Effect of a Commercial Bentonite Clay (Smectite Clay) on Dairy Cows Fed Aflatoxin-Contaminated Feed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Cows and Diets
2.2. Analysis of Feeds, Diets and Mycotoxins
2.3. Body Weight and Body Condition Score
2.4. Health Status of Cows
2.5. Milk Yield, Composition, and AFM1 Analysis
2.6. Blood Sampling and Blood Biochemistry
2.7. Carry-Over Calculation
2.8. Statistical Analysis
3. Results
3.1. Chemical Composition, Digestibility, and Energy Evaluation of TMR
3.2. Feeding Behavior, Milk Yields, Feed Efficiency, and Milk Parameters
3.3. AFB1 Intake and Carry-Over of AFB1 into Dairy Milk as AFM1
3.4. Body Weight, Body Condition Score, and Blood Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Omotayo, O.P.; Omotayo, A.O.; Mwanza, M.; Babalola, O.O. Prevalence of Mycotoxins and Their Consequences on Human Health. Toxicol. Res. 2019, 35, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abdallah, M.F.; Girgin, G.; Baydar, T. Occurrence, Prevention and Limitation of Mycotoxins in Feeds. Anim. Nutr. Feed Technol. 2015, 15, 471–490. [Google Scholar] [CrossRef]
- Eskola, M.; Kos, G.; Elliott, C.T.; Hajšlová, J.; Mayar, S.; Krska, R. Worldwide Contamination of Food-Crops with Mycotoxins: Validity of the Widely Cited ‘FAO estimate’ of 25%. Crit. Rev. Food Sci. Nutr. 2019. [Google Scholar] [CrossRef] [PubMed]
- Tola, M.; Kebede, B. Occurrence, Importance and Control of Mycotoxins: A Review. Cogent Food Agric. 2016, 2, 1191103. [Google Scholar] [CrossRef]
- Gallo, A.; Giuberti, G.; Frisvad, J.C.; Bertuzzi, T.; Nielsen, K.F. Review on Mycotoxin Issues in Ruminants: Occurrence in Forages, Effects of Mycotoxin Ingestion on Health Status and Animal Performance and Practical Strategies to Counteract Their Negative Effects. Toxins 2015, 7, 3057–3111. [Google Scholar] [CrossRef] [PubMed]
- Streit, E.; Naehrer, K.; Rodrigues, I.; Schatzmayr, G. Mycotoxin occurrence in feed and feed raw materials worldwide: long-term analysis with special focus on Europe and Asia. J. Sci. Food Agric. 2013, 93, 2892–2899. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, M.F.; Girgin, G.; Baydar, T.; Krska, R.; Sulyok, M. Occurrence of multiple mycotoxins and other fungal metabolites in animal feed and maize samples from Egypt using LC-MS/MS. J. Sci. Food Agric. 2017, 97, 4419–4428. [Google Scholar] [CrossRef]
- Gallo, A.; Masoero, F. In vitro models to evaluate the capacity of different sequestering agents to adsorb aflatoxins. Ital. J. Anim. Sci. 2009, 9, 109–116. [Google Scholar]
- Hildebrand, A.A.; Pfeiffer, E.; Rapp, A.; Metzler, M. Hydroxylation of the mycotoxin zearalenone at aliphatic positions: Novel mammalian metabolites. Mycotoxin Res. 2012, 28, 1–8. [Google Scholar] [CrossRef]
- Peles, F.; Sipos, P.; Gyori, Z.; Pfliegler, W.P.; Giacometti, F.; Serraino, A.; Pagliuca, G.; Gazzotti, T.; Pócsi, I. Adverse Effects, Transformation and Channeling of Aflatoxins into Food Raw Materials in Livestock. Front. Microbiol. 2019, 10, 2861. [Google Scholar] [CrossRef] [Green Version]
- Trevisi, E.; Minuti, A. Assessment of the innate immune response in the periparturient cow. Vet. Sci. Res. J. 2018, 116, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Streit, E.; Schwab, C.; Sulyok, M.; Naehrer, K.; Krska, R.; Schatzmayr, G. Multi-Mycotoxin Screening Reveals the Occurrence of 139 Different Secondary Metabolites in Feed and Feed Ingredients. Toxins 2013, 5, 504–523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jovaisiene, J.; Bakutis, B.; Baliukoniene, V.; Gerulis, G. Fusarium and Aspergillus mycotoxins effects on dairy cow health, performance and the efficacy of Anti-Mycotoxin Additive. Pol. J. Vet. Sci. 2016, 19, 79–87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IARC. Monographs on the Evaluation of Carcinogenic Risks to Humans Volume 100F; International Agency for Research on Cancer: Lyon, France, 2012. [Google Scholar]
- Abdallah, M.F.; Girgin, G.; Baydar, T. Mycotoxin Detection in Maize, Commercial Feed, and Raw Dairy Milk Samples from Assiut City, Egypt. Vet. Sci. 2019, 6, 57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kabak, B.; Dobson, A.; Var, I. Strategies to Prevent Mycotoxin Contamination of Food and Animal Feed: A Review. Crit. Rev. Food Sci. Nutr. 2006, 46, 593–619. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Chen, Z.-Y.; Lee, R.D.; Scully, B.T. Drought Stress and Preharvest Aflatoxin Contamination in Agricultural Commodity: Genetics, Genomics and Proteomics. J. Integr. Plant Biol. 2008, 50, 1281–1291. [Google Scholar] [CrossRef] [PubMed]
- Haerr, K.J.; Lopes, N.M.; Pereira, M.N.; Fellows, G.M.; Cardoso, F.C. Corn silage from corn treated with foliar fungicide and performance of Holstein cows. J. Dairy Sci. 2015, 98, 8962–8972. [Google Scholar] [CrossRef] [Green Version]
- Kalebich, C.C.; Cardoso, F.C. Effects of Foliar Fungicide Application on Corn Plants on the Composition of Corn Silage for Ruminant Diets. J. Anim. Res. Nutr. 2017, 2, 5. [Google Scholar]
- Whitlow, L.W.; Hagler, W.M. Mycotoxins in Dairy Cattle: Occurrence, Toxicity, Prevention and Treatment. Proc. Southwest Nutr. Conf. 2005, 124–138. [Google Scholar]
- Shrestha, G.R.; Mridha, A.U. Detection and quantitation of aflatoxin for the diagnosis of Aspergillus flavus. Nepal J. Biotechnol. 2015, 3, 6–9. [Google Scholar] [CrossRef] [Green Version]
- Frazzoli, C.; Gherardi, P.; Saxena, N.; Belluzzi, G.; Mantovani, A. The Hotspot for (Global) One Health in Primary Food Production: Aflatoxin M1 in Dairy Products. Front. Public Health 2016, 4, 294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abrar, M.; Anjum, F.M.; Butt, M.S.; Pasha, I.; Randhawa, M.A.; Saeed, F.; Waqas, K. Aflatoxins: Biosynthesis, occurrence, toxicity, and remedies. Crit. Rev. Food Sci. Nutr. 2013, 53, 862–874. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; He, J.; Lin, J.; Sun, X.; Sun, F.; Ou, C.; Jiang, C. Distinct response of the hepatic transcriptome to Aflatoxin B1 induced hepatocellular carcinogenesis and resistance in rats. Sci. Rep. 2016, 6, 31898. [Google Scholar] [CrossRef] [PubMed]
- Weatherly, M.E.; Pate, R.T.; Rottinghaus, G.E.; Filho, F.O.R.; Cardoso, F.C. Physiological responses to a yeast and clay-based adsorbent during an aflatoxin challenge in Holstein cows. Anim. Feed. Sci. Technol. 2018, 235, 147–157. [Google Scholar] [CrossRef]
- Pate, R.T.; Cardoso, F.C. Injectable trace minerals (selenium, copper, zinc, and manganese) alleviate inflammation and oxidative stress during an aflatoxin challenge in lactating multiparous Holstein cows. J. Dairy Sci. 2018, 101, 8532–8543. [Google Scholar] [CrossRef]
- Moschini, M.; Gallo, A.; Piva, G.; Masoero, F. The effects of rumen fluid on the in vitro aflatoxin binding capacity of different sequestering agents and in vivo release of the sequestered toxin. Anim. Feed Sci. Technol. 2008, 147, 292–309. [Google Scholar] [CrossRef]
- Sulzberger, S.A.; Melnichenko, S.; Cardoso, F.C. Effects of clay after an aflatoxin challenge on aflatoxin clearance, milk production, and metabolism of Holstein cows. J. Dairy Sci. 2017, 100, 1856–1869. [Google Scholar] [CrossRef]
- Jawaid, S.; Talpur, F.N.; Nizamani, S.M.; Memon, N.N.; Khaskheli, A.A. Quantification of oxytocin residues in dairy milk from Sindh, Pakistan. Int. J. Food Sci. Technol. 2015, 50, 1640–1643. [Google Scholar] [CrossRef]
- Masoero, F.; Gallo, A.; Diaz, D.; Piva, G.; Moschini, M. Effects of the procedure of inclusion of a sequestering agent in the total mixed ration on proportional aflatoxin M1 excretion into milk of lactating dairy cows. Anim. Feed. Sci. Technol. 2009, 150, 34–45. [Google Scholar] [CrossRef]
- Gallo, A.; Bertuzzi, T.; Giuberti, G.; Moschini, M.; Bruschi, S.; Cerioli, C.; Masoero, F. New assessment based on the use of principal factor analysis to investigate corn silage quality from nutritional traits, fermentation end products and mycotoxins. J. Sci. Food Agric. 2016, 96, 437–448. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 17th ed.; Association of Official Analytical Chemists: Gaithersburg, MD, USA, 2000. [Google Scholar]
- NorFor. NorFor-The Nordic Feed Evaluation System, 1st ed.; Wageningen Academic Publishers: Wageningen, The Netherlands, 2011. [Google Scholar]
- Licitra, G.; Hernandez, T.M.; Van Soest, P.J. Standardization of procedures for nitrogen fractionation of ruminant feeds . Anim. Feed Sci. Technol. 1996, 57, 347–358. [Google Scholar] [CrossRef]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Gallo, A.; Masoero, F.; Bertuzzi, T.; Piva, G.; Pietri, A. Effect of the inclusion of adsorbents on aflatoxin B-1 quantification in animal feedstuffs. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2010, 27, 54–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- HMSO. Condition Scoring of Dairy Cows; Ministry of Agriculture, Fisheries and Food: London, UK, 1986.
- Ireland-Perry, R.L.; Stallings, C.C. Fecal consistency as related to dietary composition in lactating Holstein Cows. J. Dairy Sci. 1993, 76, 1074–1082. [Google Scholar] [CrossRef]
- Chessa, Z.; Bulgari, O.; Rizzi, R.; Calamari, L.; Bani, P.; Biffani, S.; Caroli, A.M. Selection for milk coagulation properties predicted by Fourier transform infrared spectroscopy in the Italian Holstein-Friesian breed. J. Dairy Sci. 2014, 97, 4512–4521. [Google Scholar] [CrossRef] [Green Version]
- Mortimer, D.N.; Gilbert, J.; Shepherd, M.J. Rapid and Highly Sensitive Analysis of Aflatoxin M1 in Liquid and Powdered Milks Using an Affinity Column Cleanup. J. Chromatogr. 1987, 407, 393–398. [Google Scholar] [CrossRef]
- Calamari, L.; Ferrari, A.; Minuti, A.; Trevisi, E. Assessment of the main plasma parameters included in a metabolic profile of dairy cow based on Fourier Transform mid-infrared spectroscopy: Preliminary results. BMC Vet. Res. 2016, 12, 4. [Google Scholar] [CrossRef] [Green Version]
- Bionaz, M.; Trevisi, E.; Calamari, L.; Librandi, F.; Ferrari, A.; Bertoni, G. Plasma Paraoxonase, Health, Inflammatory Conditions, and Liver Function in Transition Dairy Cows. J. Dairy Sci. 2007, 90, 1740–1750. [Google Scholar] [CrossRef] [Green Version]
- Bradley, P.P.; Christensen, R.D.; Rothstein, G. Cellular and Extracellular Myeloperoxidase in Pyogenic Inflammation. Blood 1982, 60, 618–622. [Google Scholar] [CrossRef] [Green Version]
- Jacometo, C.B.; Osorio, J.S.; Socha, M.; Corrêa, M.N.; Piccioli-Cappelli, F.; Trevisi, E.; Loor, J.J. Maternal consumption of organic trace minerals alters calf systemic and neutrophil mRNA and microRNA indicators of inflammation and oxidative stress. J. Dairy Sci. 2015, 98, 7717–7729. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Method Enzymol. 1999, 299, 15–27. [Google Scholar]
- Masoero, F.; Gallo, A.; Moschini, M.; Piva, G.; Diaz, D. Carryover of aflatoxin from feed to milk in dairy cows with low or high somatic cell counts. Animal 2007, 1, 1344–1350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Littell, R.C.; Henry, P.R.; Ammerman, C.B. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. 1998, 76, 1216–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Goonewardene, L.A. The use of MIXED models in the analysis of animal experiments with repeated measures data. Can. J. Anim. Sci. 2004, 84, 1–11. [Google Scholar] [CrossRef]
- Giovati, L.; Magliani, W.; Ciociola, T.; Santinoli, C.; Conti, S.; Polonelli, L. AFM₁ in Milk: Physical, Biological, and Prophylactic Methods to Mitigate Contamination. Toxins 2015, 7, 4330–4349. [Google Scholar] [CrossRef]
- Rodrigues, R.O.; Ledoux, D.R.; Rottinghaus, G.E.; Borutova, R.; Averkieva, O.; McFadden, T.B. Feed additives containing sequestrant clay minerals and inactivated yeast reduce aflatoxin excretion in milk of dairy cows. J. Dairy Sci. 2019, 102, 6614–6623. [Google Scholar] [CrossRef] [Green Version]
- Coppock, R.W.; Christian, R.G.; Jacobsen, B.J. Chapter 69—Aflatoxins. In Veterinary Toxicology—Basics and Clinical Principle, 3rd ed.; Gupta, R.C., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 983–994. [Google Scholar]
- Benkerroum, N. Mycotoxins in dairy products: A review. Int. Dairy J. 2016, 62, 63–75. [Google Scholar] [CrossRef]
- Xiong, J.L.; Wang, Y.M.; Zhou, H.L.; Liu, J.X. Effects of dietary adsorbent on milk aflatoxin M1 content and the health of lactating dairy cows exposed to long-term aflatoxin B1 challenge. J. Dairy Sci. 2018, 101, 8944–8953. [Google Scholar] [CrossRef] [Green Version]
- Diaz, D.E.; Hagler, W.M., Jr.; Blackwelder, J.T.; Eve, J.A.; Hopkins, B.A.; Anderson, K.L.; Jones, F.T.; Whitlow, L.W. Aflatoxin Binders II: Reduction of aflatoxin M1 in milk by sequestering agents of cows consuming aflatoxin in feed. Mycopathologia 2004, 157, 233–241. [Google Scholar] [CrossRef]
- Kissell, L.; Davidson, S.; Hopkins, B.A.; Smith, G.W.; Whitlow, L.W. Effect of experimental feed additives on aflatoxin in milk of dairy cows fed aflatoxin-contaminated diets. J. Anim. Physiol. Anim. Nutr. 2013, 97, 694–700. [Google Scholar] [CrossRef]
- Maki, C.R.; Thomas, A.; Elmore, S.; Romoser, A.; Harvey, R.; Ramirez-Ramirez, H.; Philips, T. Effects of calcium montmorillonite clay and aflatoxin exposure on dry matter intake, milk production, and milk composition. J. Dairy Sci. 2016, 99, 1039–1046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fink-Gimmels, J. Mycotoxins in Cattle Feeds and Carry-Over to Dairy Milk: A Review. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2008, 25, 172–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, J.L.; Wang, Y.M.; Nennich, T.D.; Li, Y.; Liu, J.X. Transfer of dietary aflatoxin B1 to milk aflatoxin M1 and effect of inclusion of Solis Mos in the diet of dairy cows. J. Dairy Sci. 2015, 98, 2545–2554. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, Y.; Zheng, N.; Guo, L.; Song, X.; Zhao, S.; Wang, J. Biological System Responses of Dairy Cows to Aflatoxin B1 Exposure Revealed with Metabolomic Changes in Multiple Biofluids. Toxins 2019, 11, 77. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Queiroz, O.C.M.; Han, J.H.; Staples, C.R.; Adesogan, A.T. Effect of Adding a Mycotoxin-Sequestering Agent on Milk Aflatoxin M₁ Concentration and the Performance and Immune Response of Dairy Cattle Fed an Aflatoxin B₁-contaminated Diet. J. Dairy Sci. 2012, 95, 5901–5908. [Google Scholar] [CrossRef] [PubMed]
- Grenier, B.; Applegate, T.J. Modulation of Intestinal Functions Following Mycotoxin Ingestion: Meta-Analysis of Published Experiments in Animals. Toxins 2013, 5, 396–430. [Google Scholar] [CrossRef] [Green Version]
- Lorenzoni, G. Poultry Diseases Influenced by Gastrointestinal Health: Traditional Treatments and Innovative Solutions; Nottingham University Press: Loughborough, UK, 2010; pp. 1–140. [Google Scholar]
- Ogunade, I.M.; Arriola, K.G.; Jiang, Y.; Driver, J.P.; Staples, C.R.; Adesogan, A.T. Effects of 3 Sequestering Agents on Milk Aflatoxin M1 Concentration and the Performance and Immune Status of Dairy Cows Fed Diets Artificially Contaminated With Aflatoxin B1. J. Dairy Sci. 2016, 99, 6263–6273. [Google Scholar] [CrossRef]
- Bittante, G.; Penasa, M.; Cecchinato, A. Invited review: Genetics and modeling of milk coagulation properties. J. Dairy Sci. 2012, 95, 6843–6870. [Google Scholar] [CrossRef]
Items | Experimental Diets 1 | |||
---|---|---|---|---|
CTR-0* (n = 4) | CTR-0 (n = 9) | CTR-AFLA (n = 9) | TRT (n = 9) | |
Ingredients (% DM) | ||||
Corn meal | 21.7 | |||
Sunflower meal, dehulled 34% | 1.9 | |||
Soybean, solvent meal 44% | 10.3 | |||
Salts (CaCO3 and NaHCO3) | 0.7 | |||
Alfalfa hay | 25.8 | |||
Mineral–vitamin supplement 2 | 1.1 | |||
Fat (palm oil) | 0.8 | |||
Corn silage | 31.4 | |||
Wheat silage | 6.3 | |||
Forage:concentrate ratio | 49.9:50.1 | |||
Chemical composition (% DM) | ||||
DM (% as fed) | 50.6 ± 1.8 | 49.8 ± 2.9 | 50.1 ± 2.4 | 50.8 ± 1.6 |
Crude protein (CP) | 14.8 ± 0.5 | 14.9 ± 0.5 | 15.1 ± 0.2 | 15.1 ± 0.4 |
soluble CP | 5.0 ± 0.2 | 4.9 ± 0.3 | 5.0 ± 0.2 | 5.0 ± 0.1 |
ash | 8.0 ± 0.2 | 8.4 ± 0.5 | 8.5 ± 0.2 | 8.6 ± 0.3 |
aNDFom | 33.0 ± 1.0 | 32.4 ± 1.5 | 32.4 ± 1.7 | 33.0 ± 1.2 |
ADFom | 22.2 ± 0.9 | 21.9 ± 1.4 | 22.0 ± 1.5 | 21.7 ± 1.0 |
ADL | 3.3 ± 0.2 | 3.2 ± 0.3 | 3.3 ± 0.2 | 3.3 ± 0.3 |
NDFD 24 h | 45.4 ± 1.3 | 46.0 ± 1.3 | 45.1 ± 1.5 | 45.0 ± 0.8 |
EE | 2.7 ± 0.1 | 2.7 ± 0.2 | 2.9 ± 0.2 | 2.8 ± 0.3 |
Starch | 23.9 ± 1.8 | 24.3 ± 1.0 | 24.2 ± 1.7 | 24.5 ± 1.4 |
Sugar | 4.0 ± 0.2 | 4.3 ± 0.3 | 4.1 ± 0.2 | 4.1 ± 0.3 |
NDICP | 2.1 ± 0.1 | 2.1 ± 0.1 | 2.2 ± 0.2 | 2.3 ± 0.3 |
ADICP | 0.9 ± 0.1 | 0.8 ± 0.1 | 0.9 ± 0.1 | 0.9 ± 0.1 |
Energy evaluations (Mcal/kg DM) 3 | ||||
TDN (%) | 70.1 ± 0.7 | 70.0 ± 0.9 | 70.2 ± 1.1 | 70.1 ± 0.8 |
ME3x | 2.54 ± 0.05 | 2.54 ± 0.06 | 2.55 ± 0.06 | 2.54 ± 0.05 |
AFB1 contamination (µg/kg DM) | ||||
AFB1 in corn meals | 1.76 ± 2.06 | 17.53 ± 6.55 | ||
AFB1 in TMR | 0.52 ± 0.42 | 0.63 ± 0.50 | 2.28 ± 1.42 | 2.13 ± 1.11 |
Items | Units of Measurements | Treatment | Period | Pooled SEM | p of the Model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTR-0 | CTR-AFLA | TRT | 1 | 2 | 3 | Latin Square | Period | Treatment (T) | Day (D) | D * T | |||
Feeding Behavior | |||||||||||||
DMI | kg/cow/day | 19.5 a | 18.7 b | 18.4 b | 18.4 a | 19.1 a | 17.9 b | 0.27 | 0.297 | <0.05 | <0.05 | 0.074 | 0.841 |
DMI | % BW | 2.73 a | 2.62 b | 2.62 b | 2.75 a | 2.69 a | 2.53 b | 0.005 | 0.109 | <0.05 | <0.05 | 0.070 | 0.857 |
Milk yields | |||||||||||||
MY | kg/cow/day | 29.2 | 28.8 | 28.8 | 30.6 a | 29.1 b | 27.1 c | 0.63 | 0.530 | <0.05 | 0.472 | <0.05 | 0.963 |
3.5% FCM | kg/cow/day | 30.7 | 30.2 | 30.2 | 31.2 | 31.4 | 28.6 | 1.08 | 0.260 | <0.05 | 0.541 | <0.05 | 0.994 |
ECM | kg/cow/day | 31.6 | 31.0 | 31.0 | 32.2 a | 32.1 a | 29.4 b | 1.01 | 0.999 | <0.05 | 0.475 | 0.072 | 0.997 |
Milk/DMI | dmnl | 1.52 c | 1.57 b | 1.61 a | 1.57 | 1.55 | 1.57 | 0.001 | 0.524 | 0.454 | <0.05 | <0.05 | 0.996 |
3.5%FCM/DMI | dmnl | 1.59 b | 1.65 a,b | 1.69 a | 1.61 | 1.67 | 1.65 | 0.004 | 0.355 | 0.147 | <0.05 | <0.05 | 0.991 |
ECM/DMI | dmnl | 1.63 c | 1.69 b | 1.73 a | 1.65 c | 1.70 a | 1.70 b | 0.004 | 0.361 | 0.207 | <0.05 | <0.05 | 0.996 |
Milk parameters | |||||||||||||
Fat | % | 4.27 | 4.30 | 4.31 | 4.09 b | 4.48 a | 4.31 a | 0.036 | 0.856 | <0.05 | 0.888 | <0.05 | 0.615 |
Fat | g/cow/day | 1243 | 1224 | 1226 | 1238 b | 1297 a | 1159 c | 3538.7 | 0.161 | <0.05 | 0.759 | <0.05 | 0.976 |
Protein | % | 3.13 | 3.12 | 3.13 | 3.10 b | 3.12 a,b | 3.15 a | 0.002 | 0.106 | 0.065 | 0.822 | 0.380 | 0.953 |
Protein | g/cow/day | 917 | 897 | 901 | 948 a | 910 b | 859 c | 789.6 | 0.112 | <0.05 | 0.412 | 0.065 | 0.998 |
Casein | % | 2.38 | 2.38 | 2.39 | 2.36 b | 2.38 b | 2.41 a | 0.001 | 0.129 | <0.05 | 0.820 | 0.251 | 0.878 |
Casein | g/cow/day | 699 | 686 | 688 | 723 a | 694 b | 656 c | 440.3 | 0.116 | <0.05 | 0.459 | <0.05 | 0.996 |
Lactose | % | 5.14 | 5.15 | 5.14 | 5.16 a | 5.12 b | 5.15 a | 0.001 | 0.292 | <0.05 | 0.368 | 0.284 | 0.965 |
Lactose | g/cow/day | 1510 | 1483 | 1477 | 1578 a | 1489 b | 1404 c | 1317.9 | 0.463 | <0.05 | 0.083 | <0.05 | 0.969 |
Titratable acidity | °SH/50 mL | 3.03 | 3.06 | 3.01 | 3.01 | 3.06 | 3.02 | 0.006 | 0.792 | 0.282 | 0.338 | 0.063 | 0.794 |
Clotting time, r | min | 18.71 | 18.52 | 18.01 | 18.52 a,b | 20.72 a | 16.01 b | 8.122 | 0.958 | <0.05 | 0.873 | 0.619 | 0.742 |
Curd firmness, a30 | mm | 29.16 | 29.63 | 29.75 | 29.52 | 29.19 | 29.82 | 0.955 | 0.461 | 0.482 | 0.506 | 0.182 | 0.696 |
Milk urea | mg/100 mL | 36.43 | 37.14 | 36.94 | 38.11 a | 37.11 a | 35.29 b | 1.652 | <0.05 | <0.05 | 0.618 | <0.05 | 0.577 |
LogSCC | Log10 (cells/mL) | 2.01 | 2.06 | 1.95 | 2.01 | 2.01 | 2.00 | 0.018 | 0.816 | 0.978 | 0.508 | 0.272 | 0.639 |
Items | Units | Treatment | Period | Pooled SEM | p of the Model | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CTR-0 | CTR-AFLA | TRT | 1 | 2 | 3 | Latin Square | Period | Treatment (T) | Day (D) | D * T | |||
AFB1 Intake * | µg/cow/d | 11.204 c | 42.461 a | 39.197 b | 31.301 a,b | 34.039 a | 27.522 b | 16.0351 | 0.333 | <0.05 | <0.05 | 0.457 | 0.911 |
Milk, AFM1 * | ng/kg milk | 8.81 c | 43.16 a | 24.01 b | 32.40 a | 22.51 b | 21.08 b | 10.065 | 0.597 | <0.05 | <0.05 | <0.05 | <0.05 |
Milk, AFM1 ** | ng/kg milk | 8.90 c | 69.51 a | 33.96 b | 47.22 a | 36.44 b | 28.71 c | 27.958 | 0.688 | <0.05 | <0.05 | 0.876 | 0.454 |
AFM1 excretion * | µg/cow/d | 0.254 c | 1.230 a | 0.683 b | 0.974 a | 0.643 b | 0.549 b | 0.01076 | 0.393 | <0.05 | <0.05 | <0.05 | <0.05 |
AFM1 excretion ** | µg/cow/d | 0.262 c | 1.975 a | 0.969 b | 1.440 a | 1.038 b | 0.729 c | 0.0292 | 0.536 | <0.05 | <0.05 | 0.499 | 0.206 |
Carry Over ** | % | 2.23 b | 4.73 a | 2.51 b | 4.16 a | 3.07 b | 2.25 c | 0.323 | 0.562 | <0.05 | <0.05 | 0.666 | 0.409 |
Items | Units of Measurements | Treatment | Period | Pooled SEM | p of the Model | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
CTR-0 | CTR-AFLA | TRT | 1 | 2 | 3 | Latin Square | Period | Treatment | |||
BCS | Scale 1–4 | 2.30 | 2.29 | 2.28 | 2.33 a | 2.34 a | 2.21 b | 0.003 | 0.397 | <0.05 | 0.910 |
BW | kg | 720.2 | 718.6 | 702.6 | 715.0 | 715.8 | 710.6 | 117.20 | 0.071 | 0.7972 | 0.097 |
PCV | L/L | 0.332 | 0.352 | 0.348 | 0.336 | 0.343 | 0.353 | 0.0002 | 0.132 | 0.3044 | 0.201 |
Glucose | mmol/L | 4.50 | 4.57 | 4.55 | 4.53 | 4.51 | 4.58 | 0.026 | 0.324 | 0.8683 | 0.857 |
Total Cholesterol | mmol/L | 5.24 | 5.49 | 5.56 | 5.75 a | 5.35 b | 5.18 b | 0.031 | 0.841 | <0.05 | 0.079 |
Urea | mmol/L | 5.89 | 5.93 | 5.79 | 5.55 b | 6.61 a | 5.46 b | 0.199 | 0.327 | <0.05 | 0.916 |
Calcium | mmol/L | 2.50 | 2.52 | 2.52 | 2.50 | 2.55 | 2.48 | 0.003 | 0.342 | 0.2614 | 0.901 |
Magnesium | mmol/L | 1.07 | 1.16 | 1.13 | 1.17 a | 1.11 a,b | 1.08 b | 0.002 | 0.196 | <0.05 | 0.081 |
Zinc | μmol/L | 13.66 | 15.00 | 14.57 | 15.75 a | 14.40 a,b | 13.08 b | 1.949 | 0.934 | 0.0768 | 0.462 |
Ceruloplasmin | μmol/L | 2.47 | 2.67 | 2.64 | 2.50 | 2.59 | 2.69 | 0.033 | 0.915 | 0.4450 | 0.321 |
Total Protein | g/L | 83.3 | 84.6 | 84.0 | 85.0 | 84.0 | 82.9 | 1.85 | <0.05 | 0.1604 | 0.507 |
Albumin | g/L | 39.3 | 39.7 | 39.5 | 40.3 a | 39.4 b | 38.9 b | 0.24 | 0.926 | <0.05 | 0.488 |
Globulin | g/L | 44.0 | 44.8 | 44.5 | 44.8 | 44.6 | 44.0 | 1.29 | <0.05 | 0.6399 | 0.666 |
AST/GOT | U/L | 84.8 | 85.5 | 84.6 | 86.9 | 80.6 | 87.4 | 23.36 | 0.698 | 0.1602 | 0.965 |
GGT | U/L | 28.1 | 28.9 | 29.2 | 29.8 a | 28.4 b | 28.1 b | 0.76 | 0.444 | <0.05 | 0.290 |
Total Bilirubin | μmol/L | 1.56 | 1.61 | 2.04 | 1.72 a,b | 1.45 b | 2.05 a | 0.074 | 0.371 | <0.05 | 0.069 |
Haptoglobin | g/L | 0.363 | 0.414 | 0.403 | 0.317 | 0.429 | 0.436 | 0.0176 | 0.748 | 0.4438 | 0.871 |
Paraoxonase | U/L | 103.5 | 108.2 | 105.0 | 106.4 | 104.6 | 105.7 | 6.98 | 0.196 | 0.6931 | 0.098 |
ROMt | (mg H2O2/dL) | 13.13 | 14.33 | 13.67 | 13.29 | 13.87 | 13.97 | 1.003 | 0.892 | 0.6419 | 0.324 |
Myeloperoxidase | U/L | 268.5 | 285.9 | 279.8 | 286.5 | 257.7 | 290.0 | 711.47 | 0.718 | 0.2573 | 0.695 |
FRAP | μmol/L | 160.1 | 157.8 | 152.4 | 148.7 | 157.5 | 219.7 | 119.75 | 0.668 | 0.215 | 0.654 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gallo, A.; Rocchetti, G.; Piccioli Cappelli, F.; Pavone, S.; Mulazzi, A.; van Kuijk, S.; Han, Y.; Trevisi, E. Effect of a Commercial Bentonite Clay (Smectite Clay) on Dairy Cows Fed Aflatoxin-Contaminated Feed. Dairy 2020, 1, 135-153. https://doi.org/10.3390/dairy1020009
Gallo A, Rocchetti G, Piccioli Cappelli F, Pavone S, Mulazzi A, van Kuijk S, Han Y, Trevisi E. Effect of a Commercial Bentonite Clay (Smectite Clay) on Dairy Cows Fed Aflatoxin-Contaminated Feed. Dairy. 2020; 1(2):135-153. https://doi.org/10.3390/dairy1020009
Chicago/Turabian StyleGallo, Antonio, Gabriele Rocchetti, Fiorenzo Piccioli Cappelli, Saverio Pavone, Anna Mulazzi, Sandra van Kuijk, Yanming Han, and Erminio Trevisi. 2020. "Effect of a Commercial Bentonite Clay (Smectite Clay) on Dairy Cows Fed Aflatoxin-Contaminated Feed" Dairy 1, no. 2: 135-153. https://doi.org/10.3390/dairy1020009
APA StyleGallo, A., Rocchetti, G., Piccioli Cappelli, F., Pavone, S., Mulazzi, A., van Kuijk, S., Han, Y., & Trevisi, E. (2020). Effect of a Commercial Bentonite Clay (Smectite Clay) on Dairy Cows Fed Aflatoxin-Contaminated Feed. Dairy, 1(2), 135-153. https://doi.org/10.3390/dairy1020009