One-Step Hydrothermal Synthesis of Multicolour Graphene Quantum Dots and Study of Their Luminescence Mechanism
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Preparation of the Multicolour GQDs
2.3. Characterization of the Multicolour GQDs
2.4. Fluorescence Quantum Yield of the Multicolour GQDs
2.5. Cytotoxicity of the Multicolour GQDs
3. Results and Discussion
3.1. Synthesis Schematic of the Multicolour GQDs
3.2. Spectral Properties of the Multicolour GQDs
3.3. Structural Characterization of the Multicolour GQDs
3.4. Quantum Confinement Modulation of Luminescence Mechanism
3.5. Cytotoxicity of the Multicolour GQDs
3.6. Stability of the Multicolour GQDs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Izquierdo-García, P.; Fernández-García, J.M.; Martín, N. Twenty years of graphene: From pristine to chemically engineered nano-sized flakes. J. Am. Chem. Soc. 2024, 146, 32222–32234. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Li, X.; Zuo, M.; Liang, Y.; Qin, P.; Wang, H.; Wu, Z.; Luo, L.; Liu, C.; Leng, L. Preparation of photocatalysts decorated by carbon quantum dots (GQDs) and their applications: A review. J. Environ. Chem. Eng. 2023, 11, 109487. [Google Scholar] [CrossRef]
- Kucherik, A.; Kumar, A.; Andrey, A.; Vlad, S.; Anton, O.; Ilya, B.; Shchanikov, S.; Kumar, M. Carbyne as a promising material for e-nose applications with machine learning. Nanotechnology 2025, 36, 072002. [Google Scholar] [CrossRef]
- Keyvani, A.H.; Mohammadnejad, P.; Pazoki-Toroudi, H.; Gilabert, I.P.; Chu, T.; Manshian, B.B.; Soenen, S.J.; Sohrabi, B. Advancements in cancer treatment: Harnessing the synergistic potential of graphene-based nanomaterials in combination therapy. ACS Appl. Mater. Interfaces 2025, 17, 2756–2790. [Google Scholar] [CrossRef]
- Gulati, S.; Baul, A.; Amar, A.; Wadhwa, R.; Kumar, S.; Varma, R.S. Eco-friendly and sustainable pathways to photoluminescent carbon quantum dots (GQDs). Nanomaterials 2025, 13, 554. [Google Scholar] [CrossRef]
- Wang, Y.; He, Q.; Zhao, X.; Yuan, J.; Zhao, H.; Wang, G.; Li, M. Synthesis of corn straw-based graphene quantum dots (GQDs) and their application in PO43- detection. J. Environ. Chem. Eng. 2022, 10, 107150. [Google Scholar] [CrossRef]
- Ali, M.; Maiyalagan, T.; Lee, K.H.; Choi, I.; Ko, M.J. Utilizing molecular states of carbon quantum dots (GQDs) to efficiently harvest outdoor and indoor energy via luminescent solar concentrator. Surf. Interfaces 2024, 52, 104953. [Google Scholar] [CrossRef]
- Ahmed, H.E.H.; Soylak, M. Exploring the potential of carbon quantum dots (GQDs) as an advanced nanomaterial for effective sensing and extraction of toxic pollutants. Trends Anal. Chem. 2024, 180, 117939. [Google Scholar] [CrossRef]
- Wu, Y.; Combs, C.; Okosun, B.O.; Tayutivutikul, K.; Darland, D.C.; Zhao, J.X. Fe3+-doped graphene quantum dots-based nanozyme for H2O2 detection in cellular metabolic distress. ACS Appl. Nano Mater. 2025, 8, 2774–2784. [Google Scholar] [CrossRef]
- Yu, H.P.; Xiang, Y.J.; Wu, K.G.; He, D.; Chai, X.H.; Xu, L.; Cheng, Y.Q.; Duan, X.J.; Li, W.H. Green synthesis of carbon dots from Hakka yellow wine lees: Characterization and applications for Fe3+ and NaFeEDTA sensing. LWT 2024, 208, 116744. [Google Scholar] [CrossRef]
- Zhi, S.Z.; Zou, X.H.; Bao, S.S.; Liu, J.; Yang, Z.C.; Shi, J.J.; Pan, P.; Qi, Y.Y.; He, J. A dual-potential electrochemiluminescence sensor for glutamate pyruvate transaminase detection based on AgNPs/N, S-GQDs modified paper-based electrode. Microchem. J. 2024, 206, 111442. [Google Scholar] [CrossRef]
- Cortes, F.R.U.; Falomir, E.; Lancis, J.; Mínguez-Vega, G. Pulsed laser fragmentation synthesis of carbon quantum dots (GQDs) as fluorescent probes in non-enzymatic glucose detection. Appl. Surf. Sci. 2024, 665, 160326. [Google Scholar] [CrossRef]
- Kumar, P.; Ravichandran, A.; Durgadevi, S.; Manikandan, V.; Song, K.S.; Prabhu, D.; Jeyakanthan, J.; Thirumurugan, D.; Muthusamy, G. Microwave-assisted green synthesis of GQDs from mesosphaerum suaveolens extract: Photocatalytic degradation and anticancer activity. Waste Biomass Valori. 2024, 15, 6539–6552. [Google Scholar] [CrossRef]
- Sanabria, A.E.R.; Narváez, S.U.; Portilla, J.V.G.; Rodríguez, G.A.T. Sonochemical synthesis of GQDs from coffee husk: Insights in aggregation mechanism, optimization and sustainability analysis. Heliyon 2025, 11, e41000. [Google Scholar] [CrossRef]
- Hidayat, R.N.; Widiyandari, H.; Parasdila, H.; Prilita, O.; Astuti, Y.; Mufti, N.; Ogi, T. Green synthesis of ZnO photocatalyst composited carbon quantum dots (GQDs) from lime (Citrus Aurantifolia). Catal. Commun. 2024, 187, 106888. [Google Scholar] [CrossRef]
- Yu, W.Z.; Li, Q.; He, L.Q.; Zhou, R.L.; Liao, L.F.; Xue, J.H.; Xiao, X.L. Green synthesis of GQDs for determination of iron and isoniazid in pharmaceutical formulations. Anal. Methods 2023, 15, 944–950. [Google Scholar] [CrossRef]
- Nejatpour, M.; Ünsür, A.M.; Yılmaz, B.; Gül, M.; Ozden, B.; Barisci, S.; Dükkancı, M. Enhanced photodegradation of perfluorocarboxylic acids (PFCAs) using carbon quantum dots (GQDs) doped TiO2 photocatalysts: A comparative study between exfoliated graphite and mussel shell-derived GQDs. J. Environ. Chem. Eng. 2025, 13, 115382. [Google Scholar] [CrossRef]
- Rajamanikandan, S.; Biruntha, M.; Ramalingam, G. Blue emissive carbon quantum dots (GQDs) from bio-waste peels and its antioxidant activity. J. Cluster Sci. 2022, 33, 1045–1053. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Liu, D.; Feng, Y.; Yang, D.; Wu, S.; Jiang, H.; Wang, D.; Bi, S. Study on the synthesis and electrochemical properties of nitrogen-doped graphene quantum dots. Materials 2024, 17, 6163. [Google Scholar] [CrossRef]
- Facure, M.H.M.; Schneider, R.; Mercante, L.A.; Correa, D.S. Rational hydrothermal synthesis of graphene quantum dots with optimized luminescent properties for sensing applications. Mater. Today Chem. 2022, 23, 100755. [Google Scholar] [CrossRef]
- Guan, J.; Liu, X.; Bai, N.; Wang, F.; Yang, Z.; Zhang, J.; Gao, F.; Zhang, P.; Wei, Z. Luminescence properties of GQDs and photocatalytic properties of TiO2/ZnO/GQDs ternary composites. J. Mater. Sci. Mater. Electron. 2023, 34, 2169. [Google Scholar] [CrossRef]
- Ateia, E.E.; Rabie, O.; Mohamed, A.T. Magneto-fluorescent core-shell Sr0.8La0.2Fe11CuO19 @ GQDs for the detection of metal ions. Appl. Surf. Sci. 2024, 678, 161123. [Google Scholar] [CrossRef]
- Li, Z.; Zhou, Z.; Wang, J.; Sun, Q.; Zhang, J.; Tao, T.; Fu, Y. Ratiometric fluorescence detection of doxorubicin by R-GQDs based on the inner filter effect and fluorescence resonance energy transfer. New J. Chem. 2023, 47, 3541–3548. [Google Scholar] [CrossRef]
- Zhou, P.; Xu, J.; Guo, J.; Hou, X.; Dai, L.; Xiao, X.; Huo, K. Driving multicolour lignin-based carbon quantum dots into selective metal-ion recognition and photocatalytic antibiotic decomposition. Green Chem. 2024, 26, 6005–6018. [Google Scholar] [CrossRef]
- Ma, X.F.; Li, J.F. Preparation of multicolour carbon quantum dots by hydrothermal method and their functionalization applications. J. Lumin. 2024, 266, 120296. [Google Scholar] [CrossRef]
- Chen, X.R.; Han, X.; Zhang, C.X.; Xue, Q.; Liu, X.L.; Zhang, J.H.; Liu, W.; Ragauskas, A.J.; Song, X.P.; Zhang, Z.Y. Synthesis of red, green, and blue carbon quantum dots and construction of multicolour cellulose-based light-emitting diodes. Small Struct. 2024, 5, 2300449. [Google Scholar] [CrossRef]
- Wang, Q.; Fu, X.; Huang, X.; Wu, F.Y.; Ma, M.H.; Cai, Z.X. A rapid triple-mode fluorescence switch assay for immunoglobulin detection by using quantum dots-gold nanoparticles nanocomposites. Sensor. Actuat. B Chem. 2016, 231, 779–786. [Google Scholar] [CrossRef]
- Soni, H.; Pamidimukkala, P.S. Green synthesis of N, S co-doped carbon quantum dots from triflic acid treated palm shell waste and their application in nitrophenol sensing. Mater. Res. Bull. 2018, 108, 250–254. [Google Scholar] [CrossRef]
- Sk, M.A.; Ananthanarayanan, A.; Huang, L.; Lim, K.H.; Chen, P. Revealing the tunable photoluminescence properties of graphene quantum dots. J. Mater. Chem. C 2014, 2, 6954–6960. [Google Scholar] [CrossRef]
- Zhu, S.J.; Zhang, J.H.; Qiao, C.Y.; Tang, S.J.; Li, Y.F.; Yuan, W.J.; Li, B.; Tian, L.; Liu, F.; Hu, R.; et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem. Commun. 2011, 47, 6858–6860. [Google Scholar] [CrossRef]
- Nurunnabi, M.; Khatun, Z.; Huh, K.M.; Park, S.Y.; Lee, D.Y.; Cho, K.J.; Lee, Y.K. In vivo biodistribution and toxicology of carboxylated graphene quantum dots. ACS Nano 2013, 7, 6858–6867. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Sun, L.; Liu, K.; Wu, D.; Wang, J.; Geng, F. One-Step Hydrothermal Synthesis of Multicolour Graphene Quantum Dots and Study of Their Luminescence Mechanism. Chemistry 2025, 7, 94. https://doi.org/10.3390/chemistry7030094
Wang B, Sun L, Liu K, Wu D, Wang J, Geng F. One-Step Hydrothermal Synthesis of Multicolour Graphene Quantum Dots and Study of Their Luminescence Mechanism. Chemistry. 2025; 7(3):94. https://doi.org/10.3390/chemistry7030094
Chicago/Turabian StyleWang, Beibei, Ling Sun, Kai Liu, Di Wu, Jinqiu Wang, and Fang Geng. 2025. "One-Step Hydrothermal Synthesis of Multicolour Graphene Quantum Dots and Study of Their Luminescence Mechanism" Chemistry 7, no. 3: 94. https://doi.org/10.3390/chemistry7030094
APA StyleWang, B., Sun, L., Liu, K., Wu, D., Wang, J., & Geng, F. (2025). One-Step Hydrothermal Synthesis of Multicolour Graphene Quantum Dots and Study of Their Luminescence Mechanism. Chemistry, 7(3), 94. https://doi.org/10.3390/chemistry7030094