The Transition Period Updated: A Review of the New Insights into the Adaptation of Dairy Cows to the New Lactation
Abstract
:1. Introduction
2. The Connection between Inflammation, Immune Dysfunctions, and Metabolic Disorders: Which Is the Driving Cause?
2.1. Prepartal Immune Dysfunctions and Metabolic Disorders: The Ketosis Model
2.2. The Role of Dry-Off on Immune Dysfunctions
2.3. A Potential Genetic Contribution on the Likelihood of Developing Systemic Inflammations
3. Distressing Events Accrue the Severity of Immune and Metabolic Challenges during the Transition Period
3.1. The Role of Energy Level and Diet Changes on Innate Immune Response
3.2. Heat Stress Could Boost the Severity of Systemic Inflammation
4. How to Manage a “Good” Transition Period
4.1. Management Strategies and Facilities to Optimize Animal Welfare
4.2. Nutritional Strategies and Modulatory Treatments to Improve the Adaptation of Dairy Cows to the New Lactation
4.3. Early Detection of Risky Animals through Plasma Analytes Trends and Behavioral Patterns
4.4. Genomic Information to Prevent Metabolic Dysfunctions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abuelo, A.; Wisnieski, L.; Brown, J.L.; Sordillo, L.M. Rumination time around dry-off relative to the development of diseases in early-lactation cows. J. Dairy Sci. 2021, 104, 5909–5920. [Google Scholar] [CrossRef] [PubMed]
- Akbar, H.; Batistel, F.; Drackley, J.K.; Loor, J.J. Alterations in Hepatic FGF21, Co-Regulated Genes, and Upstream Metabolic Genes in Response to Nutrition, Ketosis and Inflammation in Peripartal Holstein Cows. PLoS ONE 2015, 10, e0139963. [Google Scholar] [CrossRef] [PubMed]
- Barragan, A.A.; Piñeiro, J.M.; Schuenemann, G.M.; Rajala-Schultz, P.J.; Sanders, D.E.; Lakritz, J.; Bas, S. Assessment of daily activity patterns and biomarkers of pain, inflammation, and stress in lactating dairy cows diagnosed with clinical metritis. J. Dairy Sci. 2018, 101, 8248–8258. [Google Scholar] [CrossRef]
- Batistel, F.; Arroyo, J.M.; Garces, C.; Trevisi, E.; Parys, C.; Ballou, M.; Cardoso, F.; Loor, J. Ethyl-cellulose rumen-protected methionine alleviates inflammation and oxidative stress and improves neutrophil function during the periparturient period and early lactation in Holstein dairy cows. J. Dairy Sci. 2018, 101, 480–490. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beauchemin, K. Invited review: Current perspectives on eating and rumination activity in dairy cows. J. Dairy Sci. 2018, 101, 4762–4784. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berghof, T.V.L.; Poppe, M.; Mulder, H. Opportunities to Improve Resilience in Animal Breeding Programs. Front. Genet. 2019, 9, 692. [Google Scholar] [CrossRef] [Green Version]
- Bertoni, G.; Trevisi, E. Use of the Liver Activity Index and Other Metabolic Variables in the Assessment of Metabolic Health in Dairy Herds. Vet. Clin. N. Am. Food Anim. Pract. 2013, 29, 413–431. [Google Scholar] [CrossRef] [PubMed]
- Bertoni, G.; Trevisi, E.; Han, X.; Bionaz, M. Effects of Inflammatory Conditions on Liver Activity in Puerperium Period and Consequences for Performance in Dairy Cows. J. Dairy Sci. 2008, 91, 3300–3310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCabe, C.J.; Boerman, J.P. Invited Review: Quantifying protein mobilization in dairy cows during the transition period. Appl. Anim. Sci. 2020, 36, 389–396. [Google Scholar] [CrossRef]
- Bertoni, G.; Trevisi, E.; Houdijk, J.; Calamari, L.; Athanasiadou, S. Welfare Is Affected by Nutrition through Health (Immune Function and Inflammation); Phillips, C.J.C., Ed.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Bertoni, G.; Trevisi, E.; Lombardelli, R. Some new aspects of nutrition, health conditions and fertility of intensively reared dairy cows. Ital. J. Anim. Sci. 2009, 8, 491–518. [Google Scholar] [CrossRef] [Green Version]
- Bertulat, S.; Fischer-Tenhagen, C.; Suthar, V.; Möstl, E.; Isaka, N.; Heuwieser, W. Measurement of fecal glucocorticoid metabolites and evaluation of udder characteristics to estimate stress after sudden dry-off in dairy cows with different milk yields. J. Dairy Sci. 2013, 96, 3774–3787. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.K.; Lopez-Collazo, E. Endotoxin tolerance: New mechanisms, molecules and clinical significance. Trends Immunol. 2009, 30, 475–487. [Google Scholar] [CrossRef] [PubMed]
- Lopreiato, V.; Minuti, A.; Trimboli, F.; Britti, D.; Morittu, V.; Cappelli, F.P.; Loor, J.; Trevisi, E. Immunometabolic status and productive performance differences between periparturient Simmental and Holstein dairy cows in response to pegbovigrastim. J. Dairy Sci. 2019, 102, 9312–9327. [Google Scholar] [CrossRef]
- Bomba, L.; Nicolazzi, E.L.; Milanesi, M.; Negrini, R.; Mancini, G.; Biscarini, F.; Stella, A.; Valentini, A.; Ajmone-Marsan, P. Relative extended haplotype homozygosity signals across breeds reveal dairy and beef specific signatures of selection. Genet. Sel. Evol. 2015, 47, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borchers, M.; Chang, Y.; Tsai, I.; Wadsworth, B.; Bewley, J. A validation of technologies monitoring dairy cow feeding, ruminating, and lying behaviors. J. Dairy Sci. 2016, 99, 7458–7466. [Google Scholar] [CrossRef] [PubMed]
- Bradford, B.J.; Swartz, T. Review: Following the smoke signals: Inflammatory signaling in metabolic homeostasis and homeorhesis in dairy cattle. Animal 2020, 14, s144–s154. [Google Scholar] [CrossRef] [Green Version]
- Butler, W.R. Nutrition, negative energy balance and fertility in the postpartum dairy cow. Cattle Pract. 2005, 13, 13–18. [Google Scholar]
- Calamari, L.; Soriani, N.; Panella, G.; Petrera, F.; Minuti, A.; Trevisi, E. Rumination time around calving: An early signal to detect cows at greater risk of disease. J. Dairy Sci. 2014, 97, 3635–3647. [Google Scholar] [CrossRef]
- Campler, M.; Munksgaard, L.; Jensen, M.B.; Weary, D.; Von Keyserlingk, M. Short communication: Flooring preferences of dairy cows at calving. J. Dairy Sci. 2014, 97, 892–896. [Google Scholar] [CrossRef] [Green Version]
- Canning, P.; Hassfurther, R.; Terhune, T.; Rogers, K.; Abbott, S.; Kolb, D. Efficacy and clinical safety of pegbovigrastim for preventing naturally occurring clinical mastitis in periparturient primiparous and multiparous cows on US commercial dairies. J. Dairy Sci. 2017, 100, 6504–6515. [Google Scholar] [CrossRef] [PubMed]
- Cattaneo, L.; Lopreiato, V.; Piccioli-Cappelli, F.; Trevisi, E.; Minuti, A. Plasma albumin-to-globulin ratio before dry-off as a possible index of inflammatory status and performance in the subsequent lactation in dairy cows. J. Dairy Sci. 2021, 104, 8228–8242. [Google Scholar] [CrossRef]
- Cattaneo, L.; Lopreiato, V.; Trevisi, E.; Minuti, A. Association of postpartum uterine diseases with lying time and metabolic profiles of multiparous Holstein dairy cows in the transition period. Vet. J. 2020, 263, 105533. [Google Scholar] [CrossRef] [PubMed]
- Mezzetti, M.; Minuti, A.; Piccioli-Cappelli, F.; Amadori, M.; Bionaz, M.; Trevisi, E. The role of altered immune function during the dry period in promoting the development of subclinical ketosis in early lactation. J. Dairy Sci. 2019, 102, 9241–9258. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.H.; Chung, S.S.; Park, K.S. Re-highlighting the action of PPARγ in treating metabolic diseases. F1000Research 2018, 7, 1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Celi, P. Oxidative Stress in Ruminants; Mandelker, L., Vajdovich, P., Eds.; Humana Press: Totowa, NJ, USA, 2011. [Google Scholar]
- Cole, J.; VanRaden, P.; O’Connell, J.; Van Tassell, C.; Sonstegard, T.; Schnabel, R.; Taylor, J.; Wiggans, G. Distribution and location of genetic effects for dairy traits. J. Dairy Sci. 2009, 92, 2931–2946. [Google Scholar] [CrossRef] [Green Version]
- Cook, N.B. Designing Facilities for the Adult Dairy Cow During the Nonlactation and Early Lactation Period. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 125–138. [Google Scholar] [CrossRef] [PubMed]
- Cornelius, D.C. Preeclampsia: From Inflammation to Immunoregulation. Clin. Med. Insights Blood Disord. 2018, 11, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Creutzinger, K.; Dann, H.; Krawczel, P.; Habing, G.; Proudfoot, K. The effect of stocking density and a blind on the behavior of Holstein dairy cattle in group maternity pens. Part I: Calving location, locomotion, and separation behavior. J. Dairy Sci. 2021, 104, 7109–7121. [Google Scholar] [CrossRef]
- Ingvartsen, K.L.; Moyes, K. Nutrition, immune function and health of dairy cattle. Animal 2013, 7, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Creutzinger, K.; Dann, H.; Moraes, L.; Krawczel, P.; Proudfoot, K. Effects of prepartum stocking density and a blind on physiological biomarkers, health, and hygiene of transition Holstein dairy cows. J. Dairy Sci. 2021, 104, 886–898. [Google Scholar] [CrossRef] [PubMed]
- Sordillo, L. Nutritional strategies to optimize dairy cattle immunity. J. Dairy Sci. 2016, 99, 4967–4982. [Google Scholar] [CrossRef]
- Creutzinger, K.C.; Proudfoot, K.L. Invited Review: Design and management of group maternity areas for dairy cows. Appl. Anim. Sci. 2020, 36, 124–132. [Google Scholar] [CrossRef]
- Minuti, A.; Bionaz, M.; Lopreiato, V.; Janovick, N.A.; Rodriguez-Zas, S.L.; Drackley, J.K.; Loor, J.J. Prepartum dietary energy intake alters adipose tissue transcriptome profiles during the periparturient period in Holstein dairy cows. J. Anim. Sci. Biotechnol. 2020, 11, 1. [Google Scholar] [CrossRef] [Green Version]
- Crookenden, M.; Phyn, C.; Turner, S.; Loor, J.; Smith, A.; Lopreiato, V.; Burke, C.; Heiser, A.; Roche, J. Feeding synthetic zeolite to transition dairy cows alters neutrophil gene expression. J. Dairy Sci. 2020, 103, 723–736. [Google Scholar] [CrossRef] [PubMed]
- Dahl, G.E.; Tao, S.; LaPorta, J. Heat Stress Impacts Immune Status in Cows Across the Life Cycle. Front. Vet. Sci. 2020, 7, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevisi, E.; Jahan, N.; Bertoni, G.; Ferrari, A.; Minuti, A. Pro-Inflammatory Cytokine Profile in Dairy Cows: Consequences for New Lactation. Ital. J. Anim. Sci. 2015, 14, 285–292. [Google Scholar] [CrossRef]
- Dieho, K.; Bannink, A.; Geurts, I.; Schonewille, J.; Gort, G.; Dijkstra, J. Morphological adaptation of rumen papillae during the dry period and early lactation as affected by rate of increase of concentrate allowance. J. Dairy Sci. 2016, 99, 2339–2352. [Google Scholar] [CrossRef] [PubMed]
- Dijkstra, J.; Ellis, J.; Kebreab, E.; Strathe, A.; Lopez, S.; France, J.; Bannink, A. Ruminal pH regulation and nutritional consequences of low pH. Anim. Feed Sci. Technol. 2012, 172, 22–33. [Google Scholar] [CrossRef]
- Dingwell, R.T.; Kelton, D.F.; Leslie, K.E.; Edge, V.L. Deciding to dry-off: Does level of production matter? In National Mastitis Council Annual Meeting Proceedings; National Mastitis Council, Inc.: Madison, WI, USA, 2001; pp. 69–79. [Google Scholar]
- Van Dorland, H.A.; Richter, S.; Morel, I.; Doherr, M.G.; Castro, N.; Bruckmaier, R.M. Variation in hepatic regulation of metabolism during the dry period and in early lactation in dairy cows. J. Dairy Sci. 2009, 92, 1924–1940. [Google Scholar] [CrossRef] [Green Version]
- Mezzetti, M.; Minuti, A.; Piccioli-Cappelli, F.; Trevisi, E. Inflammatory status and metabolic changes at dry-off in high-yield dairy cows. Ital. J. Anim. Sci. 2019, 19, 51–65. [Google Scholar] [CrossRef]
- Dose, J.; Huebbe, P.; Nebel, A.; Rimbach, G. APOE genotype and stress response—A mini review. Lipids Health Dis. 2016, 15, 121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Douglas, G.; Overton, T.; Bateman, H.; Dann, H.; Drackley, J. Prepartal Plane of Nutrition, Regardless of Dietary Energy Source, Affects Periparturient Metabolism and Dry Matter Intake in Holstein Cows. J. Dairy Sci. 2006, 89, 2141–2157. [Google Scholar] [CrossRef] [Green Version]
- Drackley, J.K. Biology of Dairy Cows During the Transition Period: The Final Frontier? J. Dairy Sci. 1999, 82, 2259–2273. [Google Scholar] [CrossRef]
- Drackley, J.K.; Dann, H.M.; Douglas, N.; Guretzky, N.A.J.; Litherland, N.B.; Underwood, J.P.; Loor, J.J.; Douglas, G.N. Physiological and pathological adaptations in dairy cows that may increase susceptibility to periparturient diseases and disorders. Ital. J. Anim. Sci. 2005, 4, 323–344. [Google Scholar] [CrossRef] [Green Version]
- Milanesi, M.; Passamonti, M.; Cappelli, K.; Minuti, A.; Palombo, V.; Sgorlon, S.; Capomaccio, S.; D’Andrea, M.; Trevisi, E.; Stefanon, B.; et al. Genetic Regulation of Biomarkers as Stress Proxies in Dairy Cows. Genes 2021, 12, 534. [Google Scholar] [CrossRef] [PubMed]
- Egger, G.; Dixon, J. Obesity and chronic disease: Always offender or often just accomplice? Br. J. Nutr. 2009, 102, 1238–1242. [Google Scholar] [CrossRef] [Green Version]
- Esposito, G.; Irons, P.C.; Webb, E.C.; Chapwanya, A. Interactions between negative energy balance, metabolic diseases, uterine health and immune response in transition dairy cows. Anim. Reprod. Sci. 2014, 144, 60–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fabris, T.F.; LaPorta, J.; Skibiel, A.L.; Corra, F.N.; Senn, B.D.; Wohlgemuth, S.E.; Dahl, G.E. Effect of heat stress during early, late, and entire dry period on dairy cattle. J. Dairy Sci. 2019, 102, 5647–5656. [Google Scholar] [CrossRef]
- Filipe, J. Ruminal fluids as substrate for investigating production diseases of small and large ruminant species. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2019, 14, 1–12. [Google Scholar] [CrossRef]
- Fiore, E.; Perillo, L.; Gianesella, M.; Giannetto, C.; Giudice, E.; Piccione, G.; Morgante, M. Comparison between two preventive treatments for hyperketonaemia carried out pre-partum: Effects on non-esterified fatty acids, β-hydroxybutyrate and some biochemical parameters during peripartum and early lactation. J. Dairy Res. 2021, 88, 38–44. [Google Scholar] [CrossRef]
- Fregonesi, J.; Tucker, C.; Weary, D. Overstocking Reduces Lying Time in Dairy Cows. J. Dairy Sci. 2007, 90, 3349–3354. [Google Scholar] [CrossRef]
- Schirmann, K.; Chapinal, N.; Weary, D.; Heuwieser, W.; Von Keyserlingk, M. Short-term effects of regrouping on behavior of prepartum dairy cows. J. Dairy Sci. 2011, 94, 2312–2319. [Google Scholar] [CrossRef] [PubMed]
- Fregonesi, J.A.; Veira, D.M.; von Keyserlingk, M.A.G.; Weary, D.M. Effects of Bedding Quality on Lying Behavior of Dairy Cows. J. Dairy Sci. 2007, 90, 5468–5472. [Google Scholar] [CrossRef] [Green Version]
- Van Gastelen, S.; Westerlaan, B.; Houwers, D.J.; Van Eerdenburg, F.J.C.M. A study on cow comfort and risk for lameness and mastitis in relation to different types of bedding materials. J. Dairy Sci. 2011, 94, 4878–4888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Glahn, D.C.; Knowles, E.E.; McKay, D.R.; Sprooten, E.; Raventós, H.; Blangero, J.; Gottesman, I.I.; Almasy, L. Arguments for the sake of endophenotypes: Examining common misconceptions about the use of endophenotypes in psychiatric genetics. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2014, 165, 122–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goetz, B.; Lefler, J.; Abeyta, M.; Horst, E.; Mayorga, E.; Al-Qaisi, M.; Rodriguez-Jimenez, S.; Martino, C.; Izzo, A.; La, R.; et al. Effects of dietary microbial feed supplement on production efficacy in lactating dairy cows. JDS Commun. 2021, 2, 118–122. [Google Scholar] [CrossRef]
- Grummer, R.R.; Mashek, D.; Hayirli, A. Dry matter intake and energy balance in the transition period. Vet. Clin. N. Am. Food Anim. Pract. 2004, 20, 447–470. [Google Scholar] [CrossRef] [PubMed]
- Janovick, N.; Drackley, J. Prepartum dietary management of energy intake affects postpartum intake and lactation performance by primiparous and multiparous Holstein cows. J. Dairy Sci. 2010, 93, 3086–3102. [Google Scholar] [CrossRef] [PubMed]
- Guarini, A.; Lourenco, D.; Brito, L.; Sargolzaei, M.; Baes, C.; Miglior, F.; Misztal, I.; Schenkel, F. Genetics and genomics of reproductive disorders in Canadian Holstein cattle. J. Dairy Sci. 2019, 102, 1341–1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Habel, J.; Sundrum, A. Mismatch of Glucose Allocation between Different Life Functions in the Transition Period of Dairy Cows. Animals 2020, 10, 1028. [Google Scholar] [CrossRef] [PubMed]
- Hassfurther, R.L.; Terhune, T.N.; Canning, P.C. Efficacy of polyethylene glycol–conjugated bovine granulocyte colony-stimulating factor for reducing the incidence of naturally occurring clinical mastitis in periparturient dairy cows and heifers. Am. J. Vet. Res. 2015, 76, 231–238. [Google Scholar] [CrossRef]
- Hayes, B.J.; Pryce, J.; Chamberlain, A.J.; Bowman, P.J.; Goddard, M.E. Genetic Architecture of Complex Traits and Accuracy of Genomic Prediction: Coat Colour, Milk-Fat Percentage, and Type in Holstein Cattle as Contrasting Model Traits. PLoS Genet. 2010, 6, e1001139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hayirli, A.; Grummer, R.; Nordheim, E.; Crump, P. Animal and Dietary Factors Affecting Feed Intake During the Prefresh Transition Period in Holsteins. J. Dairy Sci. 2002, 85, 3430–3443. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirement of Dairy Cattle, 7th ed.; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Heiser, A.; LeBlanc, S.; McDougall, S. Pegbovigrastim treatment affects gene expression in neutrophils of pasture-fed, periparturient cows. J. Dairy Sci. 2018, 101, 8194–8207. [Google Scholar] [CrossRef]
- Shi, W.; Haisan, J.; Inabu, Y.; Sugino, T.; Oba, M. Effects of starch concentration of close-up diets on rumen pH and plasma metabolite responses of dairy cows to grain challenges after calving. J. Dairy Sci. 2020, 103, 11461–11471. [Google Scholar] [CrossRef] [PubMed]
- Hendriks, S.; Phyn, C.; Huzzey, J.; Mueller, K.; Turner, S.-A.; Donaghy, D.; Roche, J. Graduate Student Literature Review: Evaluating the appropriate use of wearable accelerometers in research to monitor lying behaviors of dairy cows. J. Dairy Sci. 2020, 103, 12140–12157. [Google Scholar] [CrossRef] [PubMed]
- Herdt, T.H. Ruminant Adaptation to Negative Energy Balance. Vet. Clin. N. Am. Food Anim. Pract. 2000, 16, 215–230. [Google Scholar] [CrossRef]
- Steele, M.; Schiestel, C.; AlZahal, O.; Dionissopoulos, L.; Laarman, A.; Matthews, J.; McBride, B. The periparturient period is associated with structural and transcriptomic adaptations of rumen papillae in dairy cattle. J. Dairy Sci. 2015, 98, 2583–2595. [Google Scholar] [CrossRef]
- Höglund, J.; Rafati, N.; Rask-Andersen, M.; Enroth, S.; Karlsson, T.; Ek, W.E.; Johansson, Å. Improved power and precision with whole genome sequencing data in genome-wide association studies of inflammatory biomarkers. Sci. Rep. 2019, 9, 16844. [Google Scholar] [CrossRef]
- Horst, E.; Kvidera, S.; Baumgard, L. Invited review: The influence of immune activation on transition cow health and performance—A critical evaluation of traditional dogmas. J. Dairy Sci. 2021, 104, 8380–8410. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Cao, J.; Hanif, Q.; Wang, Y.; Yu, Y.; Zhang, S.; Zhang, Y. Genome-wide association study identifies energy metabolism genes for resistance to ketosis in Chinese Holstein cattle. Anim. Genet. 2019, 50, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Ingvartsen, K. Feeding- and management-related diseases in the transition cow: Physiological adaptations around calving and strategies to reduce feeding-related diseases. Anim. Feed. Sci. Technol. 2006, 126, 175–213. [Google Scholar] [CrossRef]
- Itle, A.; Huzzey, J.; Weary, D.; Von Keyserlingk, M. Clinical ketosis and standing behavior in transition cows. J. Dairy Sci. 2015, 98, 128–134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jahan, N.; Minuti, A.; Trevisi, E. Assessment of immune response in periparturient dairy cows using ex vivo whole blood stimulation assay with lipopolysaccharides and carrageenan skin test. Vet. Immunol. Immunopathol. 2015, 165, 119–126. [Google Scholar] [CrossRef]
- Jankord, R.; Zhang, R.; Flak, J.N.; Solomon, M.B.; Albertz, J.; Herman, J.P. Stress activation of IL-6 neurons in the hypothalamus. Am. J. Physiol. Integr. Comp. Physiol. 2010, 299, R343–R351. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janovick Guretzky, N.A.; Dann, H.M.; Bionaz, M.; Trevisi, E.; Bertoni, G.; Drackley, J.K. Evaluation of acute phase reactants and indices of liver function in serum from dairy cows fed different levels on energy prepartum. In Proceedings of the Joint Annual Meeting ADSA, PSA, AMPA, ASAS, San Antonio, TX, USA, 8–12 July 2007; p. 408. [Google Scholar]
- Rhoads, R.P.; Baumgard, L.H.; Suagee, J.K.; Sanders, S.R. Nutritional Interventions to Alleviate the Negative Consequences of Heat Stress. Adv. Nutr. 2013, 4, 267–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joffre, O.; Nolte, M.A.; Spörri, R.; E Sousa, C.R. Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol. Rev. 2009, 227, 234–247. [Google Scholar] [CrossRef]
- Jofre-Monseny, L.; Minihane, A.-M.; Rimbach, G. Impact of apoE genotype on oxidative stress, inflammation and disease risk. Mol. Nutr. Food Res. 2008, 52, 131–145. [Google Scholar] [CrossRef]
- Johnsen, J.F.; Zipp, K.A.; Kälber, T.; de Passillé, A.M.; Knierim, U.; Barth, K.; Mejdell, C.M. Is rearing calves with the dam a feasible option for dairy farms?—Current and future research. Appl. Anim. Behav. Sci. 2016, 181, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, E.; LeBlanc, S.; McBride, B.; Duffield, T.; Devries, T. Short communication: Association of lying behavior and subclinical ketosis in transition dairy cows. J. Dairy Sci. 2016, 99, 7473–7480. [Google Scholar] [CrossRef] [Green Version]
- Kehrli, M.; Nonnecke, B.J.; A Roth, J. Alterations in bovine neutrophil function during the periparturient period. Am. J. Vet. Res. 1989, 50, 207–214. [Google Scholar] [PubMed]
- Tao, S.; Dahl, G.E. Invited review: Heat stress effects during late gestation on dry cows and their calves. J. Dairy Sci. 2013, 96, 4079–4093. [Google Scholar] [CrossRef]
- Von Keyserlingk, M.A.G.; Olenick, D.; Weary, D.M. Acute Behavioral Effects of Regrouping Dairy Cows. J. Dairy Sci. 2008, 91, 1011–1016. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Goff, J.P.; Canning, P.; Wang, C.; Roth, J.A. Effect of recombinant bovine granulocyte colony-stimulating factor covalently bound to polyethylene glycol injection on neutrophil number and function in periparturient dairy cows. J. Dairy Sci. 2014, 97, 4842–4851. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klein, M.; Buttchereit, N.; Miemczyk, S.P.; Immervoll, A.-K.; Louis, C.; Wiedemann, S.; Junge, W.; Thaller, G.; Oefner, P.J.; Gronwald, W. NMR Metabolomic Analysis of Dairy Cows Reveals Milk Glycerophosphocholine to Phosphocholine Ratio as Prognostic Biomarker for Risk of Ketosis. J. Proteome Res. 2011, 11, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
- Van Knegsel, A. Metabolic adaptation during early lactation: Key to cow health, longevity and a sustainable dairy production chain. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2014, 9, 1–15. [Google Scholar] [CrossRef]
- König, S.; May, K. Invited review: Phenotyping strategies and quantitative-genetic background of resistance, tolerance and resilience associated traits in dairy cattle. Animal 2019, 13, 897–908. [Google Scholar] [CrossRef] [Green Version]
- Kuhla, B. Review: Pro-inflammatory cytokines and hypothalamic inflammation: Implications for insufficient feed intake of transition dairy cows. Animal 2020, 14, s65–s77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mondaca, M.R. Ventilation Systems for Adult Dairy Cattle. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 139–156. [Google Scholar] [CrossRef] [PubMed]
- Yepes, F.A.L.; Nydam, D.V.; Mann, S.; Caixeta, L.; McArt, J.A.A.; Overton, T.R.; Wakshlag, J.J.; Huson, H.J. Longitudinal Phenotypes Improve Genotype Association for Hyperketonemia in Dairy Cattle. Animals 2019, 9, 1059. [Google Scholar] [CrossRef] [Green Version]
- LeBlanc, S.J. Reproductive tract inflammatory disease in postpartum dairy cows. Animal 2014, 8, 54–63. [Google Scholar] [CrossRef] [Green Version]
- Leroy, J.; Vanholder, T.; Van Knegsel, A.; Garcia-Ispierto, I.; Bols, P. Nutrient Prioritization in Dairy Cows Early Postpartum: Mismatch Between Metabolism and Fertility? Reprod. Domest. Anim. 2008, 43, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Liboreiro, D.N.; Machado, K.S.; Silva, P.R.; Maturana, M.M.; Nishimura, T.K.; Brandão, A.P.; Endres, M.I.; Chebel, R.C. Characterization of peripartum rumination and activity of cows diagnosed with metabolic and uterine diseases. J. Dairy Sci. 2015, 98, 6812–6827. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopes, F.; Rosa, G.; Pinedo, P.; Santos, J.E.P.; Chebel, R.C.; Galvao, K.N.; Schuenemann, G.M.; Bicalho, R.C.; Gilbert, R.O.; Rodrigez-Zas, S.; et al. Genome-enable prediction for health traits using high-density SNP panel in US Holstein cattle. Anim. Genet. 2020, 51, 192–199. [Google Scholar] [CrossRef]
- Lopreiato, V.; Mezzetti, M.; Cattaneo, L.; Ferronato, G.; Minuti, A.; Trevisi, E. Role of nutraceuticals during the transition period of dairy cows: A review. J. Anim. Sci. Biotechnol. 2020, 11, 96. [Google Scholar] [CrossRef] [PubMed]
- Creutzinger, K.; Dann, H.; Krawczel, P.; Moraes, L.; Pairis-Garcia, M.; Proudfoot, K. The effect of stocking density and a blind on the behavior of Holstein dairy cows in group maternity pens. Part II: Labor length, lying behavior, and social behavior. J. Dairy Sci. 2021, 104, 7122–7134. [Google Scholar] [CrossRef]
- Marras, G.; Gaspa, G.; Sorbolini, S.; Dimauro, C.; Marsan, P.A.; Valentini, A.; Williams, J.; Macciotta, N.P.P. Analysis of runs of homozygosity and their relationship with inbreeding in five cattle breeds farmed in Italy. Anim. Genet. 2014, 46, 110–121. [Google Scholar] [CrossRef]
- McCabe, M.; Waters, S.; Morris, D.; Kenny, D.; Lynn, D.; Creevey, C. RNA-seq analysis of differential gene expression in liver from lactating dairy cows divergent in negative energy balance. BMC Genom. 2012, 13, 193. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McDougall, S.; LeBlanc, S.; Heiser, A. Effect of prepartum energy balance on neutrophil function following pegbovigrastim treatment in periparturient cows. J. Dairy Sci. 2017, 100, 7478–7492. [Google Scholar] [CrossRef] [Green Version]
- McGuffey, R.; Richardson, L.; Wilkinson, J. Ionophores for Dairy Cattle: Current Status and Future Outlook. J. Dairy Sci. 2001, 84, E194–E203. [Google Scholar] [CrossRef]
- McNeel, A.K.; Reiter, B.C.; Weigel, D.; Osterstock, J.; Di Croce, F.A. Validation of genomic predictions for wellness traits in US Holstein cows. J. Dairy Sci. 2017, 100, 9115–9124. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mezzetti, M.; Bionaz, M.; Trevisi, E. Interaction between inflammation and metabolism in periparturient dairy cows. J. Anim. Sci. 2020, 98, S155–S174. [Google Scholar] [CrossRef]
- Ryman, V.E.; Nickerson, S.C.; Kautz, F.M.; Hurley, D.J.; Ely, L.O.; Wang, Y.Q.; Forsberg, N.E. Effect of dietary supplementation on the antimicrobial activity of blood leukocytes isolated from Holstein heifers. Res. Vet. Sci. 2013, 3, 969–974. [Google Scholar] [CrossRef]
- Mezzetti, M.; Minuti, A.; Piccioli-Cappelli, F.; Gabai, G.; Trevisi, E. Administration of an Immune Stimulant during the Transition Period Improved Lipid Metabolism and Rumination without Affecting Inflammatory Status. Animals 2019, 9, 619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minuti, A.; Ahmed, S.; Trevisi, E.; Cappelli, F.P.; Bertoni, G.; Jahan, N.; Bani, P. Experimental acute rumen acidosis in sheep: Consequences on clinical, rumen, and gastrointestinal permeability conditions and blood chemistry. J. Anim. Sci. 2014, 92, 3966–3977. [Google Scholar] [CrossRef] [Green Version]
- Lopreiato, V.; Palma, E.; Minuti, A.; Loor, J.J.; Lopreiato, M.; Trimboli, F.; Morittu, V.M.; Spina, A.A.; Britti, D.; Trevisi, E. Pegbovigrastim Treatment around Parturition Enhances Postpartum Immune Response Gene Network Expression of whole Blood Leukocytes in Holstein and Simmental Cows. Animals 2020, 10, 621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minuti, A.; Jahan, N.; Lopreiato, V.; Piccioli-Cappelli, F.; Bomba, L.; Capomaccio, S.; Loor, J.; Ajmone-Marsan, P.; Trevisi, E. Evaluation of circulating leukocyte transcriptome and its relationship with immune function and blood markers in dairy cows during the transition period. Funct. Integr. Genom. 2019, 20, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, H.F.; Faciola, A.P. Ruminal acidosis, bacterial changes, and lipopolysaccharides. J. Anim. Sci. 2020, 98, skaa248. [Google Scholar] [CrossRef]
- Van Schyndel, S.J.; Carrier, J.; Pascottini, O.B.; Leblanc, S.J. The effect of pegbovigrastim on circulating neutrophil count in dairy cattle: A randomized controlled trial. PLoS ONE 2018, 13, e0198701. [Google Scholar] [CrossRef] [Green Version]
- Nace, E.; Nickerson, S.; Kautz, F.; Breidling, S.; Wochele, D.; Ely, L.; Hurley, D. Modulation of innate immune function and phenotype in bred dairy heifers during the periparturient period induced by feeding an immunostimulant for 60 days prior to delivery. Vet. Immunol. Immunopathol. 2014, 161, 240–250. [Google Scholar] [CrossRef] [PubMed]
- Nayeri, S.; Schenkel, F.; Fleming, A.; Kroezen, V.; Sargolzaei, M.; Baes, C.; Cánovas, A.; Squires, J.; Miglior, F. Genome-wide association analysis for β-hydroxybutyrate concentration in Milk in Holstein dairy cattle. BMC Genet. 2019, 20, 58. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neave, H.; Lomb, J.; von Keyserlingk, M.; Behnam-Shabahang, A.; Weary, D. Parity differences in the behavior of transition dairy cows. J. Dairy Sci. 2017, 100, 548–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neave, H.; Lomb, J.; Weary, D.; LeBlanc, S.; Huzzey, J.; Von Keyserlingk, M. Behavioral changes before metritis diagnosis in dairy cows. J. Dairy Sci. 2018, 101, 4388–4399. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, C.R.; Sellers, M.D.; Ballou, M.A. Elevated plasma haptoglobin concentrations following parturition are associated with elevated leukocyte responses and decreased subsequent reproductive efficiency in multiparous Holstein dairy cows. Vet. Immunol. Immunopathol. 2015, 164, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Mammi, L.; Guadagnini, M.; Mechor, G.; Cainzos, J.; Fusaro, I.; Palmonari, A.; Formigoni, A. The Use of Monensin for Ketosis Prevention in Dairy Cows during the Transition Period: A Systematic Review. Animals 2021, 11, 1988. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Marty, R.J.; Forsberg, N.E.; Chapman, J.D.; Mullarky, I.K. OmniGen-AF®restores GR-1, L-selectin, and RANTES expression by immunosuppressed murine PMN challenged with lipopolysaccharide in a MyD88-dependent manner. J. Dairy Sci. 2013, 96, 397. [Google Scholar]
- Gaddis, K.P.; Cole, J.; Clay, J.; Maltecca, C. Genomic selection for producer-recorded health event data in US dairy cattle. J. Dairy Sci. 2014, 97, 3190–3199. [Google Scholar] [CrossRef] [PubMed]
- Pearce, S. The Effects of Heat Stress and Nutritional Status on Metabolism and Intestinal Integrity in Growing Pigs; Iowa State University, Digital Repository: Ames, IA, USA, 2011. [Google Scholar]
- Mezzetti, M.; Piccioli-Cappelli, F.; Bani, P.; Amadori, M.; Calamari, L.; Minuti, A.; Loor, J.J.; Bionaz, M.; Trevisi, E. Monensin controlled-release capsule administered in late-pregnancy differentially affects rumination patterns, metabolic status, and cheese-making properties of the milk in primiparous and multiparous cows. Ital. J. Anim. Sci. 2019, 18, 1271–1283. [Google Scholar] [CrossRef] [Green Version]
- Pearce, S.C.; Sanz-Fernandez, M.V.; Torrison, J.L.; Wilson, M.E.; Baumgard, L.H.; Gabler, N.K. Dietary organic zinc attenuates heat stress–induced changes in pig intestinal integrity and metabolism12. J. Anim. Sci. 2015, 93, 4702–4713. [Google Scholar] [CrossRef] [PubMed]
- Piñeiro, J.; Menichetti, B.; Barragan, A.; Relling, A.; Weiss, W.; Bas, S.; Schuenemann, G. Associations of postpartum lying time with culling, milk yield, cyclicity, and reproductive performance of lactating dairy cows. J. Dairy Sci. 2019, 102, 3362–3375. [Google Scholar] [CrossRef] [Green Version]
- Prins, B.; Kuchenbaecker, K.B.; Bao, Y.; Smart, M.; Zabaneh, D.; Fatemifar, G.; Luan, J.; Wareham, N.J.; Scott, R.A.; Perry, J.R.B.; et al. Genome-wide analysis of health-related biomarkers in the UK Household Longitudinal Study reveals novel associations. Sci. Rep. 2017, 7, 11008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Proudfoot, K.L. Maternal Behavior and Design of the Maternity Pen. Vet. Clin. N. Am. Food Anim. Pract. 2019, 35, 111–124. [Google Scholar] [CrossRef] [PubMed]
- Dann, H.; Litherland, N.; Underwood, J.; Bionaz, M.; D’Angelo, A.; McFadden, J.; Drackley, J. Diets During Far-Off and Close-Up Dry Periods Affect Periparturient Metabolism and Lactation in Multiparous Cows. J. Dairy Sci. 2006, 89, 3563–3577. [Google Scholar] [CrossRef]
- Putman, A.; Brown, J.; Gandy, J.; Wisnieski, L.; Sordillo, L. Changes in biomarkers of nutrient metabolism, inflammation, and oxidative stress in dairy cows during the transition into the early dry period. J. Dairy Sci. 2018, 101, 9350–9359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevisi, E.; Amadori, M.; Cogrossi, S.; Razzuoli, E.; Bertoni, G. Metabolic stress and inflammatory response in high-yielding, periparturient dairy cows. Res. Vet. Sci. 2012, 93, 695–704. [Google Scholar] [CrossRef]
- Van Raden, P.M.; Cole, J.B.; Gaddis, K.L.P. Net Merit as a Measure of Lifetime Profit: 2014 Revision. Available online: https://aipl.arsusda.gov/reference/nmcalc-2014.htm. (accessed on 1 December 2018).
- Raghupathy, R. Cytokines as Key Players in the Pathophysiology of Preeclampsia. Med. Princ. Pract. 2013, 22, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Raszek, M.M.; Guan, L.L.; Plastow, G.S. Use of Genomic Tools to Improve Cattle Health in the Context of Infectious Diseases. Front. Genet. 2016, 7, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Duffield, T.; Rabiee, A.; Lean, I. A Meta-Analysis of the Impact of Monensin in Lactating Dairy Cattle. Part 3. Health and Reproduction. J. Dairy Sci. 2008, 91, 2328–2341. [Google Scholar] [CrossRef]
- Rhoads, M.L.; Rhoads, R.P.; VanBaale, M.J.; Collier, R.J.; Sanders, S.R.; Weber, W.J.; Crooker, B.A.; Baumgard, L.H. Effects of heat stress and plane of nutrition on lactating Holstein cows: I. Production, metabolism, and aspects of circulating somatotropin. J. Dairy Sci. 2009, 92, 1986–1997. [Google Scholar] [CrossRef] [Green Version]
- Rioja-Lang, F.; Roberts, D.; Healy, S.; Lawrence, A.; Haskell, M. Dairy cow feeding space requirements assessed in a Y-maze choice test. J. Dairy Sci. 2012, 95, 3954–3960. [Google Scholar] [CrossRef] [Green Version]
- Rodríguez-Jiménez, S.; Haerr, K.; Trevisi, E.; Loor, J.; Cardoso, F.; Osorio, J. Prepartal standing behavior as a parameter for early detection of postpartal subclinical ketosis associated with inflammation and liver function biomarkers in peripartal dairy cows. J. Dairy Sci. 2018, 101, 8224–8235. [Google Scholar] [CrossRef] [PubMed]
- Rørvang, M.V.; Nielsen, B.L.; Herskin, M.S.; Jensen, M.B. Prepartum Maternal Behavior of Domesticated Cattle: A Comparison with Managed, Feral, and Wild Ungulates. Front. Vet. Sci. 2018, 5, 45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, R.; Tedeschi, L.; Sepúlveda, A. Investigation of the effect of pegbovigrastim on some periparturient immune disorders and performance in Mexican dairy herds. J. Dairy Sci. 2017, 100, 3305–3317. [Google Scholar] [CrossRef] [Green Version]
- Ruotsalainen, S.E.; Gen, F.; Partanen, J.J.; Cichonska, A.; Lin, J.; Benner, C.; Surakka, I.; Reeve, M.P.; Palta, P.; Salmi, M.; et al. An expanded analysis framework for multivariate GWAS connects inflammatory biomarkers to functional variants and disease. Eur. J. Hum. Genet. 2021, 29, 309–324. [Google Scholar] [CrossRef] [PubMed]
- Saha, S.; Gallo, L.; Bittante, G.; Schiavon, S.; Bergamaschi, M.; Gianesella, M.; Fiore, E. A Study on the Effects of Rumen Acidity on Rumination Time and Yield, Composition, and Technological Properties of Milk from Early Lactating Holstein Cows. Animals 2019, 9, 66. [Google Scholar] [CrossRef] [Green Version]
- Soriani, N.; Trevisi, E.; Calamari, L. Relationships between rumination time, metabolic conditions, and health status in dairy cows during the transition period. J. Anim. Sci. 2012, 90, 4544–4554. [Google Scholar] [CrossRef] [PubMed]
- Stangaferro, M.; Wijma, R.; Caixeta, L.; Al Abri, M.; Giordano, J. Use of rumination and activity monitoring for the identification of dairy cows with health disorders: Part III. Metritis. J. Dairy Sci. 2016, 99, 7422–7433. [Google Scholar] [CrossRef] [Green Version]
- A Thompson-Crispi, K.; Sargolzaei, M.; Ventura, R.; Abo-Ismail, M.; Miglior, F.; Schenkel, F.; A Mallard, B. A genome-wide association study of immune response traits in Canadian Holstein cattle. BMC Genomics 2014, 15, 559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trevisi, E.; Amadori, M.; Riva, F.; Bertoni, G.; Bani, P. Evaluation of innate immune responses in bovine forestomachs. Res. Vet. Sci. 2014, 96, 69–78. [Google Scholar] [CrossRef]
- Trevisi, E.; Minuti, A. Assessment of the innate immune response in the periparturient cow. Res. Vet. Sci. 2018, 116, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Trevisi, E.; Moscati, L.; Amadori, M. Disease-Predicting and Prognostic Potential of Innate Immune Responses to Noninfectious Stressors: Human and Animal Models; Amadori, M., Ed.; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Trevisi, E.; Riva, F.; Filipe, J.F.S.; Massara, M.; Minuti, A.; Bani, P.; Amadori, M. Innate immune responses to metabolic stress can be detected in rumen fluids. Res. Vet. Sci. 2018, 117, 65–73. [Google Scholar] [CrossRef]
- Trevisi, E.; Zecconi, A.; Bertoni, G.; Piccinini, R. Blood and milk immune and inflammatory profiles in periparturient dairy cows showing a different liver activity index. J. Dairy Res. 2010, 77, 310–317. [Google Scholar] [CrossRef]
- Trevisi, E.; Zecconi, A.; Cogrossi, S.; Razzuoli, E.; Grossi, P.; Amadori, M. Strategies for reduced antibiotic usage in dairy cattle farms. Res. Vet. Sci. 2014, 96, 229–233. [Google Scholar] [CrossRef]
- Trimboli, F.; Morittu, V.M.; Di Loria, A.; Minuti, A.; Spina, A.A.; Piccioli-Cappelli, F.; Trevisi, E.; Britti, D.; Lopreiato, V. Effect of Pegbovigrastim on Hematological Profile of Simmental Dairy Cows during the Transition Period. Animals 2019, 9, 841. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.B.; Weary, D.M.; Von Keyserlingk, M.A.G.; Beauchemin, K.A. Cow comfort in tie-stalls: Increased depth of shavings or straw bedding increases lying time. J. Dairy Sci. 2009, 92, 2684–2690. [Google Scholar] [CrossRef] [Green Version]
- Ventura, B.; von Keyserlingk, M.; Schuppli, C.; Weary, D. Views on contentious practices in dairy farming: The case of early cow-calf separation. J. Dairy Sci. 2013, 96, 6105–6116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Li, X.; Zhao, C.; Hu, P.; Chen, H.; Liu, Z.; Liu, G.; Wang, Z. Correlation between Composition of the Bacterial Community and Concentration of Volatile Fatty Acids in the Rumen during the Transition Period and Ketosis in Dairy Cows. Appl. Environ. Microbiol. 2012, 78, 2386–2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Puntenney, S.B.; Burton, J.L.; Forsberg, N.E. Ability of a commercial feed additive to modulate expression of innate immunity in sheep immunosuppressed with dexamethasone. Animal 2007, 1, 945–951. [Google Scholar] [CrossRef] [Green Version]
- Wankhade, P.R.; Manimaran, A.; Kumaresan, A.; Jeyakumar, S.; Ramesha, K.; Sejian, V.; Rajendran, D.; Varghese, M.R. Metabolic and immunological changes in transition dairy cows: A review. Vet. World 2017, 10, 1367–1377. [Google Scholar] [CrossRef] [Green Version]
- Wathes, D.C.; Cheng, Z.; Bourne, N.; Taylor, V.J.; Coffey, M.P.; Brotherstone, S. Differences between primiparous and multiparous dairy cows in the inter-relationships between metabolic traits, milk yield and body condition score in the periparturient period. Domest. Anim. Endocrinol. 2007, 33, 203–225. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weary, D.M.; Huzzey, J.M.; von Keyserlingk, M.A.G. BOARD-INVITED REVIEW: Using behavior to predict and identify ill health in animals1. J. Anim. Sci. 2009, 87, 770–777. [Google Scholar] [CrossRef] [Green Version]
- Weller, J.; Ezra, E.; Ron, M. Invited review: A perspective on the future of genomic selection in dairy cattle. J. Dairy Sci. 2017, 100, 8633–8644. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wheelock, J.B.; Rhoads, R.P.; VanBaale, M.J.; Sanders, S.R.; Baumgard, L.H. Effects of heat stress on energetic metabolism in lactating Holstein cows. J. Dairy Sci. 2010, 93, 644–655. [Google Scholar] [CrossRef]
- Egger-Danner, C.; Cole, J.; Pryce, J.; Gengler, N.; Heringstad, B.; Bradley, A.; Stock, K. Invited review: Overview of new traits and phenotyping strategies in dairy cattle with a focus on functional traits. Animal 2015, 9, 191–207. [Google Scholar] [CrossRef] [Green Version]
- Wisnieski, L.; Norby, B.; Pierce, S.; Becker, T.; Gandy, J.; Sordillo, L. Predictive models for early lactation diseases in transition dairy cattle at dry-off. Prev. Vet. Med. 2019, 163, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Tetens, J.; Heuer, C.; Heyer, I.; Klein, M.; Gronwald, W.; Junge, W.; Oefner, P.J.; Thaller, G.; Krattenmacher, N. Polymorphisms within the APOBR gene are highly associated with milk levels of prognostic ketosis biomarkers in dairy cows. Physiol. Genom. 2015, 47, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Wisnieski, L.; Norby, B.; Pierce, S.J.; Becker, T.; Sordillo, L.M. Prospects for predictive modeling of transition cow diseases. Anim. Health Res. Rev. 2019, 20, 19–30. [Google Scholar] [CrossRef]
- Zebeli, Q.; Ghareeb, K.; Humer, E.; Metzler-Zebeli, B.; Besenfelder, U. Nutrition, rumen health and inflammation in the transition period and their role on overall health and fertility in dairy cows. Res. Vet. Sci. 2015, 103, 126–136. [Google Scholar] [CrossRef]
- Zhang, G.; Hailemariam, D.; Dervishi, E.; Goldansaz, S.A.; Deng, Q.; Dunn, S.M.; Ametaj, B.N. Dairy cows affected by ketosis show alterations in innate immunity and lipid and carbohydrate metabolism during the dry off period and postpartum. Res. Vet. Sci. 2016, 107, 246–256. [Google Scholar] [CrossRef]
- Zhang, Q.; Cai, Z.; Lhomme, M.; Sahana, G.; Lesnik, P.; Guerin, M.; Fredholm, M.; Karlskov-Mortensen, P. Inclusion of endophenotypes in a standard GWAS facilitate a detailed mechanistic understanding of genetic elements that control blood lipid levels. Sci. Rep. 2020, 10, 18434. [Google Scholar] [CrossRef] [PubMed]
- Zinicola, M.; Korzec, H.; Teixeira, A.; Ganda, E.; Bringhenti, L.; Tomazi, A.; Gilbert, R.; Bicalho, R. Effects of pegbovigrastim administration on periparturient diseases, milk production, and reproductive performance of Holstein cows. J. Dairy Sci. 2018, 101, 11199–11217. [Google Scholar] [CrossRef] [Green Version]
- Zwald, N.R.; Weigel, K.A.; Chang, Y.M.; Welper, R.D.; Clay, J.S. Genetic Selection for Health Traits Using Producer-Recorded Data. I. Incidence Rates, Heritability Estimates, and Sire Breeding Values. J. Dairy Sci. 2004, 87, 4287–4294. [Google Scholar] [CrossRef] [Green Version]
Item 1 | Unit | Phase | |||
---|---|---|---|---|---|
Lactation | Far-Off | Close-Up 4 | Fresh | ||
Inputs | |||||
Days 2 | day | 90 | 240 | 270 | 11 |
Body weight 3 | kg | 680 | 730 | 751 | 680 |
BCS | - | 3 | 3.3 | 3.3 | 3.3 |
Age | months | 49 | 57 | 58 | 58 |
Milk production | kg | 35 | - | - | 35 |
Butterfat | % | 3.5 | - | - | 3.5 |
True protein | % | 3 | - | - | 3 |
Lactose | % | 4.8 | - | - | 4.8 |
Dry matter intake | kg | 23.6 | 14.4 | 13.7 | 15.6 |
Daily weight change | kg | 0.3 | 0.67 | 0.67 | −1.6 |
Days to gain one condition score | day | 316 | na | na | - |
Days to lose one condition score | day | - | na | na | 55 |
Dietary recommendations | |||||
NEL | Mcal/day | 34.8 | 14 | 14.4 | 34.8 |
NEL | Mcal/kg DM | 1.47 | 0.97 | 1.54–1.62 | 2.23 |
MP | g/day | 2407 | 871 | 910 | 2157 |
Diet MP | % | 10.2 | 6 | 6.6 | 13.8 |
RDP | g/day | 2298 | 1114 | 1358 | 1634 |
Diet RDP | % | 9.7 | 7.7 | 9.9 | 10.5 |
RUP | g/day | 1291 | 317 | 172 | 1405 |
Diet RUP | % | 5.5 | 2.2 | 1.3 | 9 |
Diet NDF min | % | 25–33 | 33 | 33 | 25–33 |
Diet ADF min | % | 17–21 | 21 | 21 | 17–21 |
Diet NFC max | % | 36–44 | 42 | 43 | 36–44 |
Absorbable Ca | g/day | 65 | 18.1 | 21.5 | 64 |
Diet Ca | % | 0.61 | 0.44 | 0.45 (0.5–1.5) | 0.79 |
Absorbable P | g/day | 56.5 | 19.9 | 20.3 | 49 |
Diet P | % | 0.35 | 0.22 | 0.3–0.4 | 0.42 |
Diet Mg | % | 0.19 | 0.11 | 0.35–0.4 | 0.29 |
Diet Cl | % | 0.26 | 0.13 | 0.15 (0.8–1.2) | 0.4 |
Diet K | % | 1.04 | 0.51 | 0.52 | 1.24 |
Diet Na | % | 0.23 | 0.1 | 0.1 | 0.34 |
Diet S | % | 0.2 | 0.2 | 0.2 (0.3–0.4) | 0.2 |
Diet Co | mg/kg DM | 0.11 | 0.11 | 0.11 | 0.11 |
Diet Cu | mg/kg DM | 11 | 12 | 13 | 16 |
Diet I | mg/kg DM | 0.5 | 0.4 | 0.4 | 0.77 |
Diet Fe | mg/kg DM | 15 | 13 | 13 | 22 |
Diet Mn | mg/kg DM | 14 | 16 | 18 | 21 |
Diet Se | mg/kg DM | 0.3 | 0.3 | 0.3 | 0.3 |
Diet Zn | mg/kg DM | 48 | 21 | 22 | 73 |
Diet vitamin A | IU/kg DM | 3169 | 5576 | 6030 | 4795 |
Diet vitamin D | IU/kg DM | 864 | 1520 | 1644 | 1308 |
Diet vitamin E | IU/kg DM | 23 | 81 | 88 | 35 |
DCAD | meq/kg DM | na | na | 10 (−75 to 0) | na |
Sample diet (ingredients listed as kg/day DM) | |||||
Corn silage, normal | - | 8.21 | - | 5.55 (5.40) | 36.44 |
Grass silage, mid-maturity | - | - | 8.1 | 2.48 (2.42) | - |
Legume forage silage, mid-maturity | - | 4.57 | - | - | - |
Legume forage hay, immature | - | - | - | - | 20.17 |
Grass hay, mid-maturity | - | 3.21 | - | - | - |
Sugar beet pup, dried | - | - | - | 2.15 (2.09) | - |
Corn grain, steam flaked | - | 4.33 | - | - | 18.29 |
Soybean meal, 48% CP | - | 1.62 | - | 0.79 (0.77) | 2.53 |
Soybean meal, expellers | - | - | - | - | 7.65 |
Blood meal, ring dried | - | - | - | - | 1.02 |
Cottonseed, whole with lint | - | - | - | - | 8.41 |
Calcium soaps of fatty acids | - | - | - | - | 0.65 |
Vitamin and mineral premix | - | 0.49 | 0.02 | 0.43 (0.42) | 3.18 |
Calcium carbonate | - | 0.07 | 0.46 | - | 0.56 |
Calcium phosphate (di-) | - | - | - | 0.05 (0.03) | - |
Calcium chloride | - | - | - | - (0.14) | - |
Monosodium phosphate | - | 0.02 | - | - (0.07) | 0.4 |
Sodium chloride | - | 0.011 | 5.79 | 0.03 | 0.7 |
Magnesium oxide | - | - | - | 0.05 (0.03) | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mezzetti, M.; Cattaneo, L.; Passamonti, M.M.; Lopreiato, V.; Minuti, A.; Trevisi, E. The Transition Period Updated: A Review of the New Insights into the Adaptation of Dairy Cows to the New Lactation. Dairy 2021, 2, 617-636. https://doi.org/10.3390/dairy2040048
Mezzetti M, Cattaneo L, Passamonti MM, Lopreiato V, Minuti A, Trevisi E. The Transition Period Updated: A Review of the New Insights into the Adaptation of Dairy Cows to the New Lactation. Dairy. 2021; 2(4):617-636. https://doi.org/10.3390/dairy2040048
Chicago/Turabian StyleMezzetti, Matteo, Luca Cattaneo, Matilde Maria Passamonti, Vincenzo Lopreiato, Andrea Minuti, and Erminio Trevisi. 2021. "The Transition Period Updated: A Review of the New Insights into the Adaptation of Dairy Cows to the New Lactation" Dairy 2, no. 4: 617-636. https://doi.org/10.3390/dairy2040048
APA StyleMezzetti, M., Cattaneo, L., Passamonti, M. M., Lopreiato, V., Minuti, A., & Trevisi, E. (2021). The Transition Period Updated: A Review of the New Insights into the Adaptation of Dairy Cows to the New Lactation. Dairy, 2(4), 617-636. https://doi.org/10.3390/dairy2040048