Postprandial Glycaemia, Insulinemia, and Lipidemia after 12 Weeks’ Cheese Consumption: An Exploratory Randomized Controlled Human Sub-Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Test Meals
2.4. Blood Samples
2.5. Appetite and Palatability Registration
2.6. Statistical Analysis
3. Results
3.1. Insulin and Glucose
3.2. TG and FFA
3.3. Palatability of the Test Meals
3.4. Subjective Sensations of Appetite
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shaw, J.E.; Sicree, R.A.; Zimmet, P.Z. Global Estimates of the Prevalence of Diabetes for 2010 and 2030. Diabetes Res. Clin. Pract. 2010, 87, 4–14. [Google Scholar] [CrossRef] [PubMed]
- Churuangsuk, C.; Hall, J.; Reynolds, A.; Griffin, S.J.; Combet, E.; Lean, M.E.J. Diets for Weight Management in Adults with Type 2 Diabetes: An Umbrella Review of Published Meta-Analyses and Systematic Review of Trials of Diets for Diabetes Remission. Diabetologia 2022, 65, 14–36. [Google Scholar] [CrossRef]
- Feinman, R.D.; Pogozelski, W.K.; Astrup, A.; Bernstein, R.K.; Fine, E.J.; Westman, E.C.; Accurso, A.; Frassetto, L.; Gower, B.A.; McFarlane, S.I.; et al. Dietary Carbohydrate Restriction as the First Approach in Diabetes Management: Critical Review and Evidence Base. Nutrition 2015, 31, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gijsbers, L.; Ding, E.L.; Malik, V.S.; de Goede, J.; Geleijnse, J.M.; Soedamah-muthu, S.S. Consumption of Dairy Foods and Diabetes Incidence: A Dose-Response Meta-Analysis of Observational Studies. Am. J. Clin. Nutr. 2016, 103, 1111–1124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rice, B.H. Dairy and Cardiovascular Disease: A Review of Recent Observational Research. Curr. Nutr. Rep. 2014, 3, 130–138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorning, T.K.; Bertram, H.C.; Bonjour, J.P.; De Groot, L.; Dupont, D.; Feeney, E.; Ipsen, R.; Lecerf, J.M.; Mackie, A.; McKinley, M.C.; et al. Whole Dairy Matrix or Single Nutrients in Assessment of Health Effects: Current Evidence and Knowledge Gaps. Am. J. Clin. Nutr. 2017, 105, 1033–1045. [Google Scholar] [CrossRef] [Green Version]
- Hjerpsted, J.; Leedo, E.; Tholstrup, T. Cheese Intake in Large Amounts Lowers LDL-Cholesterol Concentrations Compared with Butter Intake of Equal Fat Content. Am. J. Clin. Nutr. 2011, 94, 1479–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soerensen, K.V.; Thorning, T.K.; Astrup, A.; Kristensen, M.; Lorenzen, J.K. Effect of Dairy Calcium from Cheese and Milk on Fecal Fat Excretion, Blood Lipids, and Appetite in Young Men. Am. J. Clin. Nutr. 2014, 99, 984–991. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nestel, P.J.; Chronopulos, A.; Cehun, M. Dairy Fat in Cheese Raises LDL Cholesterol Less than That in Butter in Mildly Hypercholesterolaemic Subjects. Eur. J. Clin. Nutr. 2005, 59, 1059–1063. [Google Scholar] [CrossRef] [Green Version]
- Ibsen, D.B.; Laursen, A.S.D.; Lauritzen, L.; Tjonneland, A.; Overvad, K.; Jakobsen, M.U. Substitutions between Dairy Product Subgroups and Risk of Type 2 Diabetes: The Danish Diet, Cancer and Health Cohort. Br. J. Nutr. 2017, 118, 989–997. [Google Scholar] [CrossRef] [Green Version]
- Raziani, F.; Tholstrup, T.; Kristensen, M.D.; Svanegaard, M.L.; Ritz, C.; Astrup, A.; Raben, A. High Intake of Regular-Fat Cheese Compared with Reduced-Fat Cheese Does Not Affect LDL Cholesterol or Risk Markers of the Metabolic Syndrome: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2016, 104, 134932. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thorning, T.K.; Raben, A.; Tholstrup, T.; Soedamah-Muthu, S.S.; Givens, I.; Astrup, A. Milk and Dairy Products: Good or Bad for Human Health? An Assessment of the Totality of Scientific Evidence. Food Nutr. Res. 2016, 60, 32527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drouin-Chartier, J.P.; Tremblay, A.J.; Maltais-Giguère, J.; Charest, A.; Guinot, L.; Rioux, L.E.; Labrie, S.; Britten, M.; Lamarche, B.; Turgeon, S.L.; et al. Differential Impact of the Cheese Matrix on the Postprandial Lipid Response: A Randomized, Crossover, Controlled Trial. Am. J. Clin. Nutr. 2017, 106, 1358–1365. [Google Scholar] [CrossRef] [Green Version]
- Kjølbæk, L.; Schmidt, J.M.; Rouy, E.; Jensen, K.J.; Astrup, A.; Bertram, H.C.; Hammershøj, M.; Raben, A. Matrix Structure of Dairy Products Results in Different Postprandial Lipid Responses: A Randomized Crossover Trial. Am. J. Clin. Nutr. 2021, 114, 1729–1742. [Google Scholar] [CrossRef]
- Hansson, P.; Holven, K.B.; Øyri, L.K.L.; Brekke, H.K.; Biong, A.S.; Gjevestad, G.O.; Raza, G.S.; Herzig, K.H.; Thoresen, M.; Ulven, S.M. Meals with Similar Fat Content from Different Dairy Products Induce Different Postprandial Triglyceride Responses in Healthy Adults: A Randomized Controlled Cross-over Trial. J. Nutr. 2019, 149, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Flint, A.; Raben, A.; Blundell, J.E.; Astrup, A. Reproducibility, Power and Validity of Visual Analogue Scales in Assessment of Appetite Sensations in Single Test Meal Studies. Int. J. Obes. 2000, 24, 38–48. [Google Scholar] [CrossRef] [Green Version]
- Klingenberg, L.; Nyby, S.; Kristensen, M.B.; Raben, A. Visual Analogue Scales to Assess Appetite Sensation—Good Agreement between 100 Mm Pen and Paper vs Tablet-Based Scores. Eur. J. Obes. 2015, 8, 101–102. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [Green Version]
- Thorning, T.K.; Raziani, F.; Bendsen, N.T.; Astrup, A.; Tholstrup, T.; Raben, A. Diets with High-Fat Cheese, High-Fat Meat, or Carbohydrate on Cardiovascular Risk Markers in Overweight Postmenopausal Women: A Randomized Crossover Trial. Am. J. Clin. Nutr. 2015, 102, 573–581. [Google Scholar] [CrossRef] [Green Version]
- Foster-Powell, K.; Holt, S.H.A. Brand-Miller International Table of Glycemic Index and Glycemic Load Values: 2002. Am. J. Clin. Nutr. 2002, 76, 5–56. [Google Scholar] [CrossRef] [Green Version]
- McDonald, J.D.; Mah, E.; Dey, P.; Olmstead, B.D.; Sasaki, G.Y.; Villamena, F.A.; Bruno, R.S. Dairy Milk, Regardless of Fat Content, Protects against Postprandial Hyperglycemia-Mediated Impairments in Vascular Endothelial Function in Adults with Prediabetes by Limiting Oxidative Stress Responses That Reduce Nitric Oxide Bioavailability. J. Nutr. Biochem. 2019, 63, 129–139. [Google Scholar] [CrossRef] [PubMed]
- Parker, D.R.; Weiss, S.T.; Troisi, R.; Cassano, P.A.; Vokonas, P.S.; Landsberg, L. Relationship of Dietary Saturated Fatty Acids and Body Habitus to Serum Insulin Concentrations: The Normative Aging Study. Am. J. Clin. Nutr. 1993, 58, 129–136. [Google Scholar] [CrossRef] [PubMed]
- Marshall, J.A.; Hamman, R.F.; Baxter, J. High-Fat, Low-Carbohydrate Diet and the Etiology of Non-Insulin-Dependent Diabetes Mellitus: The San Luis Valley Diabetes Study. Am. J. Epidemiol. 1991, 134, 590–603. [Google Scholar] [CrossRef] [PubMed]
- Maron, D.J.; Fair, J.M.; Haskell, W.L. Saturated Fat Intake and Insulin Resistance in Men with Coronary Artery Disease. The Stanford Coronary Risk Intervention Project Investigators and Staff. Circulation 1991, 84, 2020–2027. [Google Scholar] [CrossRef] [Green Version]
- Alhazmi, A.; Stojanovski, E.; McEvoy, M.; Garg, M.L. Macronutrient Intakes and Development of Type 2 Diabetes: A Systematic Review and Meta-Analysis of Cohort Studies. J. Am. Coll. Nutr. 2012, 31, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Ericson, U.; Hellstrand, S.; Brunkwall, L.; Schulz, C.-A.; Sonestedt, E.; Wallström, P.; Gullberg, B.; Wirfält, E.; Orho-Melander, M. Food Sources of Fat May Clarify the Inconsistent Role of Dietary Fat Intake for Incidence of Type 2 Diabetes. Am. J. Clin. Nutr. 2015, 101, 1065–1080. [Google Scholar] [CrossRef] [Green Version]
- Itoh, K.; Moriguchi, R.; Yamada, Y.; Fujita, M.; Yamato, T.; Oumi, M.; Holst, J.J.; Seino, Y. High Saturated Fatty Acid Intake Induces Insulin Secretion by Elevating Gastric Inhibitory Polypeptide Levels in Healthy Individuals. Nutr. Res. 2014, 34, 653–660. [Google Scholar] [CrossRef]
- Chartrand, D.; da Silva, M.S.; Julien, P.; Rudkowska, I. Influence of Amino Acids in Dairy Products on Glucose Homeostasis: The Clinical Evidence. Can. J. Diabetes 2017, 41, 329–337. [Google Scholar] [CrossRef]
- Pasin, G.; Comerford, K.B. Dairy Foods and Dairy Proteins in the Management of Type 2 Diabetes: A Systematic Review of the Clinical Evidence. Adv. Nutr. 2015, 6, 245–259. [Google Scholar] [CrossRef] [Green Version]
- Nuttall, F.Q.; Gannon, M.C.; Jordan, K. The Metabolic Response to Ingestion of Proline with and without Glucose. Metabolism 2004, 53, 241–246. [Google Scholar] [CrossRef]
- Gannon, M.C.; Nuttall, F.Q.; Lane, J.T.; Burmeister, L.A. Metabolic Response to Cottage Cheese or Egg White Protein, with or without Glucose, in Type II Diabetic Subjects. Metabolism 1992, 41, 1137–1145. [Google Scholar] [CrossRef]
- Roberts, C.K.; Hevener, A.L.; Barnard, R.J. Metabolic Syndrome and Insulin Resistance: Underlying Causes and Modification by Exercise Training. Compr. Physiol. 2013, 3, 1–58. [Google Scholar] [CrossRef] [Green Version]
- Bansal, S.; Buring, J.E.; Rifai, N.; Mora, S.; Sacks, F.M.; Ridker, P.M. Fasting Compared with Nonfasting Triglycerides and Risk of Cardiovascular Events in Women. JAMA 2007, 298, 309–316. [Google Scholar] [CrossRef] [Green Version]
- Patsch, J.R.; Miesenböck, G.; Hopferwieser, T.; Mühlberger, V.; Knapp, E.; Dunn, J.K.; Gotto, A.M.; Patsch, W. Relation of Triglyceride Metabolism and Coronary Artery Disease. Studies in the Postprandial State. Arter. Thromb. A J. Vasc. Biol./Am. Heart Assoc. 1992, 12, 1336–1345. [Google Scholar] [CrossRef] [Green Version]
- Aslam, M.; Aggarwal, S.; Sharma, K.K.; Galav, V.; Madhu, S.V. Postprandial Hypertriglyceridemia Predicts Development of Insulin Resistance Glucose Intolerance and Type 2 Diabetes. PLoS ONE 2016, 11, e0145730. [Google Scholar] [CrossRef] [Green Version]
- Hansen, T.T.; Sjödin, A.; Ritz, C.; Bonnet, S.; Korndal, S.K. Macronutrient Manipulations of Cheese Resulted in Lower Energy Content without Compromising Its Satiating Capacity. J. Nutr. Sci. 2018, 7, e7. [Google Scholar] [CrossRef] [Green Version]
REG | RED | CHO | |
---|---|---|---|
Energy (kJ) | 2001 | 1787 | 2000 |
Meal weight (g) | 430 | 430 | 465 |
Energy density (kJ/g) | 4.7 | 4.2 | 4.3 |
Fat | |||
(E%) | 46.4 | 33.7 | 6.5 |
(g) | 25.1 | 16.3 | 3.5 |
Saturated fat (g) | 14.6 | 4.6 | 0.4 |
Carbohydrate | |||
(E%) | 33.0 | 37.0 | 83.4 |
(g) | 38.1 | 38.0 | 96.0 |
Dietary fibre (g) | 1.8 | 1.8 | 1.8 |
Protein | |||
(E%) | 20.6 | 29.3 | 10.1 |
(g) | 24.2 | 30.8 | 11.9 |
REG (n = 9) | RED (n = 15) | CHO (n = 13) | p2 | |
---|---|---|---|---|
Sex: women/men [n (%)] | 5 (56)/4 (44) | 9 (60)/6 (40) | 7 (54)/6 (46) | 1.0 |
Age (years) | 51 ± 16 | 52 ± 12 | 57 ± 11 | 0.55 |
Body mass index (kg/m2) | 29.2 ± 4.0 | 27.8 ± 4.2 | 28.3 ± 4.2 | 0.73 |
Smoking [n (%)] | 0 (0) | 2 (13) | 0 (0) | 0.33 |
Waist circumference (cm) | 98.3 ± 11.1 | 97.8 ± 12.9 | 99.4 ± 13.3 | 0.95 |
Systolic blood pressure (mmHg) | 127.7 ± 14.1 | 123.9 ± 17.6 | 124.3 ± 15.7 | 0.84 |
Diastolic blood pressure (mmHg) | 81.4 ± 7.9 | 80.0 ± 9.1 | 78.9 ± 9.0 | 0.80 |
Fasting triglycerides (mmol/L) | 1.47 ± 0.86 | 1.20 ± 0.49 | 0.99 ± 0.31 | 0.49 |
Fasting total cholesterol (mmol/L) | 5.36 ± 1.59 | 4.99 ± 0.83 | 4.87 ± 0.69 | 0.45 |
Fasting HDL cholesterol (mmol/L) | 1.53 ± 0.42 | 1.45 ± 0.28 | 1.51 ± 0.32 | 0.96 |
Fasting glucose (mmol/L) | 6.02 ± 0.61 | 5.85 ± 0.90 | 5.61 ± 0.66 | 0.45 |
Number of risk factors for MetS 3 0/1/2/3/4 [n] | 1/2/4/2/0 | 5/5/2/2/1 | 6/2/4/1/0 | 0.50 |
Fasting insulin (pmol/L) | 76.3 ± 37.3 | 61.8 ± 37.7 | 67.0 ± 45.9 | 0.50 |
Fasting free fatty acids (µmol/L) | 499 ± 198 | 569 ± 120 | 485 ± 145 | 0.30 |
REG (n = 9) | RED (n = 15) | CHO (n = 13) | |
---|---|---|---|
Taste (mm) | 28.3 ± 5.5 | 37.9 ± 5.7 | 55.5 ± 6.5 * |
Look (mm) | 63.6 ± 9.3 | 55.3 ± 5.8 | 67.7 ± 6.8 |
Odor (mm) | 42.9 ± 9.4 | 50.5 ± 4.9 | 54.1 ± 9.0 |
Off taste (mm) | 75.1 ± 10.8 | 55.8 ± 11.2 | 77.0 ± 7.5 |
General appearance (mm) | 49.0 ± 8.1 | 52.8 ± 5.8 | 60.0 ± 7.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kjølbæk, L.; Raziani, F.; Tholstrup, T.; Rudnicki, R.C.J.; Ritz, C.; Astrup, A.; Raben, A. Postprandial Glycaemia, Insulinemia, and Lipidemia after 12 Weeks’ Cheese Consumption: An Exploratory Randomized Controlled Human Sub-Study. Dairy 2023, 4, 68-82. https://doi.org/10.3390/dairy4010004
Kjølbæk L, Raziani F, Tholstrup T, Rudnicki RCJ, Ritz C, Astrup A, Raben A. Postprandial Glycaemia, Insulinemia, and Lipidemia after 12 Weeks’ Cheese Consumption: An Exploratory Randomized Controlled Human Sub-Study. Dairy. 2023; 4(1):68-82. https://doi.org/10.3390/dairy4010004
Chicago/Turabian StyleKjølbæk, Louise, Farinaz Raziani, Tine Tholstrup, Rosa Caroline Jullie Rudnicki, Christian Ritz, Arne Astrup, and Anne Raben. 2023. "Postprandial Glycaemia, Insulinemia, and Lipidemia after 12 Weeks’ Cheese Consumption: An Exploratory Randomized Controlled Human Sub-Study" Dairy 4, no. 1: 68-82. https://doi.org/10.3390/dairy4010004
APA StyleKjølbæk, L., Raziani, F., Tholstrup, T., Rudnicki, R. C. J., Ritz, C., Astrup, A., & Raben, A. (2023). Postprandial Glycaemia, Insulinemia, and Lipidemia after 12 Weeks’ Cheese Consumption: An Exploratory Randomized Controlled Human Sub-Study. Dairy, 4(1), 68-82. https://doi.org/10.3390/dairy4010004