Ultrasound-Assisted Cavitation Effect on the Biofilm-Forming Ability of Common Dairy Sporeformers
Abstract
:1. Introduction
2. Material and Methods
2.1. Source of Sporeformers Bacteria and Propagation of Vegetative Cells
Design of Experiment
2.2. Preparation of Sterilized Skim Milk Samples for Spiking Experiments
2.3. Enumeration of Vegetative Cells of Sporeformers
2.4. Standardization of Cavitation Parameters of the Spiked Samples
2.5. Biofilm Formation by Cavitated Spore Former Vegetative Cells on Stainless Steel (SS) Coupons under Lab Conditions
2.6. Scanning Electron Microscopy (SEM) of Biofilm to Create Visual Evidence
3. Statistical Analysis
4. Results and Discussion
4.1. Effect of Cavitation on Survival of Sporeformers
4.2. Effect of Ultrasonication on Biofilm Forming Ability of Sporeformers
Biofilm-Forming Ability of Sporeformers Pre–Post Cavitation
4.3. Effect of Cavitation on the Morphology of the Vegetative Cells
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alonso, P.V.P.; de Campos Ferreira, R.C.; Cotta, M.A.; Kabuki, D.Y. Influence of milk proteins on the adhesion and formation of Bacillus sporothermodurans biofilms: Implications for dairy industrial processing. Food Control 2022, 134, 108743. [Google Scholar]
- Habimana, O.; Semião, A.; Casey, E. The role of cell-surface interactions in bacterial initial adhesion and consequent biofilm formation on nanofiltration/reverse osmosis membranes. J. Membr. Sci. 2014, 454, 82–96. [Google Scholar]
- Courtney, H.S.; Ofek, I.; Penfound, T.; Nizet, V.; Pence, M.; Kreikemeyer, B.; Podbielbski, A.; Hasty, D.; Dale, J.B. Relationship between expression of the family of M proteins and lipoteichoic acid to hydrophobicity and biofilm formation in Streptococcus pyogenes. PLoS ONE 2009, 4, e4166. [Google Scholar] [CrossRef]
- Simoes, M.; Simoes, L.C.; Vieira, M.J. A review of current and emergent biofilm control strategies. LWT Food Sci. Technol. 2010, 43, 573–583. [Google Scholar] [CrossRef] [Green Version]
- Vishwakarma, V. Impact of environmental biofilms: Industrial components and its remediation. J. Basic Microbiol. 2020, 60, 198–206. [Google Scholar] [CrossRef]
- Schmidt, R.H.; Erickson, D.J.; Sims, S.; Wolff, P. Characteristics of food contact surface materials: Stainless steel. Food Prot. Trends 2012, 32, 574–584. [Google Scholar]
- The, H.K.; Flint, S.; Brooks, J.; Knight, G. Biofilms in the Dairy Industry; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Mosteller, T.; Bishop, J. Sanitizer efficacy against attached bacteria in a milk biofilm. J. Food Prot. 1993, 56, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Pearce, L.E.; Smythe, B.; Crawford, R.; Oakley, E.; Hathaway, S.; Shepherd, J.M. Pasteurization of milk: The heat inactivation kinetics of milk-borne dairy pathogens under commercial-type conditions of turbulent flow. J. Dairy Sci. 2012, 95, 20–35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Almalki, T.; Anand, S. 0543 Evaluation of the effect of cavitation on biofilm forming ability of sporeformers. J. Anim. Sci. 2016, 94 (Suppl. 5), 259. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, B.K.; Mason, T.J. Ultrasound processing of fluid foods. In Novel Thermal and Non-Thermal Technologies for Fluid Foods; Academic Press: Cambridge, MA, USA, 2012; pp. 135–165. [Google Scholar]
- Bermúdez-Aguirre, D.; Barbosa-Cánovas, G.V. Power ultrasound to process dairy products. In Ultrasound Technologies for Food and Bioprocessing; Springer: New York, NY, USA, 2011; pp. 445–465. [Google Scholar]
- Novak, J.S.; Call, J.; Tomasula, P.; Luchansky, J.B. An assessment of pasteurization treatment of water, media, and milk with respect to Bacillus spores. J. Food Prot. 2005, 68, 751–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maturin, L.; Peeler, J.T. BAM: Aerobic Plate Count; US Food and Drug Administration: Silver Spring, MD, USA, 2001.
- Downes, J.; Munson, M.; Spratt, D.; Kononen, E.; Tarkka, E.; Jousimies-somer, H.; Wade, W.G. Characterisation of Eubacterium-like strains isolated from oral infections. J. Med. Microbiol. 2001, 50, 947–951. [Google Scholar] [CrossRef] [PubMed]
- Pettersson, B.; Lembke, F.; Hammer, P.; Stackebrandt, E.; Priest, F.G. Bacillus sporothermodurans, a new species producing highly heat-resistant endospores. Int. J. Syst. Evol. Microbiol. 1996, 46, 759–764. [Google Scholar] [CrossRef] [PubMed]
- Downes, P.; Ito, F. Compendium of Methods for the Microbiological Examination of Foods; American Public Health Association: Washington, DC, USA, 2001. [Google Scholar]
- Parkar, S.G.; Flint, S.; Palmer, J.; Brooks, J. Factors influencing attachment of thermophilic bacilli to stainless steel. J. Appl. Microbiol. 2001, 90, 901–908. [Google Scholar] [CrossRef] [PubMed]
- Bulla, L.; Julian, G.; Rhodes, R.; Hesseltine, C. Scanning electron and phase-contrast microscopy of bacterial spores. Appl. Microbiol. 1969, 18, 490–495. [Google Scholar] [CrossRef] [PubMed]
- Khanal, S.N.; Anand, S.; Muthukumarappan, K.; Huegli, M. Inactivation of thermoduric aerobic sporeformers in milk by ultrasonication. Food Control 2014, 37, 232–239. [Google Scholar] [CrossRef]
- Sim, J.Y.; Beckman, S.L.; Anand, S.; Sergio; Martínez-Monteagudo, I. Hydrodynamic cavitation coupled with thermal treatment for reducing counts of B. coagulans in skim milk concentrate. J. Food Eng. 2021, 293, 110382. [Google Scholar] [CrossRef]
- Chaudhary, P.; Anand, S.; Monteagudo, S.M. Feasibility of hydrodynamic cavitation, in line with HTST pasteurization, for inactivating sporeformers and spores in skim milk. In Proceedings of the American Dairy Science association, Knoxville, TN, USA, 24 June 2017. [Google Scholar]
- Jindal, S.; Anand, S. Comparison of adhesion characteristics of common dairy sporeformers and their spores on unmodified and modified stainless steel contact surfaces. J. Dairy Sci. 2018, 101, 5799–5808. [Google Scholar] [CrossRef] [PubMed]
- Chavant, P.; Martinie, B.; Meylheuc, T.; Bellon-Fontaine, M.-N.; Hebraud, M. Listeria monocytogenes LO28: Surface physicochemical properties and ability to form biofilms at different temperatures and growth phases. Appl. Environ. Microbiol. 2002, 68, 728–737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pagán, R.; Manas, P.; Alvarez, I.; Condón, S. Resistance of Listeria monocytogenesto ultrasonic waves under pressure at sublethal (manosonication) and lethal (manothermosonication) temperatures. Food Microbiol. 1999, 16, 139–148. [Google Scholar] [CrossRef]
- Qian, Z.; Stoodley, P.; Pitt, W.G. Effect of low-intensity ultrasound upon biofilm structure from confocal scanning laser microscopy observation. Biomaterials 1996, 17, 1975–1980. [Google Scholar] [CrossRef] [PubMed]
Organism Tested | Pre-Cavitation | Post Cavitation |
---|---|---|
G. stearothermophilus | 7.20 ± 0.11 a | 3.40 ± 0.05 b |
B. licheniformis | 8.00 ± 0.10 a | 4.20 ± 0.10 b |
B. sporothermodurans | 7.70 ± 0.10 a | 3.70 ± 0.04 b |
Organisms | Pre-Cavitation Biofilm Counts (Log10 cfu/cm2) | Post-Cavitation Biofilm Counts (Log10 cfu/cm2) |
---|---|---|
G. stearothermophilus | 5.35 ± 0.01 a | 4.39 ± 0.03 b |
B. licheniformis | 6.42 ± 0.07 a | 5.44 ± 0.01 b |
B. sporothermodurans | 6.50 ± 0.04 a | 5.81 ± 0.01 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Almalki, T.; Anand, S. Ultrasound-Assisted Cavitation Effect on the Biofilm-Forming Ability of Common Dairy Sporeformers. Dairy 2023, 4, 100-107. https://doi.org/10.3390/dairy4010007
Almalki T, Anand S. Ultrasound-Assisted Cavitation Effect on the Biofilm-Forming Ability of Common Dairy Sporeformers. Dairy. 2023; 4(1):100-107. https://doi.org/10.3390/dairy4010007
Chicago/Turabian StyleAlmalki, Taghreed, and Sanjeev Anand. 2023. "Ultrasound-Assisted Cavitation Effect on the Biofilm-Forming Ability of Common Dairy Sporeformers" Dairy 4, no. 1: 100-107. https://doi.org/10.3390/dairy4010007
APA StyleAlmalki, T., & Anand, S. (2023). Ultrasound-Assisted Cavitation Effect on the Biofilm-Forming Ability of Common Dairy Sporeformers. Dairy, 4(1), 100-107. https://doi.org/10.3390/dairy4010007