Biocatalytic Reduction of α,β-Unsaturated Double Bonds of Curcuminoid Derivatives by Exserohilum rostratum
Abstract
1. Introduction
2. Materials and Methods
2.1. Instrumental
2.2. Synthesis of Substances
2.2.1. (3E)-4-(2-Methoxy-Phenyl)-but-3-en-2-One (1)
2.2.2. (1E,4E)-1-(2-Methoxy-Phenyl)-5-(3-Methoxy-Phenyl)-Pent-1,4-Dien-3-One (2a)
2.2.3. (1E,4E)-1-(2-Methoxy-Phenyl)-5-(3,4,5-Trimethoxy-Phenyl)-Pent-1,4-Dien-3-One (2b)
2.2.4. (1E,4E)-5-Phenyl-1-(2-Methoxy-Phenyl)-Pent-1,4-Dien-3-One (2c)
2.3. Biotransformation Reactions
2.4. Fractionation of EtOAc Extracts to Obtain Biotransformation Products
2.4.1. 1-(2-Methoxy-Phenyl)-5-(3-Methoxy-Phenyl)-Pent-3-One (3a)
2.4.2. 1-(2-Methoxy-Phenyl)-5-(3,4,5-Trimethoxy-Phenyl)-Pent-3-One (3b)
2.4.3. 1-(2-Methoxy-Phenyl)-5-(Phenyl)-Pent-3-One (3c)
2.5. Minimum Inhibitory Concentration (MIC) Assay
3. Results
3.1. Synthesized Compounds
3.2. Characterization of Biotransformation Products
3.3. Antimicrobial Activity
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CC | Column Chromatography |
COSY | COrrelated SpectroscOpy |
CUR | Curcumin |
DBA | Dibenzalacetone |
EtOAc | Ethyl acetate |
HMBC | Heteronuclear Multiple Bond Correlation |
HREIMS | High-Resolution Electron Ionization Mass Spectrometry |
HRLC-MS | High Resolution Liquid Chromatography-Mass Spectrometry |
HSQC | Heteronuclear Single Quantum Coherence |
M | Medium |
MF | Medium plus Fungus |
MFS | Medium plus Fungus plus Substrate |
MIC | Minimum Inhibitory Concentration |
MS | Medium plus Substrate |
NMR | Nuclear Magnetic Resonance |
PDA | Potato Dextrose Agar |
References
- Twaij, B.M.; Hasan, M.N. Bioactive Secondary Metabolites from Plant Sources: Types, Synthesis, and Their Therapeutic Uses. Int. J. Plant Biol. 2022, 13, 4–14. [Google Scholar] [CrossRef]
- Ancheeva, E.; Daletos, G.; Proksch, P. Bioactive Secondary Metabolites from Endophytic Fungi. Curr. Med. Chem. 2020, 27, 1836–1854. [Google Scholar] [CrossRef]
- Faber, K. Biotransformations in Organic Chemistry: A Textbook, 7th ed.; Springer International Publishing: Cham, Switzerland, 2018; p. 434. [Google Scholar] [CrossRef]
- Bitencourt, H.R.; Marinho, A.M.R.; Feitosa, A.O.; Pinheiro, J.C.; Mendonça, J.T.C.; Romero, O.A.S.; Farias, R.A.F.; Rodrigues, S.M.S. Synthesis of Curcumin Analogous: (1E, 4E) -1,5-Bis-(2-methoxy-phenyl) -pent-1,4-dien-3-one. Braz. Ap. Sci. Rev 2020, 4, 2021–2029. [Google Scholar] [CrossRef]
- Wermuth, C.G. The Practice of Medicinal Chemistry., 3rd ed.; Academic Press: London, UK, 2008; p. 942. [Google Scholar]
- Sueth-Santiago, V.; Mendes-Silva, G.P.; Decoté-Ricardo, D.; De Lima, M.E.F. Curcumina, o pó dourado do açafrão-da-terra: Introspecções sobre química e atividades biológicas. Quím. Nova 2015, 38, 538–552. [Google Scholar] [CrossRef]
- Vallianou, N.G.; Evangelopoulos, A.; Schizas, N.; Kazazis, C. Potential anticancer properties and mechanisms of action of curcumin. Anticancer Res. 2015, 35, 645–651. [Google Scholar] [PubMed]
- Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Ramirez-Tortosa, M. Curcumin and Health. Molecules 2016, 21, 264. [Google Scholar] [CrossRef] [PubMed]
- Esatbeyoglu, T.; Huebbe, P.; Ernst, I.M.A.; Chin, D.; Wagner, A.E.; Rimbach, G. Curcumin—From Molecule to Biological Function. Angew. Chem. Int. Ed. 2012, 51, 5308–5332. [Google Scholar] [CrossRef]
- Shin, J.W.; Chun, K.-S.; Kim, D.-H.; Kim, S.-J.; Kim, S.H.; Cho, N.-C.; Na, H.-K.; Surh, Y.-J. Curcumin induces stabilization of Nrf2 protein through Keap1 cysteine modification. Biochem. Pharmacol. 2020, 173, 113820. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.-F.; Wang, Q.; Zheng, J.-F.; Chai, Z.-H.; Dai, F.; Jin, X.-J.; Zhou, B. Developing dietary curcumin mono-carbonyl piperidinone analogs as Nrf2-dependent cytoprotectors against oxidative damage: Structure-activity relationship and mechanisms. Free Radic. Biol. Med. 2022, 186, 66–75. [Google Scholar] [CrossRef]
- Barclay, L.R.C.; Vinqvist, M.R.; Mukai, K.; Goto, H.; Hashimoto, Y.; Tokunaga, A.; Uno, H. On the antioxidant mechanism of curcumin: Classical methods are needed to determine antioxidant mechanism and activity. Org. Lett. 2000, 2, 2841–2843. [Google Scholar] [CrossRef]
- Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of Curcumin: Problems and Promises. Mol. Pharm. 2007, 4, 807–818. [Google Scholar] [CrossRef]
- Sahu, P.K. Design, structure activity relationship, cytotoxicity and evaluation of antioxidant activity of curcumin derivatives/analogues. Eur. J. Med. Chem. 2016, 121, 510–516. [Google Scholar] [CrossRef]
- Wang, Z.; Zou, P.; Li, C.; He, W.; Xiao, B.; Fang, Q.; Chen, W.; Zheng, S.; Zhao, Y.; Cai, Y.; et al. Synthesis and biological evaluation of novel semiconservative monocarbonyl analogs of curcumin as anti-inflammatory agents. Med. Chem. Commun. 2015, 6, 1328–1339. [Google Scholar] [CrossRef]
- Chauhan, I.S.; Marwa, S.; Rao, G.S.; Singh, N. Antiparasitic dibenzalacetone inhibits the GTPase activity of Rab6 protein of Leishmania donovani (LdRab6), a potential target for its antileishmanial effect. Parasitol. Res. 2020, 119, 2991–3003. [Google Scholar] [CrossRef]
- Handayani, S. Synthesis and activity test of two asymmetric dibenzalacetones as potential sunscreen material. In Book Chemical, Biological and Environmental Engineering, 1st ed.; Li, K., Ed.; World Scientific: Singapore, 2009; Volume 1, pp. 119–122. [Google Scholar] [CrossRef]
- Sultana, N. Microbial biotransformation of bioactive and clinically useful steroids and some salient features of steroids and biotransformation. Steroids 2018, 136, 76–92. [Google Scholar] [CrossRef]
- Ferrara, M.A.; Siani, A.C.; Bon, E.P.S. Processos de bioconversão aplicados à obtenção de fármacos e intermediários. In Book Biotecnologia Aplicada à Agro&Indústria, 1st ed.; Resende, R.R., Ed.; Blucher: São Paulo, Brazil, 2017; Volume 4, pp. 137–172. [Google Scholar]
- Alexandrino, T.D.; de Medeiros, T.D.M.; Ruiz, A.L.T.G.; Favaro, D.C.; Pastore, G.M.; Bicas, J.L. Structural properties and evaluation of the antiproliferativeactivity of limonene-1,2-diol obtained by the fungal biotransformation of R-(+)- and S-(-)-limonene. Chirality 2022, 34, 887–893. [Google Scholar] [CrossRef]
- Borges, K.B.; Borges, W.S.; Durán-Patrón, R.; Pupo, M.T.; Bonato, P.S.; Collado, I.G. Stereoselective biotransformations using fungi as biocatalysts. Tetrahedron Asymm. 2009, 20, 385–397. [Google Scholar] [CrossRef]
- Pina, J.R.S.; Silva-Silva, J.V.; Carvalho, J.M.; Bitencourt, H.R.; Watanabe, L.A.; Fernandes, J.M.P.; de Souza, G.E.; Aguiar, A.C.C.; Guido, R.V.C.; Almeida-Souza, F.; et al. Antiprotozoal and antibacterial activity of ravenelin, a xanthone isolated from the endophytic fungus Exserohilum rostratum. Molecules 2021, 26, 3339. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Jiang, T.; Long, M.; Chen, J.; Ren, D.M.; Wong, P.K.; Chapman, E.; Zhou, B.; Zhang, D.D. A Curcumin Derivative That Inhibits Vinyl Carbamate-Induced Lung Carcinogenesis via Activation of the Nrf2 Protective Response. Antioxid. Redox Signal. 2015, 23, 651–664. [Google Scholar] [CrossRef] [PubMed]
- Molander, G.A.; Jean-Gérard, L. Scope of the Suzuki-Miyaura Cross-Coupling reaction of Potassium Trifluoroboratoketohomoenolates. J. Org. Chem. 2009, 74, 1297–1303. [Google Scholar] [CrossRef] [PubMed]
- Sharma, K.; Goss, E.M.; Dickstein, E.R.; Smith, M.E.; Johnson, J.A.; Southwick, F.S.; van Bruggen, A.H.C. Exserohilum rostratum: Characterization of a Cross-Kingdom Pathogen of Plants and Humans. PLoS ONE 2014, 9, e108691. [Google Scholar] [CrossRef]
- Casadevall, A.; Pirofski, L.-A. Exserohilum rostratum fungal meningitis associated with methylprednisolone injections. Future Microbiol. 2013, 8, 135–137. [Google Scholar] [CrossRef]
- Ribeiro, V.L.; dos Santos, N.S.S.; de Oliveira, R.V.S.; Carvalho, J.A.; Garcia, V.; Brito-Junior, H.J.S.; Usfinit, W.; Pinheiro, M.; Fill, T.; Gester, R.; et al. Synthesis, Biotransformation, Characterization, and DFT Study of Organic Azachalcone Dyes and Secondary Metabolites with Biological and Conformation Dependence of Dipolar-Octupolar NLO Responses. ACS Omega 2025, 10, 10962−10971. [Google Scholar] [CrossRef]
- Hao, Y.; Wei, Z.; Wang, Z.; Li, G.; Yao, Y.; Dun, B. Biotransformation of Flavonoids Improves Antimicrobial and Anti-Breast Cancer Activities In Vitro. Foods 2021, 10, 2367. [Google Scholar] [CrossRef] [PubMed]
- İşcan, G.; Kirimer, N.; Demirci, F.; Demirci, B.; Noma, Y.; Başer, K.H.C. Biotransformation of (−)-(R)-α-Phellandrene: Antimicrobial Activity of Its Major Metabolite. Chem. Biodivers. 2012, 9, 1403–1617. [Google Scholar] [CrossRef] [PubMed]
- Marinho, A.M.d.R.; de Oliveira, C.M.S.C.; Silva-Silva, J.V.; de Jesus, S.C.A.; Siqueira, J.E.S.; de Oliveira, L.C.; Auzier, J.F.; Soares, L.N.; Pinheiro, M.L.B.; Silva, S.C.; et al. Antimicrobial Activity and Molecular Docking Studies of the Biotransformation of Diterpene Acanthoic Acid Using the Fungus Xylaria sp. Antibiotics 2023, 12, 1331. Antibiotics 2023, 12, 1331. [Google Scholar] [CrossRef] [PubMed]
Substance | MIC (µg/mL) | |||
---|---|---|---|---|
Gram-Positive | Gram-Negative | |||
B. subtilis | S. aureus | E. coli | S. typhimurium | |
2a | >250 | 250 | >250 | 250 |
2b | >250 | 250 | >250 | 62.50 |
2c | 250 | 250 | >250 | 125 |
3a | >250 | 62.50 | >250 | 31.25 |
3b | >250 | 125 | >250 | 62.50 |
3c | >250 | >250 | >250 | 62.50 |
Tetracycline | 3.91 | 3.91 | 3.91 | 3.91 |
Amoxicillin | 3.91 | 3.91 | 3.91 | 3.91 |
DMSO | >250 | >250 | >250 | >250 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pastana, J.N.; Ribeiro, V.L.; Pinheiro, M.S.d.S.; Siqueira, J.E.d.S.; Oliveira, L.C.; Bitencourt, H.R.; Fill, T.P.; Marinho, A.M.d.R.; Marinho, P.S.B. Biocatalytic Reduction of α,β-Unsaturated Double Bonds of Curcuminoid Derivatives by Exserohilum rostratum. Chemistry 2025, 7, 143. https://doi.org/10.3390/chemistry7050143
Pastana JN, Ribeiro VL, Pinheiro MSdS, Siqueira JEdS, Oliveira LC, Bitencourt HR, Fill TP, Marinho AMdR, Marinho PSB. Biocatalytic Reduction of α,β-Unsaturated Double Bonds of Curcuminoid Derivatives by Exserohilum rostratum. Chemistry. 2025; 7(5):143. https://doi.org/10.3390/chemistry7050143
Chicago/Turabian StylePastana, Jânison Nazareno, Victória Lopes Ribeiro, Mayra Suelen da Silva Pinheiro, José Edson de Sousa Siqueira, Luana Cardoso Oliveira, Heriberto Rodrigues Bitencourt, Taícia Pacheco Fill, Andrey Moacir do Rosario Marinho, and Patrícia Santana Barbosa Marinho. 2025. "Biocatalytic Reduction of α,β-Unsaturated Double Bonds of Curcuminoid Derivatives by Exserohilum rostratum" Chemistry 7, no. 5: 143. https://doi.org/10.3390/chemistry7050143
APA StylePastana, J. N., Ribeiro, V. L., Pinheiro, M. S. d. S., Siqueira, J. E. d. S., Oliveira, L. C., Bitencourt, H. R., Fill, T. P., Marinho, A. M. d. R., & Marinho, P. S. B. (2025). Biocatalytic Reduction of α,β-Unsaturated Double Bonds of Curcuminoid Derivatives by Exserohilum rostratum. Chemistry, 7(5), 143. https://doi.org/10.3390/chemistry7050143