Preparation, Crystal Structure, and Energetic Properties of Four 2,4,7,9-Tetranitro-10H-benzofuro[3,2-b]indole (TNBFI) Based Solvates
Abstract
1. Introduction
2. Experimental
2.1. Components, Materials, and Reagents
2.2. Synthesis and Desolvation of TNBFI∙2DMF
2.3. Synthesis of Four Solvates of TNBFI
2.4. Structure Determination of TNBFI Solvates
2.5. Mass Spectrometry of TNBFI·2DMSO
3. Results and Discussion
3.1. Molecular Packing
3.2. π-Stacking Interactions
3.3. H-Bonding Interactions
3.4. Energetic Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
DURC Statement
Conflicts of Interest
References
- Cao, Y.; Liu, Y.; Zhang, W. Pentazolate Anion: A Rare and Preferred Five-Membered Ligand for Constructing Pentasil-Zeolite Topology Architectures. Angew. Chem. Int. Ed. 2024, 63, e202317355. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhou, Q.; Zhao, J.; Hou, T.; Wang, G.; Zhu, L.; Li, B.; Zhang, Y. Construction of Three Novel Oxygen-Containing Cagelike Frameworks and Synthesis of their Energetic Derivatives. Synlett 2024, 35, 1989–1996. [Google Scholar] [CrossRef]
- Lal, S.; Cheekatla, S.R.; Suresh, A.; Ayyagari, N.; Mallick, L.; Pallikonda, G.; Desai, P.; Ahirwar, P.; Chowdhury, A.; Kumbhakarna, N.; et al. Synthesis, Characterization and Energetic Properties of Hydroxymethyl-Bishomocubanone Derivatives. Chem. Eur. J. 2024, 30, e202401265. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.; Dong, G.; Hang, Z.; Zhu, W.; Wu, Q.; Tan, L. A New Design Strategy for Constructing Powerful Cage Energetic Compounds with Low Sensitivity: The Combination of a Nitrogen-Rich Cage, Nitro Groups, and Amino Groups Based on a One-Step Reaction with the Perfect Atomic Efficiency. Int. J. Quantum Chem. 2025, 125, e70050. [Google Scholar] [CrossRef]
- Feng, E.; Tang, J.; Li, C.; Zhu, T.; Yang, H.; Cheng, G. Synthesis and characterization of amphoteric salts and azo-bridged heat-resistant explosives with a 1,2,4-triazole framework. Energetic Mater. Front. 2025, 5, 51–58. [Google Scholar] [CrossRef]
- Kotha, S.; Cheekatla, S.R.; Lal, S.; Mallick, L.; Kumbhakarna, N.; Chowdhury, A.; Namboothiri, I.N.N. Pentacycloundecane (PCUD)-Based Cage Frameworks as Potential Energetic Materials: Syntheses and Characterization. Asian J. Org. Chem. 2020, 9, 2116–2126. [Google Scholar] [CrossRef]
- Zhou, Q.; Li, H.; Zhu, L.; Li, B.; Liu, Y.; Wang, G.; Zhang, Y.; Luo, J. Construction of an All-Bridge Carbon-Oxidized 2-Azaadamantane Skeleton and Synthesis of Two Energetic Derivatives. Org. Lett. 2025, 27, 3164–3169. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Li, S.; Huang, S.; Xu, J.; Yan, Q.; Jin, S.; Liu, Y. Facilitating polymorphic crystallization of HMX through ultrasound and trace additive assistance. Ultrason. Sonochem. 2024, 107, 106946. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Liu, Y.; Li, S.; Yang, S.; Li, J. Microstructure and Performance in the Desolvation Process of HNS/Dioxane Solvate by In-situ XRD Method. Chin. J. Energ. Mater. 2016, 24, 363–367. [Google Scholar] [CrossRef]
- Zhang, L.; Yan, M.; Yin, W.; Li, J.; Liu, Y.; Zhao, S.; Huang, S. Experimental Study of the Crystal Habit of High Explosive Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in Acetone and Dimethyl Sulfoxide. Cryst. Growth Des. 2020, 20, 6622–6628. [Google Scholar] [CrossRef]
- Wei, L.; Chen, Y.; Li, Y.; Xiao, Y.; Yan, M.; Guo, J.; Xue, X.; Yan, Q.; Liu, Y.; Huang, S. Exposed Facets and Surface Properties of Highly Explosive RDX Studied by the Crystal-Face-Indexing Method and Theoretical Calculations. Cryst. Growth Des. 2024, 24, 3632–3639. [Google Scholar] [CrossRef]
- Yan, M.; Liu, Y.; Xu, J.; Yang, L.; Zhang, L.; Nie, F.; Huang, S. Porous Cyclotrimethylenetrinitramine with Reduced Sensitivity Prepared by a Solvation−Desolvation Method. Cryst. Growth Des. 2020, 20, 5387–5394. [Google Scholar] [CrossRef]
- Song, X.; Zhang, H.; Jin, D.; Huang, S.; Sun, J.; Xu, J. Solvent Vapor/Gas-Induced Guest Transport and Exchange of a Nonporous Organic Crystal to Construct Smart Host−Guest Energetic Materials. ACS Appl. Mater. Interfaces 2024, 16, 52264–52276. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Yan, M.; Huang, S.; Xu, J.; He, X.; Cao, X.; Liu, Y. Porous structure and reduced sensitivity of 2,2′,4,4′,6,6′-hexanitrostilbene (HNS) prepared by different solvation and desolvation methods. J. Energetic Mater. 2020, 38, 35–47. [Google Scholar] [CrossRef]
- Huo, H.; Ye, B.; Shi, Y.; Feng, C.; Wang, J.; Li, M.; Fan, J.; Li, L.; Wang, J.; An, C. Preparation of HNS microspheres by rapid membrane emulsification. Particuology 2023, 79, 35–44. [Google Scholar] [CrossRef]
- Quinlin, W.T.; Thorpe, R.; Lightfoot, J.M. Thermally Stable Booster Explosive and Process for Manufacture. U.S. Patent 7,015,334, 21 March 2006. Available online: https://www.osti.gov/biblio/908542 (accessed on 30 October 2024).
- Cao, X.; Guan, Y.; Yang, L.; Yan, M.; Ma, Q.; Fan, G.; Liu, Y.; Huang, S. An energetic derivative of 2,2′,4,4′,6,6′-hexanitrostilbene (HNS) and its DMF solvate crystallized from HNS solution with tertiary amine additives. J. Energetic Mater. 2019, 37, 90–97. [Google Scholar] [CrossRef]
- Cao, H.; Yan, M.; Huang, S.; He, X. Crystal structure of 2,4,7,9-tetranitro-10H-benzofuro[3,2-b]indole–dimethyl sulfoxide (1/1), C16H11N5O10S. Z. Krist-New Cryst. St. 2021, 236, 523–525. [Google Scholar] [CrossRef]
- BIOVIA. Materials Studio, Version 2024; [Computer Software]; BIOVIA: San Diego, CA, USA, 2024; Dassault Systèmes. Available online: https://www.3ds.com/products/biovia/materials-studio (accessed on 11 May 2025).
- Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517. [Google Scholar] [CrossRef]
- Gaussian, Inc. Gaussian 16, Version 16.0 Rev. C.01; [Computer Software]; Gaussian, Inc.: Wallingford, CT, USA, 2024. Available online: https://gaussian.com/ (accessed on 11 May 2025).
- Linstrom, P.J.; Mallard, W.G. (Eds.) NIST Chemistry WebBook; NIST Standard Reference Database Number 69; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2001. Available online: https://webbook.nist.gov (accessed on 11 May 2025).
- Wang, Y.; Zhang, J.; Su, H.; Li, S.; Zhang, S.; Pang, S. A simple method for the prediction of the detonation performances of metal-containing explosives. J. Phys. Chem. A 2014, 118, 4575–4581. [Google Scholar] [CrossRef] [PubMed]
- Kamlet, M.J.; Jacobs, S.J. Chemistry of detonations. I. A simple method for calculating detonation properties of C–H–N–O explosives. J. Chem. Phys. 1968, 48, 23–35. [Google Scholar] [CrossRef]
- Dobratz, B.M. LLNL Explosives Handbook: Properties of Chemical Explosives and Explosives and Explosive Simulants; Lawrence Livermore National Lab. (LLNL): Livermore, CA, USA, 1981. [CrossRef]
Compound | TNBFI∙AC | TNBFI∙2DMSO | TNBFI∙4DIO | TNBFI∙ACN |
---|---|---|---|---|
Chemical formula | C14H5N5O9·C3H6O | C14H5N5O9·2C2H6OS | C14H5N5O9·3C4H8O2* | C14H5N5O9·C2H3N |
Formula Mass | 445.31 | 543.48 | 651.53 | 428.28 |
Crystal system | Monoclinic | Monoclinic | Monoclinic | Monoclinic |
a/Å | 5.59687(16) | 11.1725(3) | 6.10570(10) | 11.5773(2) |
b/Å | 17.9290(5) | 5.8179(2) | 11.1617(2) | 8.68810(10) |
c/Å | 18.5194(5) | 17.9473(5) | 21.9387(4) | 17.4082(3) |
α/° | 90.00 | 90.00 | 90.00 | 90.00 |
β/° | 96.980(3) | 101.314(3) | 96.441(2) | 97.0440(10) |
γ/° | 90.00 | 90.00 | 90.00 | 90.00 |
Unit cell volume/Å3 | 1844.58(9) | 1143.91(6) | 1485.68(5) | 1737.78(5) |
Temperature/K | 296(2) | 296(2) | 296(2) | 296(2) |
Space group | P21/c (No. 14) | Pc (No. 7) | Pn (No. 7) | P21/n (No. 14) |
No. of formula units per unit cell, Z | 4 | 2 | 2 | 4 |
Wavelength λ/Å | CuKα, 1.54184 | CuKα, 1.54178 | CuKα, 1.54178 | CuKα, 1.54178 |
No. of reflections measured | 3360 | 3689 | 4065 | 3190 |
No. of independent reflections | 2660 | 3203 | 3772 | 2712 |
Rint | 0.0342 | 0.0370 | 0.0265 | 0.0516 |
Final R1 values (I > 2σ(I)) | 0.0440 | 0.0575 | 0.0536 | 0.0484 |
Final wR(F2) values (I > 2σ(I)) | 0.1131 | 0.1671 | 0.1636 | 0.1366 |
Final R1 values (all data) | 0.0577 | 0.0650 | 0.0564 | 0.0540 |
Final wR(F2) values (all data) | 0.1279 | 0.1783 | 0.1675 | 0.1497 |
Goodness of fit on F2 | 0.995 | 1.053 | 1.053 | 1.078 |
TNBFI⋅AC | D―H⋯A | d(H⋯A) | d(D⋯A) | ∠DHA |
---|---|---|---|---|
TNBFI-AC | C9―H9⋯O10 | 2.42 | 3.13 | 132.50 |
N1―H1⋯O10 | 2.18 | 2.89 | 139.39 | |
TNBFI-TNBFI | N1―H1⋯O7 | 2.32 | 2.82 | 117.07 |
C2―H2⋯O4 | 2.48 | 3.38 | 164.05 | |
TNBFI⋅2DMSO | D―H⋯A | d(H⋯A) | d(D⋯A) | ∠DHA |
TNBFI-DMSO | C2―H2⋯O11 | 2.43 | 3.18 | 137.56 |
C9―H9⋯O10 | 2.40 | 3.21 | 147.32 | |
N1―H1⋯O10 | 2.69 | 3.35 | 135.98 | |
TNBFI-TNBFI | N1―H1⋯O6 | 2.27 | 2.76 | 117.40 |
TNBFI⋅4DIO | D―H⋯A | d(H⋯A) | d(D⋯A) | ∠DHA |
TNBFI-DIO | C19―H19B⋯O8 | 2.38 | 3.26 | 149.86 |
C22―H22A⋯O2 | 2.52 | 3.46 | 164.07 | |
N1―H1⋯O12 | 2.26 | 3.01 | 144.76 | |
C16―H16A⋯O5 | 2.57 | 3.17 | 120.34 | |
C18―H18B⋯O9 | 2.63 | 3.21 | 119.17 | |
C15―H15A⋯O7 | 2.72 | 3.36 | 123.81 | |
TNBFI-TNBFI | N1―H1⋯O3 | 2.31 | 2.82 | 117.77 |
TNBFI⋅ACN | D―H⋯A | d(H⋯A) | d(D⋯A) | ∠DHA |
TNBFI-ACN | C4―H4⋯O2 | 2.48 | 3.41 | 175.54 |
C11―H11⋯O6 | 2.51 | 3.44 | 175.66 | |
C13―H13⋯O4 | 2.54 | 3.39 | 152.40 | |
N1―H1⋯N6 | 2.13 | 2.92 | 151.92 | |
TNBFI-TNBFI | N1―H1⋯O3 | 2.35 | 2.84 | 116.09 |
Compound | TNT [25] | TNBFI∙AC | TNBFI∙2DMSO | TNBFI∙4DIO | TNBFI∙ACN | TNBFI∙DMSO |
---|---|---|---|---|---|---|
Upot/kJ·mol−1 | - | −265.11 | −382.45 | −319.39 | −265.06 | −306.14 |
ΔfHmϴ(TNBFI)/kJ·mol−1 | - | −338.12 | −263.75 | −308.98 | −334.47 | −322.80 |
ΔfHmϴ(solvent molecule)/kJ·mol−1 | - | −265.92 | −350.85 | −391.13 | 79.00 | −331.67 |
ΔfHmϴ/kJ·mol−1 | −50.16 | −338.93 | −232.15 | −380.71 | 9.59 | −348.32 |
ΔfHmϴ(CO2)/kJ·mol−1 | −393.51 | −393.51 | −393.51 | −393.51 | −393.51 | −393.51 |
ΔfHmϴ(H2O)/kJ·mol−1 | −241.83 | −241.83 | −241.83 | −241.83 | −241.83 | −241.83 |
Q/kJ mol−1 | - | 939.78 | 1018.20 | 1206.48 | 1094.89 | 958.95 |
M/g·mol−1 | 227.13 | 445.31 | 543.48 | 739 | 428 | 465.36 |
Mgas/g·mol−1 | - | 26.15 | 22.69 | 18.05 | 28.00 | 26.15 |
N | - | 0.02 | 0.02 | 0.03 | 0.02 | 0.02 |
ρ/g·cm−3 | 1.653 | 1.604 | 1.578 | 1.259 | 1.637 | 1.653 |
vD/m·s−1 | 6942 | 5919 | 5705 | 5453 | 6228 | 5939 |
P/Gpa | 18.66 | 14.46 | 13.29 | 10.36 | 16.23 | 14.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Yan, M.; Shi, C.; Yang, P.; Guo, J.; Liu, Y.; Huang, S. Preparation, Crystal Structure, and Energetic Properties of Four 2,4,7,9-Tetranitro-10H-benzofuro[3,2-b]indole (TNBFI) Based Solvates. Chemistry 2025, 7, 96. https://doi.org/10.3390/chemistry7030096
Chen Y, Yan M, Shi C, Yang P, Guo J, Liu Y, Huang S. Preparation, Crystal Structure, and Energetic Properties of Four 2,4,7,9-Tetranitro-10H-benzofuro[3,2-b]indole (TNBFI) Based Solvates. Chemistry. 2025; 7(3):96. https://doi.org/10.3390/chemistry7030096
Chicago/Turabian StyleChen, Yiru, Mi Yan, Chunbo Shi, Peilin Yang, Jinkun Guo, Yu Liu, and Shiliang Huang. 2025. "Preparation, Crystal Structure, and Energetic Properties of Four 2,4,7,9-Tetranitro-10H-benzofuro[3,2-b]indole (TNBFI) Based Solvates" Chemistry 7, no. 3: 96. https://doi.org/10.3390/chemistry7030096
APA StyleChen, Y., Yan, M., Shi, C., Yang, P., Guo, J., Liu, Y., & Huang, S. (2025). Preparation, Crystal Structure, and Energetic Properties of Four 2,4,7,9-Tetranitro-10H-benzofuro[3,2-b]indole (TNBFI) Based Solvates. Chemistry, 7(3), 96. https://doi.org/10.3390/chemistry7030096