Concepts and Coefficients Based on John L. Holland’s Theory of Vocational Choice—Examining the R Package holland
Abstract
:1. Introduction
2. The Present Paper
3. Holland’s Theory of Vocational Choice
3.1. Central Assumptions
3.2. Concepts
3.3. Characterizing People and Work Environments Using the RIASEC Dimensions
3.4. Coefficients Based on the RIASEC Model
4. The R Package holland
4.1. Congruence Indices in holland
1 library ( holland ) # loads the package ... assuming it is installed 2 con _ oneletter _ holland (a=" RIASEC ",b=" AIRCES ") 3 con _ oneletter _ holland (a=" RIASEC ",b=" AIRCES ",letter = 2) 4 con _ oneletter _ holland (a=" RIASEC ",b=" RIASEC ") 5 con _ oneletter _ holland (a=" RIASEC ",b=" RIASEC ",hexadist = TRUE , letter = 1) 6 con _ oneletter _ holland (a=" RIASEC ",b=" IRASEC ",hexadist = TRUE , letter = 1) 7 con _ oneletter _ holland (a=" RIASEC ",b=" AIRCES ",hexadist = TRUE , letter = 1) 8 con _ oneletter _ holland (a=" RIASEC ",b=" SIRCEA ",hexadist = TRUE , letter = 1)
1 # assuming ’holland ’ is loaded 2 # create a vector of some possible combinations of Holland three - letter codes - 3 person <- apply (( combn (x = c("R","I","A","S","E","C"), m =3)) ,2, paste0 , 4 collapse ="") 5 # create a single environment Holland three - letter code ----------------------- 6 environ <- " RIA " 7 # create a vector of function names to be called for congruence indices ------- 8 func <- c(" con _ hamming _ holland "," con_ levenshtein _ holland "," con _ brown _c_ holland " 9 ,"con _ compindex _ holland ","con _ iachan _ holland "," con _n3_ holland ", 10 " con _zs_ holland ") 11 # apply all functions to all combinations of Holland three - letter codes ------- 12 con _ indices <- sapply (func , function (x){ 13 sapply (person , function (y){do. call ( what = x, args = list (a=y, b= environ ))}) 14 }) 15 # look at the resulting indices for congruence with " RIA " environment code ---- 16 con _ indices
4.2. Differentiation Indices in holland
1 # create a matrix with possible interest score profiles : --------------------- 2 SP <- matrix ( data = c(50 ,15 ,15 ,12 ,10 ,10 , 3 50 ,45 ,15 ,14 ,12 ,40 , 4 50 ,48 ,26 ,20 ,14 ,10 , 5 50 ,50 ,50 ,50 ,50 ,50) 6 ,nrow = 4, ncol = 6, byrow = T, dimnames = list (c(" Profile _1"," Profile _2", 7 " Profile _3"," Profile _4"),c("R","I","A","S","E","C"))) 8 # plot the four score profiles : ---------------------------------------------- 9 matplot (x = t(SP),type = "b",pch = " ",xaxt ="n",ylim = c (10 ,50) ,bty ="n", 10 ylab = " raw score ",lty =c (1:4) ) 11 axis ( side = 1,at=c (1:6) ,labels = colnames (SP)) 12 segments (x0 = rep (1 ,5) , y0 = seq (20 ,40 ,10) , x1 = rep (6 ,5) , 13 y1 = seq (20 ,40 ,10) ,col = " gray80 ") 14 segments (x0 = 1:6 , y0 = rep (10 ,6) , x1 = 1:6 , y1 = rep (50 ,6) ,col = " gray80 ") 15 text (x = 1:6 ,y = c(t(SP)), labels = c(t(SP)), cex = .8) 16 legend (1 ,20 , legend = rownames (SP),cex = .7, col = 1:4 , lty =c (1:4) ) 17 # compute differentiation according to Holland (1973) ------------------------ 18 apply (SP , 1, dif _7_ holland , ind = "DI5 ") 19 # compute all of the seven differentiation indices --------------------------- 20 ind <- c(" DI1 "," DI2"," DI3 "," DI4"," DI5 "," DI6 "," DI7 ") 21 sapply (ind , function (x){ apply (SP , 1, dif _7_ holland , ind = x)})
4.3. The Calculus Hypothesis in holland
1 ## assuming ’holland ’ is loaded and Mplus is installed 2 # (re) construct the correlation matrix from Heine , Langmeyer & Tarnai (2011) -- 3 korr <- matrix ( data = c (1.0000 ,0.5411 , -0.0882 , -0.1294 , -0.1329 ,0.1417 ,0.5411 , 4 1.0000 ,0.2105 ,0.0045 , -0.0440 ,0.1047 , -0.0882 ,0.2105 , 5 1.0000 ,0.4593 ,0.1905 ,0.0914 , -0.1294 ,0.0045 ,0.4593 , 6 1.0000 ,0.4692 ,0.2288 , -0.1329 , -0.0440 ,0.1905 ,0.4692 , 7 1.0000 ,0.4540 ,0.1417 ,0.1047 ,0.0914 ,0.2288 ,0.4540 , 8 1.0000) ,nrow = 6, ncol = 6, byrow = F); korr 9 # generate , run and read in results from Mplus code --------------------------- 10 result <- Circ _ emp (N = 734 , Cor = korr , konstrukt = c("R","I","A","S","E","C")) 11 # plot the result object ------------------------------------------------------ 12 plot ( result , lcolor = c(" black "," black "," blue "," blue "),ltype = c(1, 1) ,lwd = 3, 13 defhexa = list ( hexa = TRUE , seg = TRUE , gr = 5, r = 4, nseg = 7, 14 x. cent = 0, y. cent = 0, circle =T) ) 15 # add a grey circle around the hexagon ---------------------------------------- 16 r <- 4.05 17 Hxx <- r*sin ( seq ((0) ,((2*pi)), length . out =360) ) 18 Hyy <- r*cos ( seq ((0) ,((2*pi)), length . out =360) ) 19 lines (Hxx ,Hyy , col =" grey90 ",lty =1, lwd =3)
4.4. The Functional Area Miscellaneous in holland
1 ## assuming ’holland ’ is loaded 2 # get an RIASEC correlation matrix -------------------------------------------- 3 data ( AIST _ 2005 _F_ 1270) 4 # simulate raw scores with minimum = 10 and maximum = 50 ---------------------- 5 set . seed (1234) 6 D <- sim _ score _ data (n =1000 , cormat = AIST _ 2005 _F_1270 , min . score = 10, 7 max . score = 50, data . frame = T) 8 # look at some descriptives --------------------------------------------------- 9 apply (D, 2, range ) 10 apply (D, 2, mean ) 11 apply (D, 2, sd) 12 # add index for ties on the 6 dimensions -------------------------------------- 13 D$ Ties6 <- apply (D, 1, function (x){ length ( unique (x [1:6]) )!= 6}) 14 # add index for ties on three highest dimensions ------------------------------ 15 D$ Ties3 <- apply (D, 1, function (x){ length ( unique (x [1:6][ order (x [1:6] , 16 decreasing = T) [1:3]]) )!= 3}) 17 # add a ( character ) vector of full 6- letter - codes for every person ------------ 18 D$ Letter6 <- apply (D, 1, function (x){ sco2let (x [1:6] , len = 6) }) 19 # add a ( character ) vector of 3- letter - codes for every person ----------------- 20 D$ Letter3 <- apply (D, 1, function (x){ sco2let (x [1:6]) }) 21 # add the ’DI7 ’ index to data set ’D’ ----------------------------------------- 22 D$ DI7 <- apply (D[ ,1:6] , 1, function (x){ dif _7_ holland (A = x, ind = " DI7 ")}) 23 # add the ’Hamming distance ’ index to data set ’D’ ---------------------------- 24 env <- " RIA" 25 D$ hamming <- sapply (D$ Letter3 , function (x){ con _ hamming _ holland (a = x,b = env )}) 26 # add the ’Iachan ’ index to data set ’D’ -------------------------------------- 27 D$ iachan <- sapply (D$ Letter3 , function (x){con _ iachan _ holland (a = x,b = env)}) 28 # add the ’Brown -C’ index to data set ’D’ ------------------------------------- 29 D$ brownc <- sapply (D$ Letter3 , function (x){con _ brown _c_ holland (a = x,b = env )}) 30 head (D,n = 7)
R I A S E C Ties6 Ties3 Letter6 Letter3 DI7 hamming iachan brownc 1 22 30 36 15 33 32 FALSE FALSE AECIRS AEC 7.234178 2.4375 4 3 2 22 22 24 21 25 21 TRUE FALSE EARISC EAR 1.500000 1.5625 6 8 3 23 28 35 28 28 23 TRUE TRUE AISERC AIS 4.031129 0.7750 9 11 4 28 44 33 27 31 33 TRUE TRUE IACERS IAC 5.557777 1.4375 12 10 5 20 18 30 21 28 22 FALSE FALSE AECSRI AEC 4.336537 2.4375 4 3 6 31 25 23 22 19 21 FALSE FALSE RIASCE RIA 3.818813 0.0000 28 18 7 12 15 27 26 36 21 FALSE FALSE EASCIR EAS 7.987838 1.0875 2 9
1 ## assuming ’holland ’ is loaded and data ’D’ is present in workspace 2 head (D,n = 7) 3 # calculate means for congruence indices by ties vs no ties ------------------- 4 by( data =D, INDICES =D$Ties3 , function (x){ 5 colMeans (x[,c(" hamming "," iachan "," brownc ")]) 6 }) 7 # calculate standard deviation for congruence indices by ties vs no ties ------ 8 by( data =D, INDICES =D$Ties3 , function (x){ 9 sapply (c(" hamming "," iachan "," brownc "),function (y){ 10 sd(x[,y]) 11 }) 12 }) 13 # calculate correlations between congruence indices by ties vs no ties -------- 14 by( data = D, INDICES = D$Ties3 , function (x){ 15 cor (x[,c(" hamming "," iachan "," brownc ")]) 16 }) 17 # sub setting data restricted to cases without ties on 3 dimensions ----------- 18 D1 <- D[D$ Ties3 == FALSE ,] 19 # calculate score profile means below vs. above mean iachan congruence -------- 20 iac _ UPm <- colMeans (D1[D1$ iachan >= mean (D1$ iachan ) ,1:6]) 21 iac _ LOm <- colMeans (D1[D1$ iachan <= mean (D1$ iachan ) ,1:6]) 22 # plot circular score profile means below vs. above mean iachan congruence ---- 23 plot _ profile _ holland (x=iac _UPm ,ri.M=10 , ro.M=50 , cex .sl =.8 , cex .la =1.4 , circle =T) 24 plot _ profile _ holland (x=iac _LOm ,ri.M=10 , ro.M=50 , cex .sl =.8 , cex .la =1.4 , circle =T) 25 # calculate score profile means below vs. above mean hamming congruence -------- 26 ham _ UPm <- colMeans (D1[D1$ hamming >= mean (D1$ hamming ) ,1:6]) 27 ham _ LOm <- colMeans (D1[D1$ hamming <= mean (D1$ hamming ) ,1:6]) 28 # plot circular score profile means below vs. above mean hamming congruence --- 29 plot _ profile _ holland (x=ham _UPm ,ri.M=10 , ro.M=50 , cex .sl =.8 , cex .la =1.4 , circle =T) 30 plot _ profile _ holland (x=ham _LOm ,ri.M=10 , ro.M=50 , cex .sl =.8 , cex .la =1.4 , circle =T)
5. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Holland, J.L. Making Vocational Choices. A Theory of Vocational Personalities and Work Environments, 3rd ed.; Psychological Assessment Resources: Odessa, FL, USA, 1997. [Google Scholar]
- Juntunen, C.L.; Motl, T.C.; Rozzi, M. Major career theories: International and developmental perspectives. In International Handbook of Career Guidance; Athanasou, J.A., Perera, H.N., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 45–72. [Google Scholar] [CrossRef]
- Su, R.; Murdock, C.; Rounds, J. Person-environment fit. In APA Handbook of Career Intervention, Volume 1: Foundations; Hartung, P.J., Savickas, M.L., Walsh, W.B., Eds.; APA Handbooks in Psychology®; American Psychological Association: Washington, DC, USA, 2015; pp. 81–98. [Google Scholar] [CrossRef]
- Kennelly, E.; Sargent, A.; Reardon, R. RIASEC Literature from 1953-2016: Bibliographic References to Holland’s Theory, Research, and Applications (Technical Report No. 58); Technical Report; Florida State University: Tallahassee, FL, USA, 2018. [Google Scholar] [CrossRef] [Green Version]
- Holland, J.L.; Fritzsche, B.A.; Powell, A.B. The Self-Directed Search Technical Manual; Psychological Assessment Resources: Odessa, FL, USA, 1994. [Google Scholar]
- Hansen, J.I.C. Remembering John L. Holland, PhD. Couns. Psychol. 2011, 39, 1212–1217. [Google Scholar] [CrossRef]
- Bergmann, C. Differenziertheit der Interessen und berufliche Entwicklung. Z. Differ. Diagn. Psychol. 1993, 14, 265–279. [Google Scholar]
- Bergmann, C.; Eder, F. AIST-R Allgemeiner Interessen-Struktur-Test mit Umwelt-Struktur-Test (UST-R)-Revision; Beltz: Göttingen, Germany, 2005. [Google Scholar]
- Bergmann, C.; Eder, F. AIST 3 Allgemeiner Interessen-Struktur-Test mit Umwelt-Struktur-Test (UST–3)-Version 3; Hogrefe: Göttingen, Germany, 2019. [Google Scholar]
- Joerin, S.; Stoll, F.; Bergmann, C.; Eder, F. EXPLORIX. Das Werkzeug zur Berufswahl und Laufbahnplanung; Hans Huber: Göttingen, Germany, 2004. [Google Scholar]
- Heine, J.H.; Hartmann, F.G. Holland: Statistics for Holland’s Theory of Vocational Choice; R Package Version 0.1.2-1. 2021. Available online: https://cran.r-project.org/web/packages/holland/index.html (accessed on 20 November 2021).
- Eder, F.; Bergmann, C. Das Person-Umwelt-Modell von J. L. Holland. Grundlagen-Konzepte-Anwendungen. In Berufliche Interessen. Beiträge zur Theorie von J. L. Holland; Tarnai, C., Hartmann, F.G., Eds.; Waxmann: Münster, Germany; New York, NY, USA, 2015; pp. 11–30. [Google Scholar]
- Hartmann, F.G. Analysen zur Übereinstimmung Beruflicher Interessen in der Familie. Eine Studie zur Bestimmung der Dyadischen Ähnlichkeit bei Mehrdimensionalen Konstrukten im Familialen Kontext; Empirische Erziehungswissenschaft, Waxmann: Münster, Germany, 2018. [Google Scholar]
- Rounds, J.; Tracey, T.J.; Hubert, L. Methods for evaluating vocational interest structural hypotheses. J. Vocat. Behav. 1992, 40, 239–259. [Google Scholar] [CrossRef]
- Tracey, T.J.; Rounds, J.B. Evaluating Holland’s and Gati’s vocational-interest models: A structural meta-analysis. Psychol. Bull. 1993, 113, 229–246. [Google Scholar] [CrossRef]
- Hubert, L.; Arabie, P. Evaluating order hypotheses within proximity matrices. Psychol. Bull. 1987, 102, 172–178. [Google Scholar] [CrossRef]
- Tracey, T.J.G. RANDALL: A microsoft FORTRAN program for a randomization test of hypothesized order relations. Educ. Psychol. Meas. 1997, 57, 164–168. [Google Scholar] [CrossRef]
- Nagy, G.; Marsh, H.W.; Lüdtke, O.; Trautwein, U. Representing the circles in our minds: Confirmatory factor analysis of circumplex stuctures and profiles. In Structural Equation Modeling in Educational Research-Concepts and Applications; Teo, T., Khine, M.S., Eds.; Contemporary Approaches to Research in Learning Innovations, Sense Publishers: Rotterdam, The Netherlands; Boston, MA, USA; Taipei, Taiwan, 2009; pp. 287–316. [Google Scholar]
- Hurtado Rúa, S.M.; Stead, G.B.; Poklar, A.E. Five-Factor personality traits and RIASEC interest types: A multivariate meta-analysis. J. Career Assess. 2019, 27, 527–543. [Google Scholar] [CrossRef]
- Donohue, R. Person-environment congruence in relation to career change and career persistence. J. Vocat. Behav. 2006, 68, 504–515. [Google Scholar] [CrossRef]
- Hoff, K.A.; Song, Q.C.; Wee, C.J.M.; Phan, W.M.J.; Rounds, J. Interest fit and job satisfaction: A systematic review and meta-analysis. J. Vocat. Behav. 2020, 123, 103503. [Google Scholar] [CrossRef]
- Nye, C.D.; Su, R.; Rounds, J.; Drasgow, F. Vocational interests and performance. A quantitative summary of over 60 years of research. Perspect. Psychol. Sci. 2012, 7, 384–403. [Google Scholar] [CrossRef]
- Nye, C.D.; Su, R.; Rounds, J.; Drasgow, F. Interest congruence and performance: Revisiting recent meta-analytic findings. J. Vocat. Behav. 2017, 98, 138–151. [Google Scholar] [CrossRef]
- Heine, J.H.; Langmeyer, A.; Tarnai, C. Auswirkung individueller Antwortstile auf die hexagonale Modellstruktur der Berufsinteressen. In Proceedings of the 76th Conference of the Arbeitsgruppe für Empirische Pädagogische Forschung (AEPF); Presentation at the 76th Conference of the Arbeitsgruppe für Empirische Pädagogische Forschung (AEPF), Klagenfurt, Austria, 5–7 September 2011. [Google Scholar]
- Tracey, T.J.G.; Wille, B.; Durr, M.R., II; De Fruyt, F. An enhanced examination of Holland’s consistency and differentiation hypotheses. J. Vocat. Behav. 2014, 84, 237–247. [Google Scholar] [CrossRef]
- Gupta, A.; Chong, S.; Leong, F.T.L. Development and validation of the vocational identity measure. J. Career Assess. 2015, 23, 79–90. [Google Scholar] [CrossRef]
- Darcy, M.; Tracey, T.J.G. Integrating abilities and interests in career choice: Maximal versus typical assessment. J. Career Assess. 2003, 11, 219–237. [Google Scholar] [CrossRef]
- Holland, J.L. Explorations of a theory of vocational choice and achievement: II. A four-year prediction study. Psychol. Rep. 1963, 12, 547–594. [Google Scholar] [CrossRef]
- Dik, B.J.; Strife, S.R.; Hansen, J.I.C. The flip side of Holland type congruence. Incongruence and job satisfaction. Career Dev. Q. 2010, 58, 352–358. [Google Scholar] [CrossRef]
- Tracey, T.J.G.; Sodano, S.M. Structure of interests and competence perceptions. In Handbook of Vocational Psychology. Theory, Research, and Practice; Walsh, W.B., Savickas, M.L., Hartung, P.J., Eds.; Talyor & Francis: New York, NY, USA, 2013; pp. 104–120. [Google Scholar]
- Joerin Fux, S.; Stoll, F.; Bergmann, C.; Eder, F. EXPLORIX.de. Das Werkzeug zur Berufswahl und Laufbahnplanung. Deutschsprachige Adaption und Weiterentwicklung des Self-Directed Search (SDS) nach John L. Holland. 4., Vollständig überarbeitete Auflage. Test-Set Ausgabe Deutschland; Huber: Bern, Switzerland, 2012. [Google Scholar]
- Tracey, T.J.G.; Ward, C.C. The structure of children’s interests and competence perceptions. J. Couns. Psychol. 1998, 45, 290–303. [Google Scholar] [CrossRef]
- Rounds, J.; Smith, T.; Hubert, L.; Lewis, P.; Rivkin, D. Development of Occupational Interest Profiles for O*NET; Technical Report; National Center for O*NET Development: Raleigh, NC, USA, 1999. [Google Scholar]
- Wille, B.; Tracey, T.J.G.; Feys, M.; De Fruyt, F. A longitudinal and multi-method examination of interest-occupation congruence within and across time. J. Vocat. Behav. 2014, 84, 59–73. [Google Scholar] [CrossRef]
- O*NET. O*NET OnLine. 2021. Available online: https://www.onetonline.org/ (accessed on 12 August 2021).
- Rounds, J.; Su, R.; Lewis, P.; Rivkin, D. Occupational Interest Profiles for New and Emerging Occupations in the O*NET System: Summary; National Center for O*NET Development: Raleigh, NC, USA, 2013. [Google Scholar]
- Ertl, B.; Hartmann, F.G. The interest profiles and interest congruence of male and female students in STEM and non-STEM fields. Front. Psychol. 2019, 10, 897. [Google Scholar] [CrossRef]
- Ghetta, A.; Hirschi, A.; Herrmann, A.; Rossier, J. A psychological description of the Swiss labor market from 1991 to 2014: Occupational interest types, sex, salary, and skill level. Swiss J. Psychol. 2018, 77, 83–94. [Google Scholar] [CrossRef]
- Executive Office of the President, Office of Management and Budget. Standard Occupational Classification Manual; Bureau of Labor Statistics: Washington, DC, USA, 2018.
- Eder, F. Differenziertheit der Interessen als Prädiktor der Interessenentwicklung. In Pädagogisch-Psychologische Interessenforschung in Studium und Beruf; Abel, J., Tarnai, C., Eds.; Waxmann: Münster, Germany, 1998; pp. 63–77. [Google Scholar]
- Prediger, D.J. Dimensions underlying Holland’s hexagon: Missing link between interests and occupations? J. Vocat. Behav. 1982, 21, 259–287. [Google Scholar] [CrossRef]
- Xu, H.; Li, H. Operationalize interest congruence: A comparative examination of four approaches. J. Career Assess. 2020, 28, 571–588. [Google Scholar] [CrossRef]
- Brown, S.D.; Gore, P.A. An Evaluation of Interest Congruence Indices: Distribution Characteristics and Measurement Properties. J. Vocat. Behav. 1994, 45, 310–327. [Google Scholar] [CrossRef]
- Camp, C.C.; Chartrand, J.M. A comparison and evaluation of interest congruence indices. J. Vocat. Behav. 1992, 41, 162–182. [Google Scholar] [CrossRef]
- Holland, J.L. Making Vocational Choices: A Theory of Careers; Prentice-Hall: Englewood Cliffs, NJ, USA, 1973. [Google Scholar]
- Healy, C.C.; Mourton, D.L. Derivatives of the Self-Directed Search: Potential clinical and evaluative uses. J. Vocat. Behav. 1983, 23, 318–328. [Google Scholar] [CrossRef]
- Tarnai, C.; Hartmann, F.G.; Heine, J.H. Ipsative und normative Messung beruflicher Interessen nach dem Holland-Model. In Klassifikationsanalysen in den Sozialwissenschaften; Reinecke, J., Tarnai, C., Eds.; Waxmann: Münster, Germany, 2021; pp. 25–52. [Google Scholar]
- Eggerth, D.E.; Andrew, M.E. Modifying the C index for use with Holland codes of unequal length. J. Career Assess. 2006, 14, 267–275. [Google Scholar] [CrossRef]
- Gore Jr, P.A.; Brown, S.D. Simpler may still be better: A reply to Eggerth and Andrew. J. Career Assess. 2006, 14, 276–282. [Google Scholar] [CrossRef]
- Iachan, R. A measure of agreement for use with the holland classification system. J. Vocat. Behav. 1984, 24, 133–141. [Google Scholar] [CrossRef]
- Joerin Fux, S. Persönlichkeit und Berufstätigkeit: Theorie und Instrumente von John Holland im Deutschsprachigen Raum unter Adaptation und Weiterentwicklung von Self-Directed Search (SDS) und Position Classification Inventory (PCI); Cuvillier: Göttingen, Germany, 2005. [Google Scholar]
- Nye, C.D.; Prasad, J.; Bradburn, J.; Elizondo, F. Improving the operationalization of interest congruence using polynomial regression. J. Vocat. Behav. 2018, 104, 154–169. [Google Scholar] [CrossRef]
- Tracey, T.J.G.; Robbins, S.B. The interest-major congruence and college success relation: A longitudinal study. J. Vocat. Behav. 2006, 69, 64–89. [Google Scholar] [CrossRef]
- Fisher, G.A.; Heise, D.R.; Bohrnstedt, G.W.; Lucke, J.F. Evidence for extending the circumplex model of personality trait language to self-reported moods. J. Personal. Soc. Psychol. 1985, 49, 233–242. [Google Scholar] [CrossRef]
- Zener, T.B.; Schnuelle, L. Effects of the self-directed search on high school students. J. Couns. Psychol. 1976, 23, 353–359. [Google Scholar] [CrossRef]
- Wolfe, L.K.; Betz, N.E. Traditionality of choice and sex-role identification as moderators of the congruence of occupational choice in college women. J. Vocat. Behav. 1981, 18, 43–55. [Google Scholar] [CrossRef]
- Wiggins, J.D.; Moody, A. Compatibility Index Description; Training and Associates: Dover, DE, USA, 1981. [Google Scholar]
- Robbins, P.I.; Thomas, L.; Harvey, D.W.; Kandefer, C. Career change and congruence of personality type: An examination of DOT-derived work environment designations. J. Vocat. Behav. 1978, 13, 15–25. [Google Scholar] [CrossRef]
- Kwak, J.C.; Pulvino, C.J. A mathematical model for comparing Holland’s personality and environmental codes. J. Vocat. Behav. 1982, 21, 231–241. [Google Scholar] [CrossRef]
- Gati, I. Description of alternative measures of the concepts of vocational interest: Crystallization, congruence, and coherence. J. Vocat. Behav. 1985, 27, 37–55. [Google Scholar] [CrossRef]
- Hamming, R. Error detecting and error correcting codes. Bell Syst. Tech. J. 1950, 29, 147–160. [Google Scholar] [CrossRef]
- Levenshtein, V.I. Binary Codes Capable of Correcting Deletions, Insertions and Reversals. Sov. Phys. Dokl. 1966, 10, 707–710. [Google Scholar]
- Grotevant, H.D.; Cooper, C.R.; Kramer, K. Exploration as a predictor of congruence in adolescents’ career choices. J. Vocat. Behav. 1986, 29, 201–215. [Google Scholar] [CrossRef]
- Holland, J.L. Making Vocational Choices: A Theory of Vocational Personalities and Work Environments; Prentice-Hall: Englewood Cliffs, NJ, USA, 1985. [Google Scholar]
- Strahan, R.F. Measures of consistency for Holland-type codes. J. Vocat. Behav. 1987, 31, 37–44. [Google Scholar] [CrossRef]
- Frantz, T.T.; Walsh, E.P. Exploration of Holland’s theory of vocational choice in graduate school environments. J. Vocat. Behav. 1972, 2, 223–232. [Google Scholar] [CrossRef]
- Spokane, A.R.; Walsh, W.B. Occupational level and Holland’s theory for employed men and women. J. Vocat. Behav. 1978, 12, 145–154. [Google Scholar] [CrossRef]
- Iachan, R. A family of differentiation indices. Psychometrika 1984, 49, 217–222. [Google Scholar] [CrossRef]
- Peiser, C.; Meir, E.I. Congruency, consistency, and differentiation of vocational interests as predictors of vocational satisfaction and preference stability. J. Vocat. Behav. 1978, 12, 270–278. [Google Scholar] [CrossRef]
- Wiggins, J.D.; Moody, A. A field-based comparison of four career-exploration approaches. Vocat. Guid. Q. 1981, 30, 15–20. [Google Scholar] [CrossRef]
- Abbott, A. Sequence Analysis: New Methods for Old Ideas. Annu. Rev. Sociol. 1995, 21, 93–113. [Google Scholar] [CrossRef]
- Heine, J.H.; Leitgöb, H.; Hartmann, F.G.; Tarnai, C. Sequenzbasierte Distanzmaße für Kongruenz im Holland-Modell der Interessen- und Umweltorientierungen. In Proceedings of the 50 Kongress der Deutschen Gesellschaft für Psychologie (DGPs), Leipzig, Germany, 18–22 September 2016. [Google Scholar]
- Needleman, S.B.; Wunsch, C.D. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 1970, 48, 443–453. [Google Scholar] [CrossRef]
- Meir, E.I.; Esformes, Y.; Friedland, N. Congruence and differentiation as predictors of workers’ occupational stability and job performance. J. Career Assess. 1994, 2, 40–54. [Google Scholar] [CrossRef]
- Wilkins, K.G.; Tracey, T.J.G. Person environment fit and vocational outcomes. In Psycho-Social Career Meta-Capacities: Dynamics of Contemporary Career Development; Coetzee, M., Ed.; Springer International Publishing: Cham, Switzerland, 2014; pp. 123–138. [Google Scholar]
Concept | Profiles | Coefficient |
---|---|---|
Congruence | 1-letter codes | DFLA index [28] |
FLAH [45] | ||
2-letter codes | TLA index [46] | |
3-letter codes | Z-S index [55] | |
TLC index [56] | ||
Compatibility index [57] | ||
RCCS [58] | ||
M index [50] | ||
K-P index [59] | ||
C index [43] | ||
M3 index [47] | ||
N-3 index [51] | ||
Flexible number of letters | Sb index [60] | |
Modified C index [48,49] | ||
Hamming distance [61] | ||
Levenshtein distance [62] | ||
Scores and 3-letter codes | PICS [63] | |
Scores | Polynomial regression [52] | |
Profile correlation [3] | ||
Profile deviance [3] | ||
Euclidean distance [53] | ||
Angular agreement [53] | ||
Consistency | 2-letter codes | Holland’s measure [64] |
Strahan’s measure I [65] | ||
3-letter codes | Strahan’s measure II [65] | |
Scores | R (cosine function) [25] | |
Differentiation | Scores | Frantz & Walsh’s measure [66] |
Spokane & Walsh’s measure [67] | ||
Iachan’s measure I [68] | ||
Iachan’s measure II [68] | ||
Holland’s measure [45] | ||
Peiser & Meir’s measure [69] | ||
Healy & Mourton’s measure [46] | ||
Length of interest vector [40] | ||
Amplitude (cosine function) [25] | ||
Interest flexibility | Scores | Sum of scale scores [27] |
Sequence Based Indices | ‘Classical’ Indices | ||||||
---|---|---|---|---|---|---|---|
Hamming g | Levenshtein f | Brown–C a | Comp. b | Iachan c | N3 d | ZS e | |
RIA | 0.00 | 0.00 | 18 | 8 | 28 | 3 | 6 |
RIS | 0.02 | 0.02 | 17 | 7 | 27 | 2 | 5 |
RIE | 0.50 | 0.37 | 16 | 7 | 27 | 2 | 5 |
RIC | 0.75 | 0.50 | 15 | 7 | 27 | 2 | 5 |
RAS | 0.33 | 0.13 | 15 | 5 | 24 | 2 | 2 |
RAE | 0.81 | 0.37 | 14 | 5 | 24 | 2 | 2 |
RAC | 1.06 | 0.50 | 13 | 5 | 24 | 2 | 2 |
RSE | 1.12 | 0.40 | 12 | 0 | 22 | 1 | 3 |
RSC | 1.37 | 0.52 | 11 | 0 | 22 | 1 | 3 |
REC | 1.68 | 1.00 | 9 | 0 | 22 | 1 | 3 |
IAS | 0.71 | 0.38 | 12 | 4 | 12 | 2 | 2 |
IAE | 1.18 | 0.62 | 11 | 4 | 12 | 2 | 2 |
IAC | 1.43 | 0.75 | 10 | 4 | 12 | 2 | 2 |
ISE | 1.50 | 0.65 | 9 | 3 | 10 | 1 | 1 |
ISC | 1.75 | 0.77 | 8 | 3 | 10 | 1 | 1 |
IEC | 2.06 | 1.12 | 6 | 3 | 10 | 1 | 1 |
ASE | 1.87 | 1.13 | 6 | 2 | 4 | 1 | 1 |
ASC | 2.12 | 1.26 | 5 | 2 | 4 | 1 | 1 |
AEC | 2.43 | 1.50 | 3 | 2 | 4 | 1 | 1 |
SEC | 2.81 | 2.01 | 0 | 0 | 0 | 0 | 0 |
Index | Brief Description | Author/Source |
---|---|---|
DI1 | Difference between highest and second highest interest score | (Frantz & Walsh, 1972) [66] |
DI2 | Difference between highest and third highest interest score | (Spokane & Walsh, I978) [67] |
DI3 | Difference between highest score and the average of the second and fourth highest score | (Iachan, 1984) [68] |
DI4 | Difference between highest score and the average of the third and fifth highest score | (Iachan, 1984) [68] |
DI5 | Difference between highest and lowest score | (Holland, 1973) [45] |
DI6 | Difference between highest and lowest score, standardized by the overall level of interest | (Peiser & Meir, 1978) [69] |
DI7 | Dispersion of interest scores | (Healy & Mourton, 1983) [46] |
DI1 | DI2 | DI3 | DI4 | DI5 | DI6 | DI7 | |
---|---|---|---|---|---|---|---|
Profile_1 | 35.00 | 35.00 | 36.50 | 37.50 | 40.00 | 0.36 | 14.16 |
Profile_2 | 5.00 | 10.00 | 20.00 | 23.00 | 38.00 | 0.22 | 15.95 |
Profile_3 | 2.00 | 24.00 | 16.00 | 30.00 | 40.00 | 0.24 | 15.66 |
Profile_4 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hartmann, F.G.; Heine, J.-H.; Ertl, B. Concepts and Coefficients Based on John L. Holland’s Theory of Vocational Choice—Examining the R Package holland. Psych 2021, 3, 728-750. https://doi.org/10.3390/psych3040047
Hartmann FG, Heine J-H, Ertl B. Concepts and Coefficients Based on John L. Holland’s Theory of Vocational Choice—Examining the R Package holland. Psych. 2021; 3(4):728-750. https://doi.org/10.3390/psych3040047
Chicago/Turabian StyleHartmann, Florian G., Jörg-Henrik Heine, and Bernhard Ertl. 2021. "Concepts and Coefficients Based on John L. Holland’s Theory of Vocational Choice—Examining the R Package holland" Psych 3, no. 4: 728-750. https://doi.org/10.3390/psych3040047
APA StyleHartmann, F. G., Heine, J.-H., & Ertl, B. (2021). Concepts and Coefficients Based on John L. Holland’s Theory of Vocational Choice—Examining the R Package holland. Psych, 3(4), 728-750. https://doi.org/10.3390/psych3040047