I.; Logan, A. Effect of whey protein phase volume on the tribology, rheology and sensory properties of fat-free stirred yoghurts. Food Hydrocoll. 2017, 67, 166–177. [Google Scholar] [CrossRef]
- Gilbert, A.; Rioux, L.-E.; St-Gelais, D.; Turgeon, S.L. Smoothing temperature and ratio of casein to whey protein: Two tools to improve nonfat stirred yogurt properties. J. Dairy Sci. 2021, 104, 10485–10499. [Google Scholar] [CrossRef]
- Sandoval-Castilla, O.; Lobato-Calleros, C.; Aguirre-Mandujano, E.; Vernon-Carter, E.J. Microstructure and texture of yogurt as influenced by fat replacers. Int. Dairy J. 2004, 14, 151–159. [Google Scholar] [CrossRef]
- Lee, W.-J.; Lucey, J.A. Formation and physical properties of yogurt. Asian-Aust. J. Anim. Sci. 2010, 23, 1127–1136. [Google Scholar] [CrossRef]
- Ong, L.; Dagastine, R.R.; Kentish, S.E.; Gras, S.L. The effect of milk processing on the microstructure of the milk fat globule and rennet induced gel observed using confocal laser scanning microscopy. J. Food Sci. 2010, 75, E135–E145. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.H.; Ong, L.; Kentish, S.E.; Gras, S.L. The Effect of Fermentation Temperature on the Microstructure, Physicochemical and Rheological Properties of Probiotic Buffalo Yoghurt. Food Bioproc. Technol. 2014, 7, 2538–2548. [Google Scholar] [CrossRef]
- Nguyen, H.T.H.; Ong, L.; Kentish, S.E.; Gras, S.L. Homogenisation improves the microstructure, syneresis and rheological properties of buffalo yoghurt. Int. Dairy J. 2015, 46, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Surber, G.; Rohm, H.; Jaros, D. Understanding the contribution of milk constituents to the texture of dairy products: Fermented products. In Understanding and Improving the Functional and Nutritional Properties of Milk; Burleigh Dodds Science Publishing: Cambridge, MA, USA, 2022; pp. 673–704. [Google Scholar] [CrossRef]
- Li, R.; Czaja, T.P.; Glover, Z.J.; Ipsen, R.; Jæger, T.C.; Rovers, T.A.M.; Simonsen, A.C.; Svensson, B.; van den Berg, F.; Hougaard, A.B. Water mobility and microstructure of acidified milk model gels with added whey protein ingredients. Food Hydrocoll. 2022, 127, 107548. [Google Scholar] [CrossRef]
- Cayot, P.; Schenker, F.; Houzé, G.; Sulmont-Rossé, C.; Colas, B. Creaminess in relation to consistency and particle size in stirred fat-free yogurt. Int. Dairy J. 2008, 18, 303–311. [Google Scholar] [CrossRef]
- Serra, M.; Trujillo, A.J.; Guamis, B.; Ferragut, V. Evaluation of physical properties during storage of set and stirred yogurts made from ultra-high pressure homogenization-treated milk. Food Hydrocoll. 2009, 23, 82–91. [Google Scholar] [CrossRef]
- Abu-Jdayil, B.; Nasser, M.S.; Ghannam, M. Structure breakdown of stirred yoghurt in a circular pipe as affected by casein and fat content. Food Sci. Technol. Res. 2013, 19, 277–286. [Google Scholar] [CrossRef] [Green Version]
- Afonso, I.M.; Maia, J.M. Rheological monitoring of structure evolution and development in stirred yoghurt. J. Food Eng. 1999, 42, 183–190. [Google Scholar] [CrossRef]
- Guénard-Lampron, V.; St-Gelais, D.; Villeneuve, S.; Turgeon, S.L. Individual and sequential effects of stirring, smoothing, and cooling on the rheological properties of nonfat yogurts stirred with a technical scale unit. J. Dairy Sci. 2018, 102, 190–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- AOAC International. Dairy product. In Official Methods in Analytic of AOAC International, 17th ed.; Horwitz, W., Ed.; AOAC International: Gaithersburg, MD, USA, 2000; pp. 69–82. [Google Scholar]
- Gentès, M.-C.; St-Gelais, D.; Turgeon, S.L. Exopolysaccharide–milk protein interactions in a dairy model system simulating yoghurt conditions. Dairy Sci. Technol. 2013, 93, 255–271. [Google Scholar] [CrossRef] [Green Version]
- AOAC International. Official Methods of Analysis, 15th ed.; AOAC International: Arlington, VA, USA, 1990. [Google Scholar]
- Gentès, M.-C.; St-Gelais, D.; Turgeon, S.L. Gel formation and rheological properties of fermented milk with in situ exopolysaccharide production by lactic acid bacteria. Dairy Sci. Technol. 2011, 91, 645–661. [Google Scholar] [CrossRef] [Green Version]
- Ramchandran, L.; Shah, N.P. Effect of exopolysaccharides on the proteolytic and angiotensin-I converting enzyme-inhibitory activities and textural and rheological properties of low-fat yogurt during refrigerated storage. J. Dairy Sci. 2009, 92, 895–906. [Google Scholar] [CrossRef] [Green Version]
- ISO 7889/IDF 117; Yogurt—Enumeration of Characteristic Microorganisms—Colony-Count Technique at 37 °C. International Dairy Federation: Brussels, Belgium, 2003.
- Vuillemard, J.-C. Science et Technologie du Lait; Presses de l’Université Laval: Quebec, QC, Canada, 2018. [Google Scholar]
- Damin, M.R.; Minowa, E.; Alcantara, M.R.; Oliveira, M.N. Effect of cold storage on culture viability and some rheological properties of fermented milk prepared with yogurt and probiotic bacteria. J. Texture Stud. 2008, 39, 40–55. [Google Scholar] [CrossRef]
- Deshwal, G.K.; Tiwari, S.; Kumar, A.; Raman, R.K.; Kadyan, S. Review on factors affecting and control of post-acidification in yoghurt and related products. Trends Food Sci. Technol. 2021, 109, 499–512. [Google Scholar] [CrossRef]
- Delikanli, B.; Ozcan, T. Effects of various whey proteins on the physicochemical and textural properties of set type nonfat yoghurt. Int. J. Dairy Technol. 2014, 67, 495–503. [Google Scholar] [CrossRef]
- Lorenzen, P.C.; Neve, H.; Mautner, A.; Schlimme, E. Effect of enzymatic cross-linking of milk proteins on functional properties of set-style yoghurt. Int. J. Dairy Technol. 2002, 55, 152–157. [Google Scholar] [CrossRef]
- Güler-Akin, M.B.; Serdar Akin, M.; Korkmaz, A. Influence of different exopolysaccharide-producing strains on the physicochemical, sensory and syneresis characteristics of reduced-fat stirred yoghurt. Int. J. Dairy Technol. 2009, 62, 422–430. [Google Scholar] [CrossRef]
- Alvarez, F.; Argüello, M.; Cabero, M.; Riera, F.A.; Alvarez, R.; Iglesias, J.R.; Granda, J. Fermentation of concentrated skim-milk. Effects of different protein/lactose ratios obtained by ultrafiltration–diafiltration. J. Sci. Food Agric. 1998, 76, 10–16. [Google Scholar] [CrossRef]
- Barnes, H.A. Thixotropy—A review. J. Nonnewton. Fluid Mech. 1997, 70, 1–33. [Google Scholar] [CrossRef]
- Jaros, D.; Heidig, C.; Rohm, H. Enzymatic modification through microbial transglutaminase enhances the viscosity of stirred yogurt. J. Texture Stud. 2007, 38, 179–198. [Google Scholar] [CrossRef]
- Xu, Z.M.; Emmanouelidou, D.G.; Raphaelides, S.N.; Antoniou, K.D. Effects of heating temperature and fat content on the structure development of set yogurt. J. Food Eng. 2008, 85, 590–597. [Google Scholar] [CrossRef]
- Gregersen, S.B.; Glover, Z.J.; Wiking, L.; Simonsen, A.C.; Bertelsen, K.; Pedersen, B.; Poulsen, K.R.; Andersen, U.; Hammershøj, M. Microstructure and rheology of acid milk gels and stirred yoghurts—Quantification of process-induced changes by auto- and cross correlation image analysis. Food Hydrocoll. 2021, 111, 106269. [Google Scholar] [CrossRef]
- Wiking, L.; Gregersen, S.B.; Hansen, S.F.; Hammershøj, M. Heat-induced changes in milk fat and milk fat globules and its derived effects on acid dairy gelation—A review. Int. Dairy J. 2022, 127, 105213. [Google Scholar] [CrossRef]
- Nguyen, H.T.H.; Ong, L.; Lefèvre, C.; Kentish, S.E.; Gras, S.L. The Microstructure and Physicochemical Properties of Probiotic Buffalo Yoghurt During Fermentation and Storage: A Comparison with Bovine Yoghurt. Food Bioproc. Technol. 2013, 7, 937–953. [Google Scholar] [CrossRef]
- Renan, M.; Guyomarc’h, F.; Arnoult-Delest, V.; Pâquet, D.; Brulé, G.; Famelart, M.H. The rebodying of stirred yoghurt: Interactions between proteins. J. Dairy Res. 2008, 75, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Guénard-Lampron, V.; St-Gelais, D.; Villeneuve, S.; Turgeon, S.L. Short communication: Effect of stirring operations on changes in physical and rheological properties of nonfat yogurts during storage. J. Dairy Sci. 2020, 103, 210–214. [Google Scholar] [CrossRef]
- Guénard-Lampron, V.; Villeneuve, S.; St-Gelais, D.; Turgeon, S.L. Relationship between smoothing temperature, storage time, syneresis and rheological properties of stirred yogurt. Int. Dairy J. 2020, 109, 104742. [Google Scholar] [CrossRef]
- Weidendorfer, K.; Bienias, A.; Hinrichs, J. Investigation of the effects of mechanical post-processing with a colloid mill on the texture properties of stirred yogurt. Int. J. Dairy Technol. 2008, 61, 379–384. [Google Scholar] [CrossRef]
- Gilbert, A.; Rioux, L.-E.; St-Gelais, D.; Turgeon, S.L. Studying stirred yogurt microstructure using optical microscopy: How smoothing temperature and storage time impact microgel sizes related to syneresis. J. Dairy Sci. 2020, 103, 2139–2152. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, M.A.; Janhøj, T.; Ipsen, R. Effect of fat, protein and shear on graininess, viscosity and syneresis in low-fat stirred yoghurt. Milchwissenschaft 2007, 62, 54–58. [Google Scholar]
- Mullineux, G.; Simmons, M.J.H. Effects of processing on shear rate of yoghurt. J. Food Eng. 2007, 79, 850–857. [Google Scholar] [CrossRef]
- Mullineux, G.; Simmons, M.J.H. Influence of rheological model on the processing of yoghurt. J. Food Eng. 2008, 84, 250–257. [Google Scholar] [CrossRef]
- Renan, M.; Arnoult-Delest, V.; Pâquet, D.; Brulé, G.; Famelart, M.-H. Changes in the rheological properties of stirred acid milk gels as induced by the acidification procedure. Dairy Sci. Technol. 2008, 88, 341–353. [Google Scholar] [CrossRef] [Green Version]
- Ciron, C.I.E.; Gee, V.L.; Kelly, A.L.; Auty, M.A.E. Comparison of the effects of high-pressure microfluidization and conventional homogenization of milk on particle size, water retention and texture of non-fat and low-fat yoghurts. Int. Dairy J. 2010, 20, 314–320. [Google Scholar] [CrossRef]
- Ciron, C.I.E.; Gee, V.L.; Kelly, A.L.; Auty, M.A.E. Modifying the microstructure of low-fat yoghurt by microfluidisation of milk at different pressures to enhance rheological and sensory properties. Food Chem. 2012, 130, 510–519. [Google Scholar] [CrossRef]
- Meletharayil, G.H.; Patel, H.A.; Metzger, L.E.; Huppertz, T. Acid gelation of reconstituted milk protein concentrate suspensions: Influence of lactose addition. Int. Dairy J. 2016, 61, 107–113. [Google Scholar] [CrossRef]
- Schmidt, C.; Mende, S.; Jaros, D.; Rohm, H. Fermented milk products: Effects of lactose hydrolysis and fermentation conditions on the rheological properties. Dairy Sci. Technol. 2016, 96, 199–211. [Google Scholar] [CrossRef]
- Zhang, L.; Folkenberg, D.M.; Amigo, J.M.; Ipsen, R. Effect of exopolysaccharide-producing starter cultures and post-fermentation mechanical treatment on textural properties and microstructure of low fat yoghurt. Int. Dairy J. 2016, 53, 10–19. [Google Scholar] [CrossRef]
Composition (w/w) | SMP 1 | WPC (34%) 2 | Lactose Powder |
---|---|---|---|
Total protein content (%) | 35.00 | 34.12 | 0 |
Whey protein content (%) | 5.73 | ND 3 | 0 |
Casein content (%) | 28.93 | ND | 0 |
Total solids (%) | 97.65 | 97.40 | 99.44 |
Fat contents (%) | 0.68 | 1.44 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lussier, N.; Gilbert, A.; St-Gelais, D.; Turgeon, S.L. Effect of the Heat Exchanger Type on Stirred Yogurt Properties Formulated at Different Total Solids and Fat Contents. Dairy 2023, 4, 108-123. https://doi.org/10.3390/dairy4010008
Lussier N, Gilbert A, St-Gelais D, Turgeon SL. Effect of the Heat Exchanger Type on Stirred Yogurt Properties Formulated at Different Total Solids and Fat Contents. Dairy. 2023; 4(1):108-123. https://doi.org/10.3390/dairy4010008
Chicago/Turabian StyleLussier, Noémie, Audrey Gilbert, Daniel St-Gelais, and Sylvie L. Turgeon. 2023. "Effect of the Heat Exchanger Type on Stirred Yogurt Properties Formulated at Different Total Solids and Fat Contents" Dairy 4, no. 1: 108-123. https://doi.org/10.3390/dairy4010008
APA StyleLussier, N., Gilbert, A., St-Gelais, D., & Turgeon, S. L. (2023). Effect of the Heat Exchanger Type on Stirred Yogurt Properties Formulated at Different Total Solids and Fat Contents. Dairy, 4(1), 108-123. https://doi.org/10.3390/dairy4010008