Blood Metabolomic Phenotyping of Dry Cows Could Predict the High Milk Somatic Cells in Early Lactation—Preliminary Results
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals, Diets, and Blood Samples
2.2. Animals, Diets, and Blood Samples
2.2.1. Sample Preparation
2.2.2. FIA/LC—MS/MS Method
2.3. Statistcal Analysis
3. Results
4. Discussion
4.1. Blood Lipid Alterations and Related Metabolites in Pre-SCM Cows
4.2. Blood Amino Acid Changes in Pre-SCM Cows
4.3. Changes in Carbohydrate and Organic Acids in the Blood of Pre-SCM Cows
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thompson-Crispi, K.A.; Miglior, F.; Mallard, B.A. Incidence rates of clinical mastitis among Canadian Holsteins classified as high, average, or low immune responders. Clin. Vaccine Immunol. 2013, 20, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Ruegg, P.L.; Petersson-Wolfe, C.S. Mastitis in dairy cows. Vet. Clin. N. Am. Food Anim. Pract. 2018, 34, ix–x. [Google Scholar] [CrossRef] [PubMed]
- Viguier, C.; Arora, S.; Gilmartin, N.; Welbeck, K.; O’Kennedy, R. Mastitis detection: Current trends and future perspectives. Trends Biotechnol. 2009, 27, 486–493. [Google Scholar] [CrossRef]
- Khatun, M.; Clark, C.E.F.; Lyons, N.A.; Thomson, P.C.; Kerrisk, K.L.; Garciá, S.C. Early detection of clinical mastitis from electrical conductivity data in an automatic milking system. Anim. Prod. Sci. 2017, 57, 1226–1232. [Google Scholar] [CrossRef]
- Hurley, W.L.; Theil, P.K. Perspectives on immunoglobulins in colostrum and milk. Nutrients 2011, 3, 442–474. [Google Scholar] [CrossRef]
- Dervishi, E.; Zhang, G.; Hailemariam, D.; Dunn, S.M.; Ametaj, B.N. Innate immunity and carbohydrate metabolism alterations precede occurrence of subclinical mastitis in transition dairy cows. J. Anim. Sci. Technol. 2015, 57, 46. [Google Scholar] [CrossRef] [Green Version]
- Rollin, E.; Dhuyvetter, K.C.; Overton, M.W. The cost of clinical mastitis in the first 30 days of lactation: An economic modeling tool. Prev. Vet. Med. 2015, 122, 257–264. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eckel, E.F.; Ametaj, B.N. Invited Review: Role of bacterial endotoxins in the etiopathogenesis of periparturient diseases of transition dairy cows. J. Dairy Sci. 2016, 99, 5967–5990. [Google Scholar] [CrossRef] [PubMed]
- Ruegg, P.L. A 100-year review: Mastitis detection, management, and prevention. J. Dairy Sci. 2017, 100, 10381–10397. [Google Scholar] [CrossRef] [Green Version]
- Welderufael, B.G.; Løvendahl, P.; de Koning, D.J.; Janss, L.L.G.; Fikse, W.F. Genome-wide association study for susceptibility to and recoverability from mastitis in Danish Holstein cows. Front. Genet. 2018, 9, 141. [Google Scholar] [CrossRef] [Green Version]
- CCAC. CCAC Guidelines on: The Care and Use of Farm Animals in Research, Teaching, and Testing. 2009. Available online: https://ccac.ca/Documents/Standards/Guidelines/Farm_Animals.pdf (accessed on 22 October 2021).
- Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37, W652–W660. [Google Scholar] [CrossRef] [Green Version]
- Chong, J.; Wishart, D.S.; Xia, J. Using MetaboAnalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinform. 2019, 68, E86. [Google Scholar] [CrossRef]
- Xia, J.; Wishart, D.S. Web-based inference of biological patterns, functions and pathways from metabolomic data using MetaboAnalyst. Nat. Protoc. 2011, 6, 743–760. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Sinelnikov, I.V.; Han, B.; Wishart, D.S. MetaboAnalyst 3.0-Making metabolomics more meaningful. Nucl. Acids Res. 2015, 43, W251–W257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schukken, Y.H.; Wilson, D.J.; Welcome, F.; Garrison-Tikofsky, L.; Gonzalez, R.N. Monitoring udder health and milk quality using somatic cell counts. Vet. Res. 2003, 34, 579–596. [Google Scholar] [CrossRef] [Green Version]
- Sargeant, J.M.; Leslie, K.E.; Shirley, J.E.; Pulkrabek, B.J.; Lim, G.H. Sensitivity and specificity of somatic cell count and California Mastitis Test for identifying intramammary infection in early lactation. J. Dairy Sci. 2001, 84, 2018–2024. [Google Scholar] [CrossRef]
- Alves-Bezerra, M.; Cohen, D.E. Triglyceride Metabolism in the Liver. Compr. Physiol. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Jung, Y.Y.; Nam, Y.; Park, Y.S.; Lee, H.S.; Hong, S.A.; Kim, B.K.; Park, E.S.; Chung, Y.H.; Jeong, J.H. Protective Effect of phosphatidylcholine on lipopolysaccharide-induced acute inflammation in multiple organ injury. Korean J. Physiol. Pharmacol. 2013, 17, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Norris, G.H.; Porter, C.M.; Jiang, C.; Millar, C.L.; Blesso, C.N. Dietary sphingomyelin attenuates hepatic steatosis and adipose tissue inflammation in high fat diet-induced obese mice. J. Nutr. Biochem. 2017, 40, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Miyazaki, H.; Midorikawa, N.; Fujimoto, S.; Miyoshi, N.; Yoshida, H.; Matsumoto, T. Antimicrobial effects of lysophosphatidylcholine on methicillin-resistant Staphylococcus aureus. Ther. Adv. Infect. Dis. 2017, 4, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Parra Millán, R.; Jiménez Mejías, M.E.; Sánchez Encinales, V.; Ayerbe Algaba, R.; Gutiérrez Valencia, A.; Pachón Ibáñez, M.E.; Díaz, C.; Pérez Del Palacio, J.; López Cortés, L.F.; Pachón, J.; et al. Efficacy of Lysophosphatidylcholine in Combination with Antimicrobial Agents against Acinetobacter baumannii in Experimental Murine Peritoneal Sepsis and Pneumonia Models. Antimicrob. Agents Chemother. 2016, 60, 4464–4470. [Google Scholar] [CrossRef] [Green Version]
- Smani, Y.; Dominguez-Herrera, J.; Ibanez-Martinez, J.; Pachon, J. Therapeutic ef-ficacy of lysophosphatidylcholine in severe infections caused by Acinetobacterbaumannii. Antimicrob. Agents Chemother. 2015, 59, 3920–3924. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Zhang, W.; Deng, M.; Loughran, P.; Tang, Y.; Liao, H.; Zhang, X.; Liu, J.; Billiar, T.R.; Lu, B. Stearoyl lysophosphatidylcholine inhibits endotoxin-inducedcaspase-11 activation. Shock 2018, 50, 339–345. [Google Scholar] [CrossRef]
- Ojala, P.J.; Hirvonen, T.E.; Hermansson, M.; Somerharju, P.; Parkkinen, J. Acylchain-dependent effect of lysophosphatidylcholine on human neutrophils. J. Leukoc. Biol. 2007, 82, 1501–1509. [Google Scholar] [CrossRef] [PubMed]
- Mihalik, S.J.; Goodpaster, B.H.; Kelley, D.E.; Chace, D.H.; Vockley, J.; Toledo, F.G.S.; Delany, J.P. Increased levels of plasma acylcarnitines in obesity and type 2 diabetes and identification of a marker of glucolipotoxicity. Obesity 2010, 18, 1695–1700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nicholas, D.A.; Proctor, E.A.; Agrawal, M.; Belkina, A.C.; Van Nostrand, S.C.; Panneerseelan-Bharath, L.; Jones, A.R., 4th; Raval, F.; Ip, B.C.; Zhu, M.; et al. Fatty Acid Metabolites Combine with Reduced β Oxidation to Activate Th17 Inflammation in Human Type 2 Diabetes. Cell Metab. 2019, 30, 447–461.e5. [Google Scholar] [CrossRef]
- Rutkowsky, J.M.; Knotts, T.A.; Ono-Moore, K.D.; McCoin, C.S.; Huang, S.; Schneider, D.; Singh, S.; Adams, S.H.; Hwang, D.H. Acylcarnitines activate proinflammatory signaling pathways. Am. J. Physiol. Endocrinol. Metab. 2014, 306, E1378–E1387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schönfeld, P.; Wojtczak, L. Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. J. Lipid Res. 2016, 57, 943–954. [Google Scholar] [CrossRef] [Green Version]
- Hailemariam, D.; Mandal, R.; Saleem, F.; Dunn, S.M.; Wishart, D.S.; Ametaj, B.N. Identification of predictive biomarkers of disease state in transition dairy cows. J. Dairy Sci. 2014, 97, 2680–2693. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, G.; Dervishi, E.; Dunn, S.M.; Mandal, R.; Liu, P.; Han, B.; Wishart, D.S.; Ametaj, B.N. Metabotyping reveals distinct metabolic alterations in ketotic cows and identifies early predictive serum biomarkers for the risk of disease. Metabolomics 2017, 13, 43. [Google Scholar] [CrossRef]
- Zhang, G.; Deng, Q.; Mandal, R.; Wishart, D.S.; Ametaj, B.N. DI/LC-MS/MS-based metabolic profiling for identification of early predictive serum biomarkers of metritis in transition dairy cows. J. Agric. Food Chem. 2017, 65, 8510–8521. [Google Scholar] [CrossRef]
- Dervishi, E.; Zhang, G.; Dunn, S.M.; Mandal, R.; Wishart, D.S.; Ametaj, B.N. GC-MS metabolomics identifies metabolite alterations that precede subclinical mastitis in the blood of transition dairy cows. J. Proteome Res. 2017, 16, 433–446. [Google Scholar] [CrossRef]
- Fernstrom, J.D. Branched-chain amino acids and brain function. Am. Soc. Nutr. Sci. 2005, 135, 1539S–1546S. [Google Scholar] [CrossRef]
- Hagenfeldt, L.; Eriksson, S.; Wahren, J. Influence of leucine on arterial concentrations and regional exchange of amino acids in healthy subjects. Clin. Sci. 1980, 59, 173–181. [Google Scholar] [CrossRef]
- Zhenyukh, O.; Civantos, E.; Ruiz-Ortega, M.; Sánchez, M.S.; Vázquez, C.; Peiró, C.; Egido, J.; Mas, S. High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via MTORC1 activation. Free Radic. Biol. Med. 2017, 104, 165–177. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Yin, Z.; Wu, C.; Xia, Y.; Wu, M.; Li, P.; Zhang, H.; Yin, Y.; Li, N.; Zhu, G.; et al. L-Serine lowers the inflammatory responses during Pasteurella multocida infection. Infect. Immun. 2019, 87, e00677-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ryan, T.P.; Aust, S.D. The role of iron in oxygen-mediated toxicities. Crit Rev Toxicol. 1992, 22, 119–141. [Google Scholar] [CrossRef] [PubMed]
- Wheeler, M.D.; Rose, M.L.; Yamashima, S.; Enomoto, N.; Seabra, V.; Madren, J.; Thurman, R.G. Dietary glycine blunts lung inflammatory cell influx following acute endotoxin. Am. J. Physiol. Lung Cell Mol. Physiol. 2000, 279, L390–L398. [Google Scholar] [CrossRef] [PubMed]
- Ishidate, K. Choline/ethanolamine kinase from mammalian tissues. Biochim. Biophys. Acta Lipids Lipid Metab. 1997, 1348, 70–78. [Google Scholar] [CrossRef]
- Vance, D.E.; Vance, J.E. Phospholipid biosynthesis in eukaryotes. In Biochemistry of Lipids, Lipoproteins and Membranes, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 213–244. [Google Scholar] [CrossRef]
- Zeisel, S.H.; Warrier, M. Trimethylamine N-oxide, the microbiome, and heart and kidney disease. Annu. Rev. Nutr. 2017, 37, 157–181. [Google Scholar] [CrossRef] [PubMed]
- Go, E.K.; Jung, K.J.; Kim, J.Y.; Yu, B.P.; Chung, H.Y. Betaine suppresses proinflammatory signaling during aging: The involvement of nuclear factor-ΚB via nuclear factor-inducing kinase/IκB kinase and mitogen-activated protein kinases. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2005, 60, 1252–1264. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Sung, B.; Kang, Y.J.; Jang, J.Y.; Hwang, S.Y.; Lee, Y.; Kim, M.; Im, E.; Yoon, J.H.; Kim, C.M.; et al. Anti-inflammatory effects of betaine on AOM/DSS-induced colon tumorigenesis in ICR male mice. Int. J. Oncol. 2014, 45, 1250–1256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Wang, L.W.; Wang, L.K.; Li, X.; Zhang, H.; Luo, L.P.; Song, J.C.; Gong, Z.J. Betaine protects against high-fat-diet-induced liver injury by inhibition of high-mobility group box 1 and Toll-like receptor 4 expression in rats. Dig. Dis. Sci. 2013, 58, 3198–3206. [Google Scholar] [CrossRef] [PubMed]
- Bell, A.W.; Bauman, D.E. Adaptations of glucose metabolism during pregnancy and lactation. J. Mammary Gland Biol. Neoplasia 1997, 2, 265–278. [Google Scholar] [CrossRef]
- Khatib-Massalha, E.; Bhattacharya, S.; Massalha, H.; Biram, A.; Golan, K.; Kollet, O.; Kumari, A.; Avemaria, F.; Petrovich-Kopitman, E.; Gur-Cohen, S.; et al. Lactate released by inflammatory bone marrow neutrophils induces their mobilization via endothelial GPR81 signaling. Nat. Commun. 2020, 11, 3547. [Google Scholar] [CrossRef] [PubMed]
- Ma, G.H.; Pan, B.; Chen, Y.; Guo, C.X.; Zhao, M.M.; Zheng, L.M.; Chen, B.X. Trimethylamine N-oxide in atherogenesis: Impairing endothelial self-repair capacity and enhancing monocyte adhesion. Biosci. Rep. 2017, 37, BSR20160244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seldin, M.M.; Meng, Y.; Qi, H.; Zhu, W.F.; Wang, Z.; Hazen, S.L.; Lusis, A.J.; Shih, D.M. Trimethylamine N-oxide promotes vascular inflammation through signaling of mitogen-activated protein kinase and nuclear factor-kb. J. Am. Heart Assoc. 2016, 5, e002767. [Google Scholar] [CrossRef] [Green Version]
- Missailidis, C.; Hällqvist, J.; Qureshi, A.R.; Barany, P.; Heimbürger, O.; Lindholm, B.; Stenvinkel, P.; Bergman, P. Serum Trimethylamine-N-oxide is strongly related to renal function and predicts outcome in chronic kidney disease. PLoS ONE 2016, 11, e0141738. [Google Scholar] [CrossRef] [Green Version]
- Rohrmann, S.; Linseisen, J.; Allenspach, M.; Von Eckardstein, A.; Müller, D. Plasma concentrations of trimethylamine- N-oxide are directly associated with dairy food consumption and low-grade inflammation in a german adult population. J. Nutr. 2016, 146, 283–289. [Google Scholar] [CrossRef] [Green Version]
- Chan, M.M.; Yang, X.; Wang, H.; Saaoud, F.; Sun, Y.; Fong, D. The microbial metabolite trimethylamine N-oxide links vascular dysfunctions and the autoimmune disease rheumatoid arthritis. Nutrients 2019, 11, 1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Ingredient | Weight/Cow (kg) | DM 1 (%) | Final DMI 1 (kg) |
---|---|---|---|
Hay | 5.50 | 85.14% | 4.68 |
Oats | 5.75 | 36.20% | 2.08 |
Corn | 8.84 | 30.30% | 2.68 |
Protein | 2.00 | 93.00% | 1.86 |
Ground Barley | 0.75 | 97.26% | 0.66 |
Minerals | 0.42 | 97.26% | 0.41 |
Total | 23.36 | 53.17% | 12.37 |
Ingredient | Weight/Cow (kg) | DM 1 (%) | Final DMI 1 (kg) |
---|---|---|---|
Hay Dairy | 2.50 | 88.50 | 2.21 |
Grass Silage | 10.75 | 31.80 | 3.42 |
Oats | 5.99 | 36.20 | 2.17 |
Barley-Dakota | 11.50 | 40.00 | 4.80 |
Corn | 13.52 | 31.50 | 4.26 |
Whey | 2.75 | 17.00 | 0.47 |
Protein | 4.75 | 93.30 | 4.43 |
Energy Dairy | 4.25 | 88.00 | 3.74 |
Ground Barley | 1.75 | 88.00 | 1.54 |
Mineral and Fat | 1.26 | 97.26 | 1.23 |
Total | 59.02 | 47.56 | 28.07 |
−8 Weeks | −4 Weeks | +1 to +8 Weeks | ||||
---|---|---|---|---|---|---|
CON | Pre-SCM | CON | Pre-SCM | CON | SCM-O | |
Lactation | 2.5 | 3.1 | 2.5 | 3.1 | 3.5 | 4.1 |
BCS | 3.78 | 3.70 | 3.95 | 3.92 | - | - |
SCC (×1000) | NA 1 | NA | NA | NA | 27.45 | 424.71 |
Milk Yield (L) | NA | NA | NA | NA | 49.35 | 36.25 |
Metabolites (µM) | MEAN ± SEM | p Value | Fold Change | SCM/CON | |
---|---|---|---|---|---|
Pre-SCM (n =10) | CON (n=15) | ||||
Glycine | 317 ± 22.8 | 372 ± 20 | 0.005 | 0.85 | down |
Alanine | 215 ± 15.7 | 266 ± 13.8 | 0.004 | 0.81 | down |
Valine | 250 ± 26.3 | 202 ± 23.2 | 0.03 | 1.24 | up |
trans-Hydroxyproline | 10.9 ± 0.671 | 12 ± 0.591 | 0.03 | 0.91 | down |
Leucine | 248 ± 21.2 | 183 ± 18.7 | 0.002 | 1.36 | up |
Isoleucine | 137 ± 11.24 | 111 ± 9.89 | 0.03 | 1.23 | up |
Asparagine | 27.4 ± 2.67 | 32.1 ± 2.35 | 0.04 | 0.85 | down |
alpha-Aminoadipic acid | 2.79 ± 0.387 | 1.74 ± 0.34 | 0.02 | 1.6 | up |
Phenylalanine | 56.5 ± 3.36 | 46.8 ± 2.95 | 0.01 | 1.21 | up |
Methionine-sulfoxide | 1.8 ± 0.241 | 2.35 ± 0.212 | 0.02 | 0.77 | down |
Arginine | 149 ± 9.19 | 123 ± 8.09 | 0.05 | 1.21 | up |
Asymmetric dimethylarginine | 0.875 ± 0.0686 | 0.647 ± 0.0603 | 0.002 | 1.35 | up |
Carnosine | 14 ± 2.27 | 24.3 ± 1.99 | 0.001 | 0.58 | down |
Ornithine | 62.6 ± 6.02 | 49.2 ± 5.58 | 0.001 | 1.27 | up |
Lysine | 88.5 ± 8.09 | 72.1 ± 7.12 | 0.01 | 1.23 | up |
Betaine | 154.1 ± 20.6 | 76.6 ± 19.1 | <0.001 | 2.01 | up |
Choline | 15.3 ± 1.85 | 10.3 ± 1.63 | 0.01 | 1.49 | up |
Citric acid | 218 ± 26.5 | 267 ± 23.3 | 0.02 | 0.82 | down |
Butyric acid | 7.07 ± 3.45 | 13.92 ± 3.03 | 0.01 | 0.51 | down |
Propionic acid | 16.2 ± 7.29 | 29.6 ± 6.41 | 0.05 | 0.55 | down |
Fumaric acid | 1.23 ± 0.36 | 1.84 ± 0.316 | 0.04 | 0.67 | down |
Pyruvic acid | 77.3 ± 7.9 | 62.9 ± 6.95 | 0.03 | 1.23 | up |
Hippuric acid | 57.5 ± 4.79 | 64.4 ± 4.21 | 0.05 | 0.89 | down |
LYSOC14:0 | 0.994 ± 0.1045 | 1.327 ± 0.0919 | <0.001 | 0.75 | down |
LYSOC16:0 | 27 ± 2.93 | 29.5 ± 2.58 | 0.05 | 0.92 | down |
LYSOC16:1 | 1.37 ± 0.153 | 1.71 ± 0.135 | 0.004 | 0.8 | down |
LYSOC18:0 | 17 ± 1.92 | 19.6 ± 1.68 | 0.01 | 0.87 | down |
LYSOC18:1 | 13.4 ± 1.67 | 18.3 ± 1.47 | <0.001 | 0.73 | down |
LYSOC18:2 | 30.2 ± 3.65 | 41.9 ± 3.21 | <0.001 | 0.72 | down |
LYSOC26:0 | 0.12 ± 0.0323 | 0.161 ± 0.0284 | 0.02 | 0.75 | down |
LYSOC26:1 | 0.0462 ± 0.0078 | 0.0628 ± 0.00686 | 0.003 | 0.74 | down |
LYSOC28:0 | 0.234 ± 0.0346 | 0.373 ± 0.0305 | <0.001 | 0.63 | down |
LYSOC28:1 | 0.298 ± 0.0445 | 0.519 ± 0.0391 | <0.001 | 0.57 | down |
PC32:2AA | 8.69 ± 1.25 | 14.93 ± 1.1 | <0.001 | 0.58 | down |
PC36:0AE | 2.24 ± 0.27 | 4.03 ± 0.237 | <0.001 | 0.56 | down |
PC36:0AA | 11.5 ± 1.79 | 25.4 ± 1.57 | <0.001 | 0.45 | down |
PC36:6AA | 3.08 ± 0.336 | 4.08 ± 0.295 | <0.001 | 0.75 | down |
PC38:0AA | 1.82 ± 0.287 | 4.02 ± 0.252 | <0.001 | 0.45 | down |
PC38:6AA | 2.95 ± 0.291 | 4.82 ± 0.256 | <0.001 | 0.61 | down |
PC40:6AE | 1.89 ± 0.191 | 2.61 ± 0.168 | <0.001 | 0.72 | down |
PC40:6AA | 1.89 ± 0.191 | 2.61 ± 0.168 | <0.001 | 0.72 | down |
PC40:1AA | 0.312 ± 0.0317 | 0.495 ± 0.0279 | <0.001 | 0.63 | down |
PC40:2AA | 0.918 ± 0.14 | 2.062 ± 0.123 | <0.001 | 0.45 | down |
16:0SM | 128 ± 12.2 | 160 ± 10.8 | <0.001 | 0.8 | down |
16:1SM | 14.5 ± 1.2 | 17.8 ± 1.06 | <0.001 | 0.81 | down |
18:0SM | 20.6 ± 1.88 | 27.7 ± 1.66 | <0.001 | 0.74 | down |
18:1SM | 22.6 ± 1.91 | 29.3 ± 1.68 | <0.001 | 0.77 | down |
20:2SM | 2.46 ± 0.258 | 3.52 ± 0.227 | <0.001 | 0.7 | down |
14:1SMOH | 11.6 ± 1.18 | 14.2 ± 1.04 | 0.002 | 0.82 | down |
16:1SMOH | 13.7 ± 1.26 | 17.4 ± 1.11 | <0.001 | 0.79 | down |
22:1SMOH | 21.4 ± 2.56 | 30.8 ± 2.26 | <0.001 | 0.69 | down |
22:2SMOH | 10.9 ± 1.042 | 14.7 ± 0.917 | <0.001 | 0.74 | down |
24:1SMOH | 2.54 ± 0.204 | 3.35 ± 0.179 | <0.001 | 0.76 | down |
C4OH | 0.0219 ± 0.00315 | 0.0328 ± 0.00277 | 0.001 | 0.67 | down |
C5:1DC | 0.0159 ± 0.00186 | 0.0189 ± 0.00164 | 0.01 | 0.84 | down |
C5DC/C6OH | 0.0106 ± 0.001101 | 0.0118 ± 0.000968 | 0.05 | 0.9 | down |
C6:1 | 0.0239 ± 0.00224 | 0.0296 ± 0.00197 | 0.006 | 0.81 | down |
C8 | 0.0184 ± 0.00192 | 0.0114 ± 0.00169 | 0.009 | 1.61 | up |
C14:1OH | 0.00859 ± 0.000792 | 0.00985 ± 0.000697 | 0.01 | 0.87 | down |
Metabolites (µM) | MEAN ± SEM | p Value | Fold Change | SCM/ CON | |
---|---|---|---|---|---|
Pre-SCM (n = 10) | CON (n = 15) | ||||
Alanine | 201 ± 11.6 | 249 ± 10.5 | <0.001 | 0.81 | down |
Serine | 75 ± 4.17 | 81.8 ± 3.77 | 0.03 | 0.92 | down |
Proline | 82.6 ± 5.4 | 99.4 ± 4.88 | 0.002 | 0.83 | down |
Valine | 275 ± 12.9 | 311 ± 11.6 | 0.001 | 0.88 | down |
Isoleucine | 137 ± 5.73 | 151 ± 5.17 | 0.005 | 0.91 | down |
Asparagine | 27.3 ± 1.88 | 31.9 ± 1.7 | 0.01 | 0.86 | down |
Methionine | 27.2 ± 1.38 | 31.3 ± 1.25 | <0.001 | 0.87 | down |
Histidine | 67.5 ± 2.76 | 73.9 ± 2.5 | 0.005 | 0.91 | down |
Methionine-sulfoxide | 2.39 ± 0.222 | 2.99 ± 0.2 | <0.001 | 0.8 | down |
Acetyl-ornithine | 2.86 ± 0.463 | 4.05 ± 0.418 | 0.01 | 0.71 | down |
Ornithine | 59.9 ± 3.44 | 65.6 ± 3.1 | 0.03 | 0.91 | down |
Lysine | 91.2 ± 8.47 | 107.2 ± 7.65 | 0.04 | 0.85 | down |
Lactic acid | 2107 ± 409 | 1166 ± 370 | 0.03 | 1.81 | up |
Pyruvic acid | 82.7 ± 7.58 | 71.7 ± 6.85 | 0.03 | 1.15 | up |
Methylmalonic acid | 0.545 ± 0.0762 | 0.285 ± 0.0688 | 0.01 | 1.91 | up |
Glucose | 4928 ± 99.5 | 4045 ± 89.9 | 0.03 | 1.22 | up |
LYSOC20:3 | 2.97 ± 0.28 | 3.41 ± 0.253 | 0.03 | 0.87 | down |
LYSOC28:1 | 0.243 ± 0.0312 | 0.35 ± 0.0282 | 0.001 | 0.69 | down |
PC32:2AA | 7.63 ± 0.844 | 12.45 ± 0.762 | <0.001 | 0.61 | down |
PC36:0AE | 2.22 ± 0.219 | 3.48 ± 0.198 | <0.001 | 0.64 | down |
PC36:0AA | 7.65 ± 0.807 | 14.3 ± 0.729 | <0.001 | 0.53 | down |
PC36:6AA | 2.53 ± 0.265 | 3.87 ± 0.24 | <0.001 | 0.65 | down |
PC38:0AA | 0.985 ± 0.106 | 1.944 ± 0.096 | <0.001 | 0.51 | down |
PC38:6AA | 2.21 ± 0.217 | 3.55 ± 0.196 | <0.001 | 0.62 | down |
PC40:6AE | 0.719 ± 0.0704 | 1.147 ± 0.0636 | <0.001 | 0.63 | down |
PC40:6AA | 1.46 ± 0.194 | 2.43 ± 0.175 | <0.001 | 0.6 | down |
PC40:1AA | 0.256 ± 0.0278 | 0.415 ± 0.0251 | <0.001 | 0.62 | down |
PC40:2AA | 0.543 ± 0.0602 | 1.02 ± 0.0544 | <0.001 | 0.53 | down |
18:0SM | 14.4 ± 1.51 | 18.1 ± 1.36 | 0.01 | 0.8 | down |
18:1SM | 17 ± 1.39 | 19.1 ± 1.25 | 0.02 | 0.89 | down |
20:2SM | 2.41 ± 0.196 | 2.81 ± 0.177 | 0.006 | 0.86 | down |
22:2SMOH | 7.5 ± 0.881 | 10.2 ± 0.795 | 0.007 | 0.74 | down |
22:1SMOH | 13.1 ± 1.76 | 18.3 ± 1.59 | 0.008 | 0.72 | down |
24:1SMOH | 1.93 ± 0.22 | 2.44 ± 0.199 | 0.03 | 0.79 | down |
C4:1 | 0.0198 ± 0.00229 | 0.0138 ± 0.00206 | 0.02 | 1.43 | up |
C5:1 | 0.0217 ± 0.00205 | 0.0134 ± 0.00185 | 0.01 | 1.62 | up |
C5:1DC | 0.0156 ± 0.00167 | 0.0114 ± 0.00151 | 0.03 | 1.37 | up |
C5DC/C6OH | 0.01717 ± 0.00351 | 0.00681 ± 0.00317 | 0.04 | 2.52 | up |
C9 | 0.0222 ± 0.00547 | 0.0047 ± 0.00494 | 0.02 | 4.72 | up |
C10:2 | 0.0255 ± 0.00302 | 0.0178 ± 0.00273 | 0.05 | 1.43 | up |
C12 | 0.0271 ± 0.00252 | 0.0199 ± 0.00228 | 0.02 | 1.36 | up |
C14:1 | 0.0363 ± 0.00652 | 0.0532 ± 0.00589 | 0.008 | 0.68 | down |
C14:2OH | 0.00867 ± 0.000547 | 0.00693 ± 0.000494 | 0.04 | 1.25 | up |
C16 | 0.0207 ± 0.00159 | 0.0254 ± 0.00144 | 0.01 | 0.81 | down |
C16:1OH | 0.00883 ± 0.000583 | 0.01033 ± 0.00052 | 0.01 | 0.85 | down |
C18 | 0.0222 ± 0.00324 | 0.0303 ± 0.00293 | 0.02 | 0.73 | down |
C18:1 | 0.0113 ± 0.00207 | 0.0179 ± 0.00187 | 0.008 | 0.63 | down |
Metabolic Pathways | Total Compounds | Hits | Significant Metabolites | Holm p-Value |
---|---|---|---|---|
Glycine and Serine metabolism a | 59 | 12 | Betaine; Ornithine; Glycine; L-Alanine; Pyruvic acid; Creatine; L-Serine; L-Arginine; L-Threonine; L-Methionine; L-Glutamic acid; Oxoglutaric acid | 0.004 |
Methionine metabolism a | 43 | 7 | Betaine; Choline; Glycine; Methionine sulfoxide; L-Serine; L-Methionine; Spermidine | 0.01 |
Betaine metabolism a | 21 | 3 | Betaine; Choline; Methionine | 0.02 |
Glucose-Alanine Cycle b | 13 | 5 | D-Glucose; L-Glutamic acid; L-Alanine; Oxoglutaric acid; Pyruvic acid | 0.03 |
Selenoamino Acid metabolism b | 28 | 2 | L-Alanine; L-Serine | 0.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haxhiaj, K.; Li, Z.; Johnson, M.; Dunn, S.M.; Wishart, D.S.; Ametaj, B.N. Blood Metabolomic Phenotyping of Dry Cows Could Predict the High Milk Somatic Cells in Early Lactation—Preliminary Results. Dairy 2022, 3, 59-77. https://doi.org/10.3390/dairy3010005
Haxhiaj K, Li Z, Johnson M, Dunn SM, Wishart DS, Ametaj BN. Blood Metabolomic Phenotyping of Dry Cows Could Predict the High Milk Somatic Cells in Early Lactation—Preliminary Results. Dairy. 2022; 3(1):59-77. https://doi.org/10.3390/dairy3010005
Chicago/Turabian StyleHaxhiaj, Klevis, Zhili Li, Mathew Johnson, Suzanna M. Dunn, David S. Wishart, and Burim N. Ametaj. 2022. "Blood Metabolomic Phenotyping of Dry Cows Could Predict the High Milk Somatic Cells in Early Lactation—Preliminary Results" Dairy 3, no. 1: 59-77. https://doi.org/10.3390/dairy3010005