Valorization of Concentrated Dairy White Wastewater by Reverse Osmosis in Model Cheese Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Wastewater Sampling and Preparation of Concentrates
2.2. Cheese-Milk Standardization
2.3. Kinetics of Rennet Gel Formation and Model-Cheese Production
2.4. Determination of Proximate Composition
2.5. Cheese Yield and Recovery
2.6. Economic Evaluation
2.7. Statistical Analysis
3. Results and Discussion
3.1. White-Wastewater Composition
3.1.1. Overall Composition of WW Concentrates
3.1.2. Salts Equilibrium
3.2. Cheese-Making Properties
3.2.1. Rennet-Coagulation Kinetics
3.2.2. Cheese Composition, Yield and Recovery
3.3. Economic Impacts of Recovering Milk Constituents from WW
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CIP | Cleaning in place |
CWW | Pasteurized white-wastewater concentrates |
FTIR | Fourier-transform infrared spectroscopy |
G’ | Storage modulus |
IWW | Initial white wastewater |
MWW | Model white wastewater |
NCN | Non-casein nitrogen |
NF | Nanofiltration |
NPN | Non-protein nitrogen |
RCT | Rennet coagulation time |
RO | Reverse osmosis |
SM | Skimmed milk |
TMP | Transmembrane pressure |
TN | Total nitrogen |
TS | Total solids |
UHT | Ultra-high temperature |
UF | Ultrafiltration |
WW | White wastewater |
References
- Grout, L.; Baker, M.G.; French, N.; Hales, S. A review of potential public health impacts associated with the global dairy sector. GeoHealth 2020, 4, e2019GH000213. [Google Scholar] [CrossRef] [PubMed]
- Boguniewicz-Zablocka, J.; Klosok-Bazan, I.; Naddeo, V. Water quality and resource management in the dairy industry. Environ. Sci. Pollut. Res. 2019, 26, 1208–1216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rad, S.J.; Lewis, M.J. Water utilisation, energy utilisation and waste water management in the dairy industry: A review. Int. J. Dairy Technol. 2014, 67, 1–20. [Google Scholar] [CrossRef]
- Slavov, A.K. Dairy wastewaters–general characteristics and treatment possibilities–a review. Food Technol. Biotechnol. 2017, 55, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Alalam, S.; Ben-Souilah, F.; Lessard, M.-H.; Chamberland, J.; Perreault, V.; Pouliot, Y.; Labrie, S.; Doyen, A. Characterization of Chemical and Bacterial Compositions of Dairy Wastewaters. Dairy 2021, 2, 179–190. [Google Scholar] [CrossRef]
- Balannec, B.; Gésan-Guiziou, G.; Chaufer, B.; Rabiller-Baudry, M.; Daufin, G. Treatment of dairy process waters by membrane operations for water reuse and milk constituents concentration. Desalination 2002, 147, 89–94. [Google Scholar] [CrossRef]
- Vourch, M.; Balannec, B.; Chaufer, B.; Dorange, G. Treatment of dairy industry wastewater by reverse osmosis for water reuse. Desalination 2008, 219, 190–202. [Google Scholar] [CrossRef]
- Suárez, A.; Riera, F.A. Production of high-quality water by reverse osmosis of milk dairy condensates. J. Ind. Eng. Chem. 2015, 21, 1340–1349. [Google Scholar] [CrossRef]
- Chamberland, J.; Bouyer, A.; Benoit, S.; Provault, C.; Bérubé, A.; Doyen, A.; Pouliot, Y. Efficiency assessment of water reclamation processes in milk protein concentrate manufacturing plants: A predictive analysis. J. Food Eng. 2020, 272, 109811. [Google Scholar] [CrossRef]
- Deshwal, G.K.; Kadyan, S.; Sharma, H.; Singh, A.K.; Panjagari, N.R.; Meena, G.S. Applications of reverse osmosis in dairy processing: An Indian perspective. J. Food Sci. Technol. 2021, 58, 3676–3688. [Google Scholar] [CrossRef]
- Chamberland, J.; Benoit, S.; Doyen, A.; Pouliot, Y. Integrating reverse osmosis to reduce water and energy consumption in dairy processing: A predictive analysis for Cheddar cheese manufacturing plants. J. Water Process Eng. 2020, 38, 101606. [Google Scholar] [CrossRef]
- Suárez, A.; Fernández, P.; Iglesias, J.R.; Iglesias, E.; Riera, F.A. Cost assessment of membrane processes: A practical example in the dairy wastewater reclamation by reverse osmosis. J. Membr. Sci. 2015, 493, 389–402. [Google Scholar] [CrossRef]
- Hernández, K.; Muro, C.; Ortega, R.E.; Velazquez, S.; Riera, F. Water recovery by treatment of food industry wastewater using membrane processes. Environ. Technol. 2021, 42, 775–788. [Google Scholar] [CrossRef] [PubMed]
- Kirichuk, I.; Zmievskiy, Y.; Mironchuk, V. Treatment of dairy effluent model solutions by nanofiltration and reverse osmosis. Ukranian Food J. 2014, 3, 281–288. [Google Scholar]
- Brião, V.B.; Salla, A.C.V.; Miorando, T.; Hemkemeier, M.; Favaretto, D.P.C. Water recovery from dairy rinse water by reverse osmosis: Giving value to water and milk solids. Resour. Conserv. Recycl. 2019, 140, 313–323. [Google Scholar] [CrossRef]
- Alalam, S.; Marciniak, A.; Lessard, M.-H.; Bérubé, A.; Chamberland, J.; Pouliot, Y.; Labrie, S.; Doyen, A. Evolution of Bacterial Communities during the Concentration and Recirculation of Dairy White Wastewater by Reverse Osmosis. Int. Dairy J. 2021, 127, 105283. [Google Scholar] [CrossRef]
- El-Gazzar, F.E.; Marth, E.H. Ultrafiltration and reverse osmosis in dairy technology: A review. J. Food Prot. 1991, 54, 801–809. [Google Scholar] [CrossRef]
- Lauzin, A.; Pouliot, Y.; Britten, M. Understanding the differences in cheese-making properties between reverse osmosis and ultrafiltration concentrates. J. Dairy Sci. 2020, 103, 201–209. [Google Scholar] [CrossRef]
- Le Graet, Y.; Brulé, G. Effets de la concentration par évaporation et du séchage sur les équilibres minéraux dans le lait et les rétentats. Le Lait 1982, 62, 113–125. [Google Scholar] [CrossRef] [Green Version]
- Dussault-Chouinard, I.; Britten, M.; Pouliot, Y. Improving rennet coagulation and cheesemaking properties of reverse osmosis skim milk concentrates by pH adjustment. Int. Dairy J. 2019, 95, 6–14. [Google Scholar] [CrossRef]
- Fournier, I.; Britten, M.; Pouliot, Y. Drainage and demineralisation of model cheeses made from reverse osmosis concentrates. Int. Dairy J. 2020, 103, 104628. [Google Scholar] [CrossRef]
- Udabage, P.; McKinnon, I.R.; Augustin, M.-A. Mineral and casein equilibria in milk: Effects of added salts and calcium-chelating agents. J. Dairy Res. 2000, 67, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Augustin, M.A.; Udabage, P. Influence of processing on functionality of milk and dairy proteins. Adv. Food Nutr. Res. 2007, 53, 1–38. [Google Scholar] [PubMed]
- Fagan, C.C.; Castillo, M.; Payne, F.; O’Donnell, C.; O’Callaghan, D. Effect of cutting time, temperature, and calcium on curd moisture, whey fat losses, and curd yield by response surface methodology. J. Dairy Sci. 2007, 90, 4499–4512. [Google Scholar] [CrossRef] [PubMed]
- Gustavsson, F.; Glantz, M.; Buitenhuis, A.; Lindmark-Månsson, H.; Stålhammar, H.; Andrén, A.; Paulsson, M. Factors influencing chymosin-induced gelation of milk from individual dairy cows: Major effects of casein micelle size and calcium. Int. Dairy J. 2014, 39, 201–208. [Google Scholar] [CrossRef]
- Perreault, V.; Turcotte, O.; Morin, P.; Pouliot, Y.; Britten, M. Combined effect of denatured whey protein concentrate level and fat level in milk on rennet gel properties. Int. Dairy J. 2016, 55, 1–9. [Google Scholar] [CrossRef]
- Sandra, S.; Cooper, C.; Alexander, M.; Corredig, M. Coagulation properties of ultrafiltered milk retentates measured using rheology and diffusing wave spectroscopy. Food Res. Int. 2011, 44, 951–956. [Google Scholar] [CrossRef]
- Lauzin, A.; Dussault-Chouinard, I.; Britten, M.; Pouliot, Y. Impact of membrane selectivity on the compositional characteristics and model cheese-making properties of liquid pre-cheese concentrates. Int. Dairy J. 2018, 83, 34–42. [Google Scholar] [CrossRef]
- Gaucheron, F. Milk salts: Distribution and analysis. In Encyclopedia of Dairy Sciences; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- ISO 22662 IDF 198; Milk and Milk Products—Determination of Lactose Content by High Performance Liquid Chromatography. International Organization for Standardization: Geneva, Switzerland, 2007.
- Méthot-Hains, S.; Benoit, S.; Bouchard, C.; Doyen, A.; Bazinet, L.; Pouliot, Y. Effect of transmembrane pressure control on energy efficiency during skim milk concentration by ultrafiltration at 10 and 50 °C. J. Dairy Sci. 2016, 99, 8655–8664. [Google Scholar] [CrossRef] [Green Version]
- Chamberland, J.; Benoit, S.; Harel-Oger, M.; Pouliot, Y.; Jeantet, R.; Garric, G. Comparing economic and environmental performance of three industrial cheesemaking processes through a predictive analysis. J. Clean. Prod. 2019, 239, 118046. [Google Scholar] [CrossRef] [Green Version]
- Gouvernement du Québec. Rapport sur le coût et les Sources de Revenu des Services d’eau. Juillet 2015. Québec, Canada. Available online: https://www.mamh.gouv.qc.ca/fileadmin/publications/grands_dossiers/strategie_eau/rapport_cout_et%20_sources_revenus_services_eau.pdf (accessed on 24 March 2022).
- Sinaga, H.; Bansal, N.; Bhandari, B. Effects of milk pH alteration on casein micelle size and gelation properties of milk. Int. J. Food Prop. 2017, 20, 179–197. [Google Scholar] [CrossRef]
- Gaucheron, F. The minerals of milk. Reprod. Nutr. Dev. 2005, 45, 473–483. [Google Scholar] [CrossRef] [PubMed]
- Lauzin, A.; Bérubé, A.; Britten, M.; Pouliot, Y. Effect of pH adjustment on the composition and rennet-gelation properties of milk concentrates made from ultrafiltration and reverse osmosis. J. Dairy Sci. 2019, 102, 3939–3946. [Google Scholar] [CrossRef] [PubMed]
- Holt, C. An equilibrium thermodynamic model of the sequestration of calcium phosphate by casein micelles and its application to the calculation of the partition of salts in milk. Eur. Biophys. J. 2004, 33, 421–434. [Google Scholar] [CrossRef]
- Liu, D.Z.; Dunstan, D.E.; Martin, G.J. Evaporative concentration of skimmed milk: Effect on casein micelle hydration, composition, and size. Food Chem. 2012, 134, 1446–1452. [Google Scholar] [CrossRef]
- Joshi, N.; Muthukumarappan, K.; Dave, R. Effect of calcium on microstructure and meltability of part skim Mozzarella cheese. J. Dairy Sci. 2004, 87, 1975–1985. [Google Scholar] [CrossRef]
- Fox, P.F.; Guinee, T.P.; Cogan, T.M.; McSweeney, P.L. Fundamentals of Cheese Science; Springer: Boston, MA, USA, 2017. [Google Scholar]
- Pouliot, Y.; Boulet, M.; Paquin, P. Observations on the heat-induced salt balance changes in milk II. Reversibility on cooling. J. Dairy Res. 1989, 56, 193–199. [Google Scholar] [CrossRef]
- Malacarne, M.; Franceschi, P.; Formaggioni, P.; Sandri, S.; Mariani, P.; Summer, A. Influence of micellar calcium and phosphorus on rennet coagulation properties of cows milk. J. Dairy Res. 2014, 81, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Panthi, R.R.; Kelly, A.L.; O’Callaghan, D.J.; Sheehan, J.J. Measurement of syneretic properties of rennet-induced curds and impact of factors such as concentration of milk: A review. Trends Food Sci. Technol. 2019, 91, 530–540. [Google Scholar] [CrossRef]
- Bienvenue, A.; Jiménez-Flores, R.; Singh, H. Rheological properties of concentrated skim milk: Influence of heat treatment and genetic variants on the changes in viscosity during storage. J. Agric. Food Chem. 2003, 51, 6488–6494. [Google Scholar] [CrossRef]
- Britten, M.; Giroux, H.J. Rennet coagulation of heated milk: A review. Int. Dairy J. 2022, 124, 105179. [Google Scholar] [CrossRef]
- Giroux, H.J.; Bouchard, C.; Britten, M. Combined effect of renneting pH, cooking temperature, and dry salting on the contraction kinetics of rennet-induced milk gels. Int. Dairy J. 2014, 35, 70–74. [Google Scholar] [CrossRef]
- Fox, P.F.; McSweeney, P.L.; Cogan, T.M.; Guinee, T.P. Cheese: Chemistry, Physics and Microbiology, Volume 1: General Aspects; Elsevier: London, UK, 2004. [Google Scholar]
- Chandrapala, J.; McKinnon, I.; Augustin, M.A.; Udabage, P. The influence of milk composition on pH and calcium activity measured in situ during heat treatment of reconstituted skim milk. J. Dairy Res. 2010, 77, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Horne, D.S.; Lucey, J.A. Rennet-induced coagulation of milk. Cheese 2017, 115–143. [Google Scholar] [CrossRef]
- McSweeney, P.L.; O’Mahony, J.A. Advanced Dairy Chemistry: Volume 1B: Proteins: Applied Aspects; Springer: New York, NY, USA, 2016. [Google Scholar]
- Lucey, J.; Fox, P. Importance of calcium and phosphate in cheese manufacture: A review. J. Dairy Sci. 1993, 76, 1714–1724. [Google Scholar] [CrossRef]
- Panthi, R.R.; Kelly, A.L.; Sheehan, J.J.; Bulbul, K.; Vollmer, A.H.; McMahon, D.J. Influence of protein concentration and coagulation temperature on rennet-induced gelation characteristics and curd microstructure. J. Dairy Sci. 2019, 102, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Canadian Water Network. Wastewater Treatment Practice and Regulations in Canada and Other Jurisdictions. 2018. Available online: https://cwn-rce.ca/wp-content/uploads/projects/other-files/Canadas-Challenges-and-Opportunities-to-Address-Contaminants-in-Wastewater/CWN-Report-on-Contaminants-in-WW-Supporting-Doc-2.pdf (accessed on 25 September 2020).
- Government of Canada. Canada Wastewater Systems Effluent Regulations. 2020. Available online: https://laws-lois.justice.gc.ca/PDF/SOR-2012-139.pdf (accessed on 25 September 2020).
- Suárez, A.; Fidalgo, T.; Riera, F.A. Recovery of dairy industry wastewaters by reverse osmosis. Prod. Boil. Water. Sep. Purif. Technol. 2014, 133, 204–211. [Google Scholar] [CrossRef]
Units | References | |
---|---|---|
Electricity | 0.03306 CA$/kWh | Hydro-Quebec in 2021 for business customers with a contract power of more than 5000 kW (rate L) |
Electrical power | 0.433 CA$/kW day | |
Water used for membrane cleaning and rinsing | 0.10 m3/m2 of membrane | [9] |
Cleaning solutions | 0.97 CA$/m3 (per employee) | |
Human resources (3 employees per shift of 8 h) | 15.54 CA$/h | [32] |
Fresh water | 0.75 CA$/m3 | |
Production of drinking water | 0.69 CA$/m3 | [33] |
Effluent collection | 0.58 CA$/m3 | |
Effluent treatment | 0.39 CA$/m3 | |
Membrane capital cost | 398.54 CA$ | [11] |
Euro conversion | 1.47 CA$/Euro | |
Value of pasteurized white-wastewater concentrates (Milk Class 3(a)1) | ||
Fat | 10.8069 CA$/kg | Quebec and Ontario Class Prices (1 February 2022) |
Proteins | 15.0190 CA$/kg | |
Other solids | 0.9009 CA$/kg |
Parameters | SM | IWW | MWW | CWW |
---|---|---|---|---|
Initial pH | 6.65 ± 0.06 b | 7.13 ± 0.14 a | 6.90 ± 0.16 a | 6.95 ± 0.06 a |
Total solids (%, w/v) | 8.02 ± 0.14 a | 0.05 ± 0.01 c | 0.67 ± 0.03 b | 8.43 ± 0.04 a |
Ash (%, w/v) | 0.74 ± 0.03 b | 0.01 ± 0.00 c | 0.07 ± 0.00 c | 0.86 ± 0.06 a |
Total true protein (%, w/v) | 3.18 ± 0.12 a | 0.01 ± 0.00 c | 0.25 ± 0.02 b | 3.12 ± 0.03 a |
Soluble protein (%, w/v) | 0.72 ± 0.04 a | * ND | ND | 0.58 ± 0.04 b |
Total casein (%, w/v) | 2.71 ± 0.09 a | ** N/D | 0.19 ± 0.03 b | 2.63 ± 0.01 a |
Soluble casein (%, w/v) | 0.25 ± 0.06 a | ND | ND | 0.10 ± 0.04 b |
NPN (%, w/v) | 0.02 ± 0.01 a | N/D | N/D | 0.02 ± 0.00 a |
Lactose (%, w/v) | 4.96 ± 0.13 a | 0.01 ± 0.01 c | 0.38 ± 0.03 b | 4.98 ± 0.20 a |
Fat (%, w/v) | 0.09 ± 0.01 ab | N/D | N/D | 0.23 ± 0.08 a |
Total calcium (%, w/v) | 0.12 ± 0.00 b | N/D | 0.01 ± 0.00 c | 0.15 ± 0.01 a |
Total phosphorus (%, w/v) | 0.10 ± 0.00 a | N/D | 0.01 ± 0.01 b | 0.11 ± 0.02 a |
Colloidal Ca (mg/g colloidal casein) | 29.71 ± 1.57 b | ND | ND | 41.59 ± 2.37 a |
Colloidal P (mg/g colloidal casein) | 14.73 ± 5.57 b | ND | ND | 27.26 ± 5.36 a |
SM | CWW | ||
---|---|---|---|
Total salts (mM) | Ca | 29.84 ± 0.15 b | 37.12 ± 1.76 a |
K | 27.50 ± 1.78 a | 28.96 ± 2.59 a | |
Mg | 4.59 ± 0.07 b | 6.14 ± 0.59 a | |
Na | 25.38 ± 0.83 a | 27.51 ± 5.52 a | |
P | 32.39 ± 0.49 a | 36.14 ± 5.38 a | |
Soluble salts (mM) | Ca | 11.68 ± 0.36 a | 10.90 ± 0.16 b |
K | 29.88 ± 2.8 a | 27.78 ± 0.68 a | |
Mg | 3.39 ± 0.21 a | 3.63 ± 0.32 a | |
Na | 22.00 ± 1.64 a | 23.59 ± 3.84 a | |
P | 20.55 ± 4.92 a | 13.86 ± 5.83 a | |
Colloidal salts * (mM) | Ca | 18.21 ± 0.36 b | 26.23 ± 1.91 a |
K | 0.00 ± 1.40 b | 1.18 ± 2.03 a | |
Mg | 1.20 ± 0.18 b | 2.50 ± 0.51 a | |
Na | 3.38 ± 2.15 a | 3.92 ± 4.03 a | |
P | 11.84 ± 4.87 b | 22.28 ± 4.74 a |
Item | 0% CWW | 50% CWW | 100% CWW |
---|---|---|---|
Cheese composition | |||
Initial milk pH | 6.52 ± 0.02 b | 6.57 ± 0.04 ab | 6.67 ± 0.07 a |
Moisture (%, w/w) | 54.80 ± 1.77 b | 59.57 ± 0.78 a | 62.18 ± 1.17 a |
True protein (%, dry matter) | 35.53 ± 0.91 a | 33.46 ± 1.63 a | 33.33 ± 0.29 a |
Fat (%, dry matter) | 56.25 ± 0.03 a | 56.72 ± 2.31 a | 56.18 ± 1.56 a |
Protein/fat ratio | 0.63 ± 0.02 a | 0.59 ± 0.05 a | 0.59 ± 0.02 a |
Other solids (%, dry matter) | 8.43 ± 1.09 a | 9.72 ± 0.78 a | 10.81 ± 1.48 a |
Ash (%, dry matter) | 3.37 ± 0.34 b | 3.54 ± 0.18 b | 4.35 ± 0.34 a |
Ca (%, dry matter) | 1.01 ± 0.01 b | 1.07 ± 0.02 ab | 1.19 ± 0.07 a |
Colloidal Ca (mg/g colloidal casein) | 24.04 ± 1.92 b | 27.38 ± 1.34 ab | 31.02 ± 1.01 a |
Yield and recovery | |||
Actual yield (%) | 20.47 ± 1.20 b | 24.56 ± 0.36 a | 24.64 ± 1.10 a |
Moisture-adjusted yield (%) | 17.68 ± 0.31 a | 17.85 ± 0.82 a | 16.01 ± 0.91 a |
True-protein retention (%) | 77.56 ± 0.48 a | 78.53 ± 0.48 a | 78.97 ± 0.66 a |
Fat retention (%) | 94.64 ± 0.92 a | 94.47 ± 3.12 a | 95.38 ± 2.78 a |
Non-Recovered WW | Recovered WW | |||
---|---|---|---|---|
0.05% of TS | 0.1% of TS | 0.5% of TS | ||
Membrane capital cost (CA$) | 465,947.45 | 463,024.32 | 439,639.25 | |
Operational cost (CA$/day) | ||||
Membrane replacement | 701.48 | 697.08 | 661.87 | |
Total energy consumption | 3972.53 | 3972.53 | 3972.53 | |
Electrical power | 3.68 | 3.68 | 3.68 | |
Water used for membrane cleaning | 87.07 | 86.53 | 82.16 | |
Cleaning solutions | 112.61 | 111.91 | 106.25 | |
Human resources | 745.92 | 745.92 | 745.92 | |
Effluent collection | 116.00 | |||
Effluent treatment | 78.00 | |||
Production of drinking water | 137.14 | 136.28 | 129.40 | |
Total | 194.00 | 5486.16 | 5481.37 | 5443.02 |
Incomes (CA$/day) | ||||
Retentate (Milk Class 3(a)1) | 768.92 | 1537.84 | 7689.19 | |
Balance per operating (CA$/day) | −194.00 | −4717.24 | −3943.53 | 2246.17 |
Balance per operating (CA$/year) | −70,810.00 | −1,721,792.72 | −1,439,387.80 | 819,851.57 |
Pay back time (Year) | 0.54 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alalam, S.; Chamberland, J.; Gravel, A.; Perreault, V.; Britten, M.; Pouliot, Y.; Labrie, S.; Doyen, A. Valorization of Concentrated Dairy White Wastewater by Reverse Osmosis in Model Cheese Production. Dairy 2022, 3, 248-261. https://doi.org/10.3390/dairy3020020
Alalam S, Chamberland J, Gravel A, Perreault V, Britten M, Pouliot Y, Labrie S, Doyen A. Valorization of Concentrated Dairy White Wastewater by Reverse Osmosis in Model Cheese Production. Dairy. 2022; 3(2):248-261. https://doi.org/10.3390/dairy3020020
Chicago/Turabian StyleAlalam, Sabine, Julien Chamberland, Alexia Gravel, Véronique Perreault, Michel Britten, Yves Pouliot, Steve Labrie, and Alain Doyen. 2022. "Valorization of Concentrated Dairy White Wastewater by Reverse Osmosis in Model Cheese Production" Dairy 3, no. 2: 248-261. https://doi.org/10.3390/dairy3020020
APA StyleAlalam, S., Chamberland, J., Gravel, A., Perreault, V., Britten, M., Pouliot, Y., Labrie, S., & Doyen, A. (2022). Valorization of Concentrated Dairy White Wastewater by Reverse Osmosis in Model Cheese Production. Dairy, 3(2), 248-261. https://doi.org/10.3390/dairy3020020