Probiotic Fermented Milk with Collagen
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Fermented Milk Manufacture
2.3. Physicochemical Properties
2.3.1. The pH and Total Acidity
2.3.2. Syneresis
2.3.3. Instrumental Texture
2.3.4. Microbiological Analysis
2.3.5. Organoleptic Analysis
2.4. Statistical Analysis
3. Results
3.1. The pH and Total Acidity
3.2. Syneresis
3.3. Instrumental Texture
3.4. Microbiological Analysis
3.5. Organoleptic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Brinckmann, J. Collagens at a glance. Top. Curr. Chem. 2005, 247, 1–6. [Google Scholar]
- Veit, G.; Kobbe, B.; Keene, D.R.; Paulsson, M.; Koch, M.; Wagener, R. Collagen XXVIII, a novel von Willebrand factor A domain-containing protein with many imperfections in the collagenous domain. J. Biol. Chem. 2006, 281, 3494–3504. [Google Scholar] [CrossRef] [Green Version]
- Czubak, K.; Żbikowska, H. Struktura, funkcja i znaczenie biomedyczne kolagenów. Ann. Acad. Med. Silesiensis 2014, 68, 245–254. [Google Scholar]
- Gorczyca, G. Otrzymywanie i charakterystyka nowych biomateriałów o aktywności przeciwdrobnoustrojowej na bazie chitozanu, kolagenu i żelatyny. Politech. Gdańska Wydział Chem. Gdańsk 2015. Available online: https://pbc.gda.pl/Content/57361/phd_gorczyca_grzegorz.pdf (accessed on 1 July 2020). (In Polish).
- Proksch, E.; Segger, D.; Degwert, J.; Schunck, M.; Zague, V.; Oesser, S. Oral supplementation of specific collagen peptides has beneficial effects on human skin physiology: A double-blind, placebo-controlled study. Ski. Pharmacol. Physiol. 2014, 27, 47–55. [Google Scholar] [CrossRef]
- McAlindon, T.E.; Nuite, M.; Krishnan, N.; Ruthazer, R.; Price, L.L.; Burstein, D.; Griffith, J.; Flechsenhar, K. Change in knee osteoarthritis cartilage detected by delayed gadolinium enhanced magnetic resonance imaging following treatment with collagen hydrolysate: A pilot randomized controlled trial. Osteoarthr. Cartil. 2011, 19, 399–405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zdzieblik, D.; Oesser, S.; Gollhofer, A.; Koenig, D. Corrigendum: Improvement of Activity-Related Knee Joint Discomfort Following Supplementation of Specific Collagen Peptides. Appl. Physiol. Nutr. Metab. 2017, 42, 1237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, K.L.; Sebastianelli, W.; Flechsenhar, K.R.; Aukermann, D.F.; Meza, F.; Millard, R.L.; Deitch, J.R.; Sherbondy, P.S.; Albert, A. 24-Week study on the use of collagen hydrolysate as a dietary supplement in athletes with activity-related joint pain. Curr. Med. Res. Opin. 2008, 24, 1485–1496. [Google Scholar] [CrossRef] [PubMed]
- Praet, S.F.E.; Purdam, C.R.; Welvaert, M.; Vlahovich, N.; Lovell, G.; Burke, L.M.; Gaida, J.E.; Manzanero, S.; Hughes, D.; Waddington, G. Oral supplementation of specific collagen peptides combined with calf-strengthening exercises enhances function and reduces pain in Achilles tendinopathy patients. Nutrients 2019, 11, 76. [Google Scholar] [CrossRef] [Green Version]
- Dressler, P.; Gehring, D.; Zdzieblik, D.; Oesser, S.; Gollhofer, A.; König, D. Improvement of functional ankle properties following supplementation with specific collagen peptides in athletes with chronic ankle instability. J. Sports Sci. Med. 2018, 17, 198–304. [Google Scholar] [CrossRef] [Green Version]
- Baar, K. Stress relaxation and targeted nutrition to treat patellar tendinopathy. Int. J. Sports Nutr. Exerc. Metab. 2019, 4, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Zdzieblik, D.; Oesser, S.; Baumstark, M.W.; Gollhofer, A.; Konig, D. Collagen peptide supplementation in combination with resistance training improves body composition and increases muscle strength in elderly sarcopenic men: A randomised controlled trial. Br. J. Nutr. 2015, 114, 1237–1245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- König, D.; Oesser, S.; Scharla, S.; Zdzieblik, D.; Gollhofer, A. Specific Collagen Peptides Improve Bone Mineral Density and Bone Markers in Postmenopausal Women-A Randomized Controlled Study. Nutrients 2018, 10, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dietz, M. Żywność Fermentowana i Probiotyczna. Samodzielna Fermentacja Mlekowa. Trwale—Smacznie—Zdrowo; Wyd. Vital Gwarancja Zdrowia: Białystok, Polska, 2017; pp. 25–30. ISBN 978-83-65404-57-2. [Google Scholar]
- Toma, M.M.; Pokrotnieks, J. Probiotics as functional food: Microbiological and medical aspects. Acta Univ. Latv. 2006, 710, 117–129. [Google Scholar]
- Salminen, J.S.; Gueimonde, M.; Isolauri, E. Probiotics that modify disease risk. J. Nutr. 2005, 135, 1294–1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szajnar, K.; Znamirowska, A.; Kuźniar, P. Sensory and textural properties of fermented milk with viability of Lactobacillus rhamnosus and Bifidobacterium animalis ssp. lactis Bb-12 and increased calcium concentration. Int. J. Food Prop. 2020, 23, 582–598. [Google Scholar] [CrossRef] [Green Version]
- Jemaa, M.B.; Falleh, H.; Neves, M.A.; Isoda, H.; Nakajima, M.; Ksouri, R. Quality Preservation of Deliberately Contaminated Milk Using Thyme Free and Nanoemulsified Essential Oils. Food Chem. 2017, 217, 726–734. [Google Scholar] [CrossRef] [Green Version]
- Znamirowska, A.; Szajnar, K.; Pawlos, M. Organic magnesium salts fortification in fermented goat’s milk. Int. J. Food Prop. 2019, 22, 1615–1625. [Google Scholar] [CrossRef] [Green Version]
- Lima, K.G.; Kruger, M.F.; Behrens, J.; Destro, M.T.; Landgraf, M.; Franco, B.D.G. Evaluation of Culture Media for Enumeration of Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium animalis in the Presence of Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus. LWT Food Sci. Technol. 2009, 42, 491–495. [Google Scholar] [CrossRef]
- PN-ISO 22935-3:2013-07. Milk and Milk Products. Guidance on a Method for Evaluation of Compliance with Product Specifications for Sensory Properties by Scoring; Polski Komitet Organizacyjny: Warszawa, Polska, 2013. (In Polish) [Google Scholar]
- Champagne, C.P.; Gardner, N.-J.; Roy, D. Challenges in the Addition of Probiotic Cultures to Foods. Crit. Rev. Food Sci. 2005, 45, 61–84. [Google Scholar] [CrossRef]
- Ashraf, R.; Shah, N.P. Selective and Differential Enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium Spp. In Yoghurt—A Review. Int. J. Food Microbiol. 2011, 149, 194–208. [Google Scholar] [CrossRef]
- Soomro, A.H.; Dars, A.G.; Sheikh, S.A.; Khaskheli, G.S.; Magsi, A.S.; Panhwar, A.A.; Talpur, A. Effect of milk source and stabilizers on the compositional and sensorial quality of yoghurt. Pure Appl. Biol. 2016, 5, 1316–1322. [Google Scholar] [CrossRef]
- Lucas, A.; Sodini, I.; Monnet, C.; Jolivet, P.; Corrieu, G. Probiotic cell counts and acidification in fermented milks supplemented with milk protein hydrolysates. Int. Dairy J. 2004, 14, 47–53. [Google Scholar] [CrossRef]
- Kavaz, A.; Bakirci, I. Influence of inulin and demineralised whey powder addition on the organic acid profiles of probiotic yoghurts. Int. J. Dairy Technol. 2014, 67, 577–583. [Google Scholar] [CrossRef]
- Ayub, M.; Saddiq, M. Effect of different types of milk and stabilizers on the chemical composition of quality yoghurt. Sarhad J. Agric. 2003, 19, 271–278. [Google Scholar]
- Panesar, P.S.; Shinde, C. Effect of Storage on Syneresis, pH, Lactobacillus acidophilus Count, Bifidobacterium bifidum Count of Aloe vera Fortified Probiotic Yoghurt. Curr. Res. Dairy Sci. 2012, 4, 17–23. [Google Scholar] [CrossRef]
- Domagala, J. Instrumental texture, syneresis and microstructure of yoghurts prepared from goat, cow and sheep milk. Int. J. Food Prop. 2009, 12, 605–615. [Google Scholar] [CrossRef]
- Fiszman, S.M.; Lluch, M.A.; Salvador, A. Effect of addition of gelatin on microstructure of acidic milk gels and yoghurt and on their rheological properties. Int. Dairy J. 1999, 9, 895–901. [Google Scholar] [CrossRef]
- Gerhardt, Â.; Monteiro, B.W.; Gennari, A.; Lehn, D.N.; De Souza, C.F.V. Características físico-químicas e sensoriais de bebidas lácteas fermentadas utilizando soro de ricota e colágeno hidrolisado. Physicochemical and sensory characteristics of fermented dairy drink using ricotta cheese whey and hydrolyzed collagen. Rev. Inst. Laticínios Cândido Tostes 2013, 68, 41–50. [Google Scholar] [CrossRef]
- Zhao, Q.Z.; Wang, J.S.; Zhao, M.M.; Jiang, Y.M.; Chun, C. Effect of casein hydrolysates on yogurt fermentation and texture properties during storage. Food Technol. Biotechnol. 2006, 44, 429–434. [Google Scholar]
- Oliveira, M.N.; Sodini, I.; Remeuf, F.; Corrieu, G. Effect of milk supplementation and culture composition on acidification, textural properties and microbiological stability of fermented milks containing probiotic bacteria. Int. Dairy J. 2001, 11, 935–942. [Google Scholar] [CrossRef]
- Li, C.; Song, J.; Kwok, L.; Wang, J.; Dong, Y.; Yu, H.; Hou, O.; Zhang, H.; Chen, Y. Influence of Lactobacillus plantarum on yogurt fermentation properties and subsequent changes during postfermentation storage. J. Dairy Sci. 2017, 100, 2512–2525. [Google Scholar] [CrossRef] [Green Version]
- Da Mata Rigoto, J.; Ribeiro, T.H.S.; Stevanato, N.; Sampaio, A.R.; Ruiz, S.P.; Bolanho, B.C. Effect of açaí pulp, cheese whey, andhydrolysate collagen on the characteristics of dairy beverages containing probiotic bacteria. J. Food Process. Eng. 2019, 42, e12953. [Google Scholar] [CrossRef] [Green Version]
- Sodini, I.; Lucas, A.; Tissier, J.P.; Corrieu, G. Physical properties and microstructure of yoghurts supplemented with milk protein hydrolysates. Int. Dairy J. 2005, 15, 29–35. [Google Scholar] [CrossRef]
- Ranadheera, R.D.C.S.; Baines, S.K.; Adams, M.C. Importance of food in probiotic efficacy. Food Res. Int. 2010, 43, 1–7. [Google Scholar] [CrossRef]
- Iravani, S.; Korbekandi, H.; Mirmohammadi, S.V. Technology and potential applications of probiotic encapsulation in fermented milk products. J. Food Sci. Technol. 2015, 52, 4679–4696. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Prasad, D.N. Use of stabilizers in cultured milk products. Indian Dairym. 2000, 52, 19–24. [Google Scholar]
Properties | Storage Time (Days) | Bifidobacterium Bb-12 | L. rhamnosus | ||
---|---|---|---|---|---|
A | B | C | D | ||
pH | 1 | 4.69 bB ± 0.02 | 4.62 bB ± 0.02 | 4.80 cB ± 0.04 | 4.47 aB ± 0.02 |
21 | 4.45 bA ± 0.03 | 4.35 aA ± 0.03 | 4.59 cA ± 0.00 | 4.32 aA ± 0.02 | |
Total acidity (g L−1 of lactic acid) | 1 | 0.87 aA ± 0.02 | 0.84 aA ± 0.02 | 0.82 bA ± 0.01 | 0.71 cA ± 0.01 |
21 | 1.08 aB ± 0.09 | 1.00 aB ± 0.05 | 1.05 aB ± 0.01 | 0.95 aB ± 0.05 | |
Syneresis (%) | 1 | 36.85 aA ± 0.71 | 38.71 bA ± 1.41 | 40.87 bcA ± 0.89 | 43.43 cA ± 0.34 |
21 | 43.89 bB ± 0.69 | 47.81 cB ± 0.36 | 39.79 aA ± 0.37 | 44.53 bA ± 0.34 | |
Hardness (N) | 1 | 2.02 bA ± 0.06 | 1.11 aA ± 0.01 | 2.05 bA ± 0.05 | 1.13 aA ± 0.07 |
21 | 2.29 bB ± 0.04 | 1.20 aA ± 0.06 | 2.23 bA ± 0.06 | 1.21 aA ± 0.05 | |
Adhesiveness (mJ) | 1 | 4.57 bA ± 0.12 | 1.73 aA ± 0.06 | 4.37 bA ± 0.21 | 1.53 aA ± 0.12 |
21 | 5.55 bB ± 0.35 | 1.60 aA ± 0.36 | 4.70 bB ± 0.10 | 1.60 aA ± 0.20 | |
Springiness (mm) | 1 | 14.39 aA ± 0.19 | 14.14 aA ± 0.12 | 14.26 aA ± 0.16 | 14.23 aA ± 0.24 |
21 | 14.24 aA ± 0.06 | 14.39 aA ± 0.22 | 14.47 aA ± 0.12 | 14.25 aA ± 0.09 |
Properties | Storage Time (Days) | Bifidobacterium Bb-12 | L. rhamnosus | ||
---|---|---|---|---|---|
A | B | C | D | ||
Consistency | 1 | 7.00 aA ± 1.55 | 7.83 Aa ± 1.60 | 6.83 Aa ± 1.72 | 7.67 Aa ± 1.75 |
21 | 6.00 Aa ± 1.73 | 6.00 Aa ± 1.00 | 6.33 Aa ± 1.15 | 5.67 Aa ± 1.53 | |
Milky creamy-taste | 1 | 5.33 Aa ± 1.21 | 5.33 Aa ± 2.34 | 6.00 Aa ± 1.67 | 5.50 Aa ± 2.17 |
21 | 7.00 Aa ± 1.00 | 5.67 Aa ± 0.58 | 6.67 Aa ± 0.58 | 6.00 Aa ± 1.00 | |
Fermentation taste (the taste stimulated by lactic acid) | 1 | 4.33 Aab ± 1.51 | 4.83 Aab ± 1.33 | 3.33 Aa ± 1.21 | 6.50 Ab ± 1.38 |
21 | 6.33 Aa ± 2.52 | 5.67 Aa ± 1.15 | 6.33 Aa ± 2.89 | 5.67 Aa ± 2.08 | |
Sweet taste | 1 | 3.00 Aa ± 1.41 | 3.00 Aa ± 2.00 | 4.83 Aa ± 2.14 | 2.33 Aa ± 1.51 |
21 | 4.33 Aa ± 1.51 | 2.67 Aa ± 1.53 | 3.00 Aa ± 1.73 | 2.00 Aa ± 1.00 | |
Off-taste | 1 | 1.00 Aa ± 0.00 | 1.17 Aa ± 0.41 | 1.17 Aa ± 0.41 | 1.17 Aa ± 0.41 |
21 | 1.67 Aa ± 1.15 | 1.67 Aa ± 1.15 | 2.00 Aa ± 0.73 | 1.67 Aa ± 1.15 | |
Sour odour | 1 | 4.67 Aa ± 0.82 | 4.17 Aa ± 0.75 | 3.33 a ± 1,21 | 4.67 Aa ± 0.82 |
21 | 5.67 Aa ± 1.53 | 5.67 Aa ± 1.08 | 4.33 Aa ± 1,53 | 5.33 Aa ± 0.58 | |
Off-odour | 1 | 1.00 Aa ± 0.00 | 1.17 Aa ± 0.41 | 1.00 Aa ± 0.00 | 1.17 Aa ± 0.41 |
21 | 1.00 Aa ± 0.00 | 1.00 Aa ± 0.00 | 1.00 Aa ± 0.00 | 1.00 Aa ± 0.00 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Znamirowska, A.; Szajnar, K.; Pawlos, M. Probiotic Fermented Milk with Collagen. Dairy 2020, 1, 126-134. https://doi.org/10.3390/dairy1020008
Znamirowska A, Szajnar K, Pawlos M. Probiotic Fermented Milk with Collagen. Dairy. 2020; 1(2):126-134. https://doi.org/10.3390/dairy1020008
Chicago/Turabian StyleZnamirowska, Agata, Katarzyna Szajnar, and Małgorzata Pawlos. 2020. "Probiotic Fermented Milk with Collagen" Dairy 1, no. 2: 126-134. https://doi.org/10.3390/dairy1020008
APA StyleZnamirowska, A., Szajnar, K., & Pawlos, M. (2020). Probiotic Fermented Milk with Collagen. Dairy, 1(2), 126-134. https://doi.org/10.3390/dairy1020008