Machine Learning-Assisted Optical Characterization and Growth Modulation of Two-Dimensional Materials
Abstract
:1. Introduction
2. Machine Learning Fundamental Principles and Techniques
2.1. Machine Learning Algorithm Theory
2.2. Machine Learning Model Building
3. Optical Properties of 2D Materials
3.1. Light Absorption and Emission
3.2. Optical Anisotropy
3.3. Photoluminescence
3.4. Nonlinear Optical Properties
4. Machine Learning for Optical Characterization of 2D Materials
4.1. Conventional Measurement Methods Based on Optical Properties
4.1.1. Optical Image
4.1.2. Raman Spectroscopy
4.1.3. Photoluminescence Spectra
4.1.4. Theory of Optical Property Analysis
4.2. Image Characterization and Prediction Models for Optical Properties
5. Growth Modulation of 2D Materials
5.1. Fundamentals of 2D Material Growth Techniques
5.2. Chemical Vapor Deposition Growth Kinetics
6. Machine Learning Enables Growth Modulation of 2D Materials
6.1. Monitoring the Growth Process
6.2. Predicting Growth Patterns
7. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, J.; Kuang, X.; Gao, Y.; Wang, Y.; Chen, K.; Ding, Z.; Liu, J.; Cong, C.; He, J.; Liu, Z.; et al. Direct Observation of the Linear Dichroism Transition in Two-Dimensional Palladium Diselenide. Nano Lett. 2020, 20, 1172–1182. [Google Scholar] [CrossRef]
- Lin, Z.; Tian, Z.; Cen, W.; Zeng, Q. Monolayer black phosphorus: Tunable band gap and optical properties. Phys. B Condens. Matter 2023, 657, 414780. [Google Scholar] [CrossRef]
- Shi, Z.; Ren, X.; Qiao, H.; Cao, R.; Zhang, Y.; Qi, X.; Zhang, H. Recent insights into the robustness of two-dimensional black phosphorous in optoelectronic applications. J.Photochem. Photobiol. C Photochem. Rev. 2020, 43, 100354. [Google Scholar] [CrossRef]
- Pogorielov, M.; Smyrnova, K.; Kyrylenko, S.; Gogotsi, O.; Zahorodna, V.; Pogrebnjak, A. MXenes—A New Class of Two-Dimensional Materials: Structure, Properties and Potential Applications. Nanomaterials 2021, 11, 3412. [Google Scholar] [CrossRef]
- Talipova, A.B.; Buranych, V.V.; Savitskaya, I.S.; Bondar, O.V.; Turlybekuly, A.; Pogrebnjak, A.D. Synthesis, Properties, and Applications of Nanocomposite Materials Based on Bacterial Cellulose and MXene. Polymers 2023, 15, 4067. [Google Scholar] [CrossRef] [PubMed]
- Alagarsamy, K.N.; Saleth, L.R.; Sekaran, S.; Fusco, L.; Delogu, L.G.; Pogorielov, M.; Yilmazer, A.; Dhingra, S. MXenes as emerging materials to repair electroactive tissues and organs. Bioact. Mater. 2025, 48, 583–608. [Google Scholar] [CrossRef] [PubMed]
- Rafique, M.; Anwar, S.; Irshad, M.; Rafique, M.S.; Assiri, M.A. Materials design to novel properties of MXenes: A comprehensive review on compositions, structures, characteristics, synthesis strategies and electrochemical properties. J. Energy Storage 2025, 121, 116470. [Google Scholar] [CrossRef]
- Wang, S.; Xia, J.; Yang, X.; Xie, Q.; Zhuang, Z.; Feng, H.; Xiang, H.; Chen, Z.; Li, H.; Zhang, L.; et al. Two-dimensional materials for NOx reduction to ammonia: From electrocatalyst to system. Coord. Chem. Rev. 2025, 535, 216610. [Google Scholar] [CrossRef]
- Lutomia, D.; Poria, R.; Kala, D.; Garg, P.; Nagraik, R.; Kaushal, A.; Gupta, S.; Kumar, D. 2D nanomaterials in biosensing: Synthesis, characterization, integration in biosensors and their applications. Biosens. Bioelectron. X 2025, 24, 100615. [Google Scholar] [CrossRef]
- Butler, K.T.; Davies, D.W.; Cartwright, H.; Isayev, O.; Walsh, A. Machine learning for molecular and materials science. Nature 2018, 559, 547–555. [Google Scholar] [CrossRef]
- Zhang, L.; He, M.; Shao, S. Machine learning for halide perovskite materials. Nano Energy 2020, 78, 105380. [Google Scholar] [CrossRef]
- Frey, N.C.; Akinwande, D.; Jariwala, D.; Shenoy, V.B. Machine Learning-Enabled Design of Point Defects in 2D Materials for Quantum and Neuromorphic Information Processing. ACS Nano 2020, 14, 13406–13417. [Google Scholar] [CrossRef]
- Schleder, G.R.; Focassio, B.; Fazzio, A. Machine learning for materials discovery: Two-dimensional topological insulators. Appl. Phys. Rev. 2021, 8, 031409. [Google Scholar] [CrossRef]
- Damewood, J.; Karaguesian, J.; Lunger, J.R.; Tan, A.R.; Xie, M.; Peng, J.; Gómez-Bombarelli, R. Representations of Materials for Machine Learning. Annu. Rev. Mater. Res. 2023, 53, 399–426. [Google Scholar] [CrossRef]
- Acosta, C.M.; Ogoshi, E.; Souza, J.A.; Dalpian, G.M. Machine Learning Study of the Magnetic Ordering in 2D Materials. ACS Appl. Mater. Interfaces 2022, 14, 9418–9432. [Google Scholar] [CrossRef]
- Zhong, X.; Gallagher, B.; Liu, S.; Kailkhura, B.; Hiszpanski, A.; Han, T.Y.-J. Explainable machine learning in materials science. npj Comput. Mater. 2022, 8, 204. [Google Scholar] [CrossRef]
- Schleder, G.R.; Acosta, C.M.; Fazzio, A. Exploring Two-Dimensional Materials Thermodynamic Stability via Machine Learning. ACS Appl. Mater. Interfaces 2020, 12, 20149–20157. [Google Scholar] [CrossRef]
- Li, Y.; Kong, Y.; Peng, J.; Yu, C.; Li, Z.; Li, P.; Liu, Y.; Gao, C.-F.; Wu, R. Rapid identification of two-dimensional materials via machine learning assisted optic microscopy. J. Mater. 2019, 5, 413–421. [Google Scholar] [CrossRef]
- Hu, X.; Qiu, C.; Liu, D. Rapid thin-layer WS2 detection based on monochromatic illumination photographs. Nano Res. 2021, 14, 840–845. [Google Scholar] [CrossRef]
- Wang, J.; Lu, M.; Chen, Y.; Hao, G.; Liu, B.; Tang, P.; Yu, L.; Wen, L.; Ji, H. Machine Learning-Assisted Large-Area Preparation of MoS2 Mater. Nanomaterials 2023, 13, 2283. [Google Scholar] [CrossRef]
- Lu, M.; Ji, H.; Chen, Y.; Gao, F.; Liu, B.; Long, P.; Deng, C.; Wang, Y.; Tao, J. Machine learning assisted layer-controlled synthesis of MoS2. J. Mater. Chem. C 2024, 12, 8893–8900. [Google Scholar] [CrossRef]
- Yin, H.; Sun, Z.; Wang, Z.; Tang, D.; Pang, C.H.; Yu, X.; Barnard, A.S.; Zhao, H.; Yin, Z. The data-intensive scientific revolution occurring where two-dimensional materials meet machine learning. Cell Rep. Phys. Sci. 2021, 2, 100482. [Google Scholar] [CrossRef]
- Mouzai, M.; Oukid, S.; Mustapha, A. Machine learning modeling for the prediction of materials energy. Neural Comput. Appl. 2022, 34, 17981–17998. [Google Scholar] [CrossRef]
- Zheng, S.; Ding, H.; Li, S.; Chen, D.; Pan, F. Application of topology-based structure features for machine learning in materials science. CJSC 2023, 42, 100120. [Google Scholar] [CrossRef]
- Bi, Q.; Goodman, K.E.; Kaminsky, J.; Lessler, J. What is Machine Learning? A Primer for the Epidemiologist. Am. J. Epidemiology 2019, 188, 2222–2239. [Google Scholar] [CrossRef]
- Mahesh, B. Machine Learning Algorithms—A Review. Int. J. Sci. Res. 2019, 9, 381–386. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- El Naqa, I.; Murphy, M.J. What Is Machine Learning? In Machine Learning in Radiation Oncology: Theory and Applications; El Naqa, I., Li, R., Murphy, M.J., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 3–11. [Google Scholar]
- Carleo, G.; Cirac, I.; Cranmer, K.; Daudet, L.; Schuld, M.; Tishby, N.; Vogt-Maranto, L.; Zdeborová, L. Machine learning and the physical sciences. Rev. Mod. Phys. 2019, 91, 045002. [Google Scholar] [CrossRef]
- Nasteski, V. An overview of the supervised machine learning methods. Horiz. B 2017, 4, 51–62. [Google Scholar] [CrossRef]
- Mao, Y.; Wang, L.; Chen, C.; Yang, Z.; Wang, J. Thickness Determination of Ultrathin 2D Materials Empowered by Machine Learning Algorithms. Laser Photonics Rev. 2023, 17, 2200357. [Google Scholar] [CrossRef]
- Haifeng, W.; Dejin, H. Comparison of SVM and LS-SVM for Regression. In Proceedings of the International Conference on Neural Networks and Brain, Beijing, China, 13–15 October 2005; pp. 279–283. [Google Scholar] [CrossRef]
- Chandra, M.A.; Bedi, S.S. Survey on SVM and their application in imageclassification. Int. J. Inform. Technol. 2021, 13, 1–11. [Google Scholar]
- Vishwanathan, S.V.M.; Murty, M.N. SSVM: A simple SVM algorithm. In Proceedings of the International Joint Conference on Neural Networks. IJCNN’02 (Cat. No.02CH37290), Honolulu, HI, USA, 12–17 May 2002; pp. 2393–2398. [Google Scholar] [CrossRef]
- Sha’abani, M.N.A.H.; Fuad, N.; Jamal, N.; Ismail, M.F. kNN and SVM Classification for EEG: A Review. In Proceedings of the 5th International Conference on Electrical, Control & Computer Engineering, Kuantan, Malaysia, 29 July 2019; pp. 555–565. [Google Scholar]
- Guo, G.; Wang, H.; Bell, D.; Bi, Y.; Greer, K. KNN Model-Based Approach in Classification. In On the Move to Meaningful Internet Systems 2003: CoopIS, DOA, and ODBASE; Springer: Berlin/Heidelberg, Germany, 2003; pp. 986–996. [Google Scholar]
- Zhang, S.; Li, X.; Zong, M.; Zhu, X.; Cheng, D. Learning k for kNN Classification. J ACM Trans. Intell. Syst. Technol. 2017, 8, 43. [Google Scholar] [CrossRef]
- Zhang, S. Challenges in KNN Classification. IEEE Trans. Knowl. Data Eng. 2022, 34, 4663–4675. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.; Zong, M.; Zhu, X.; Wang, R. Efficient kNN Classification with Different Numbers of Nearest Neighbors. IEEE Trans. Neural Netw. Learn. Syst. 2018, 29, 1774–1785. [Google Scholar] [CrossRef]
- Ji, Y.; Yu, S.; Zhang, Y. A novel Naive Bayes model: Packaged Hidden Naive Bayes. In Proceedings of the 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference, Chongqing, China, 20–22 August 2011; Volume 2, pp. 484–487. [Google Scholar]
- Jiang, L.; Zhang, H.; Cai, Z. A Novel Bayes Model: Hidden Naive Bayes. IEEE Trans. Knowl. Data Eng. 2009, 21, 1361–1371. [Google Scholar] [CrossRef]
- Tang, B.; Kay, S.; He, H. Toward Optimal Feature Selection in Naive Bayes for Text Categorization. IEEE Trans. Knowl. Data Eng. 2016, 28, 2508–2521. [Google Scholar] [CrossRef]
- Frank, E.; Trigg, L.; Holmes, G.; Witten, I.H. Technical Note: Naive Bayes for Regression. Mach. Learn. 2000, 41, 5–25. [Google Scholar] [CrossRef]
- Kingsford, C.; Salzberg, S.L. What are decision trees? Nat. Biotechnol. 2008, 26, 1011–1013. [Google Scholar] [CrossRef]
- Podgorelec, V.; Kokol, P.; Stiglic, B.; Rozman, I. Decision Trees: An Overview and Their Use in Medicine. J. Med. Syst. 2002, 26, 445–463. [Google Scholar] [CrossRef]
- Kotsiantis, S.B. Decision trees: A recent overview. Artif. Intell. Rev. 2013, 39, 261–283. [Google Scholar] [CrossRef]
- Quinlan, J.R. Induction of decision trees. Mach. Learn. 1986, 1, 81–106. [Google Scholar] [CrossRef]
- Quinlan, J.R. Simplifying decision trees. Int. J.Man-Mach. Stud. 1987, 27, 221–234. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Biau, G. Analysis of a random forests model. J. Mach. Learn. Res. 2012, 13, 1063–1095. [Google Scholar]
- Fawagreh, K.; Medhat, G.M.; and Elyan, E. Random forests: From early developments to recent advancements. Syst. Sci. Control Eng. 2014, 2, 602–609. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C., Jr.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random Forcasts for Classification in Ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Li, Z.; Liu, F.; Yang, W.; Peng, S.; Zhou, J. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Trans. Neural Netw. Learn. Syst. 2022, 33, 6999–7019. [Google Scholar] [CrossRef]
- Gu, J.; Wang, Z.; Kuen, J.; Ma, L.; Shahroudy, A.; Shuai, B.; Liu, T.; Wang, X.; Wang, G.; Cai, J.; et al. Recent advances in convolutional neural networks. Pattern Recognit. 2018, 77, 354–377. [Google Scholar] [CrossRef]
- Yamashita, R.; Nishio, M.; Do, R.K.G.; Togashi, K. Convolutional neural networks: An overview and application in radiology. Insights Imaging 2018, 9, 611–629. [Google Scholar] [CrossRef]
- Ajit, A.; Acharya, K.; Samanta, A. A Review of Convolutional Neural Networks. In Proceedings of the International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE), Vellore, India, 24–25 February 2020; pp. 1–5. [Google Scholar]
- Ketkar, N.; Moolayil, J. Convolutional Neural Networks. In Deep Learning with Python: Learn Best Practices of Deep Learning Models with PyTorch; Ketkar, N., Moolayil, J., Eds.; Apress: Berkeley, CA, USA, 2021; pp. 197–242. [Google Scholar]
- Vedaldi, A.; Lenc, K. MatConvNet: Convolutional Neural Networks for MATLAB. In Proceedings of the 23rd ACM International Conference on Multimedia, Association for Computing Machinery, Brisban, Australia, 26–30 October 2015; pp. 689–692. [Google Scholar]
- Liu, Y.; Kelley, K.P.; Vasudevan, R.K.; Funakubo, H.; Ziatdinov, M.A.; Kalinin, S.V. Experimental discovery of structure–property relationships in ferroelectric materials via active learning. Nat. Mach. Intell. 2022, 4, 341–350. [Google Scholar] [CrossRef]
- Zhang, F.; Tamura, R.; Zeng, F.; Kozawa, D.; Kitaura, R. Bayesian Optimization for Controlled Chemical Vapor Deposition Growth of WS2. ACS Appl. Mater. Interfaces 2024, 16, 59109–59115. [Google Scholar] [CrossRef]
- Harris, S.B.; Vasudevan, R.; Liu, Y. Active oversight and quality control in standard Bayesian optimization for autonomous experiments. npj Comput. Mater. 2025, 11, 23. [Google Scholar] [CrossRef]
- van Engelen, J.E.; Hoos, H.H. A survey on semi-supervised learning. Mach. Learn. 2020, 109, 373–440. [Google Scholar] [CrossRef]
- Zhou, Z.-H. Semi-Supervised Learning. In Machine Learning; Springer Singapore: Singapore, 2021; pp. 315–341. [Google Scholar]
- Yang, X.; Song, Z.; King, I.; Xu, Z. A Survey on Deep Semi-Supervised Learning. IEEE Trans. Knowl. Data Eng. 2023, 35, 8934–8954. [Google Scholar] [CrossRef]
- Mallapragada, P.K.; Jin, R.; Jain, A.K.; Liu, Y. SemiBoost: Boosting for Semi-Supervised Learning. TPAMI 2009, 31, 2000–2014. [Google Scholar] [CrossRef]
- Johnson, J.D.; Li, J.; Chen, Z. Reinforcement Learning: An Introduction: R.S., Sutton, A.G., Barto, MIT Press, Cambridge, MA 1998, 322 pp. ISBN 0-262-19398-1. Neurocomputing 2000, 35, 205–206. [Google Scholar] [CrossRef]
- François-Lavet, V.; Henderson, P.; Islam, R.; Bellemare, M.G.; Pineau, J. An Introduction to Deep Reinforcement Learning. Found. Trends Mach. Learn. 2018, 11, 219–354. [Google Scholar] [CrossRef]
- Thrun, S.; Littman, M.L. Reinforcement Learning: An Introduction. AI Mag. 2000, 21, 103. [Google Scholar] [CrossRef]
- Eng, J. Receiver Operating Characteristic Analysis: A Primer1. Acad. Radiol. 2005, 12, 909–916. [Google Scholar] [CrossRef]
- Zweig, M.H.; Campbell, G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem. 1993, 39, 561–577. [Google Scholar] [CrossRef]
- Bewick, V.; Cheek, L.; Ball, J. Statistics review 13: Receiver operating characteristic curves. Crit. Care 2004, 8, 508. [Google Scholar] [CrossRef]
- Altman, D.G.; Bland, J.M. Diagnostic tests 3: Receiver operating characteristic plots. BMJ 1994, 309, 188. [Google Scholar] [CrossRef]
- Akobeng, A.K. Understanding diagnostic tests 3: Receiver operating characteristic curves. Acta Paediatr. 2007, 96, 644–647. [Google Scholar] [CrossRef] [PubMed]
- Nahm, F.S. Receiver operating characteristic curve: Overview and practical use for clinicians. kja 2022, 75, 25–36. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.R. Area Under the Curve (AUC). In Encyclopedia of Behavioral Medicine; Gellman, M.D., Ed.; Springer International Publishing: Cham, Switzerland, 2020; p. 146. [Google Scholar]
- Purves, R.D. Optimum numerical integration methods for estimation of area-under-the-curve (AUC) and area-under-the-moment-curve (AUMC). J. Pharmacokinet. Biopharm. 1992, 20, 211–226. [Google Scholar] [CrossRef] [PubMed]
- Köksoy, O. Multiresponse robust design: Mean square error (MSE) criterion. Appl. Math. Comput. 2006, 175, 1716–1729. [Google Scholar] [CrossRef]
- Shen, H.; Li, B.; Tao, M.; Wang, X. MSE-Based Transceiver Designs for the MIMO Interference Channel. IEEE Trans. Wirel. Commun. 2010, 9, 3480–3489. [Google Scholar] [CrossRef]
- Jorswieck, E.A.; Boche, H. Transmission strategies for the MIMO MAC with MMSE receiver: Average MSE optimization and achievable individual MSE region. TSP 2003, 51, 2872–2881. [Google Scholar] [CrossRef]
- Thompson, P.A. An MSE statistic for comparing forecast accuracy across series. Int. J. Forecast. 1990, 6, 219–227. [Google Scholar] [CrossRef]
- Marmolin, H. Subjective MSE Measures. ITSMCS 1986, 16, 486–489. [Google Scholar] [CrossRef]
- Zhang, G.; Huang, S.; Wang, F.; Yan, H. Layer-Dependent Electronic and Optical Properties of 2D Black Phosphorus: Fundamentals and Engineering. Laser Photon. Rev. 2021, 15, 2000399. [Google Scholar] [CrossRef]
- Chen, Z.-Y.; Qin, R. Strong-field nonlinear optical properties of monolayer black phosphorus. Nanoscale 2019, 11, 16377–16383. [Google Scholar] [CrossRef]
- Xia, F.; Wang, H.; Jia, Y. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 2014, 5, 4458. [Google Scholar] [CrossRef]
- Wang, X.; Lan, S. Optical properties of black phosphorus. Adv. Opt. Photon. 2016, 8, 618–655. [Google Scholar] [CrossRef]
- Huang, H.; Jiang, B.; Zou, X.; Zhao, X.; Liao, L. Black phosphorus electronics. Sci. Bull. 2019, 64, 1067–1079. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; Ling, X. Black Phosphorus: Optical Characterization, Properties and Applications. Small 2017, 13, 1700823. [Google Scholar] [CrossRef] [PubMed]
- Xin, W.; Jiang, H.B.; Sun, T.Q.; Gao, X.G.; Chen, S.N.; Zhao, B.; Yang, J.J.; Liu, Z.B.; Tian, J.G.; Guo, C.L. Optical anisotropy of black phosphorus by total internal reflection. Nano Mater. Sci. 2019, 1, 304–309. [Google Scholar] [CrossRef]
- Shen, W.; Sun, Z.; Huo, S.; Hu, C. Directly Evaluating the Optical Anisotropy of Few-Layered Black Phosphorus during Ambient Oxidization. Adv. Opt. Mater. 2022, 10, 2102018. [Google Scholar] [CrossRef]
- Jiang, H.; Shi, H.; Sun, X.; Gao, B. Optical Anisotropy of Few-Layer Black Phosphorus Visualized by Scanning Polarization Modulation Microscopy. ACS Photonics 2018, 5, 2509–2515. [Google Scholar] [CrossRef]
- Shen, W.; Hu, C.; Tao, J.; Liu, J.; Fan, S.; Wei, Y.; An, C.; Chen, J.; Wu, S.; Li, Y.; et al. Resolving the optical anisotropy of low-symmetry 2D materials. Nanoscale 2018, 10, 8329–8337. [Google Scholar] [CrossRef]
- Ogilvie, S.P.; Large, M.J.; Fratta, G.; Meloni, M.; Canton-Vitoria, R.; Tagmatarchis, N.; Massuyeau, F.; Ewels, C.P.; King, A.A.K.; Dalton, A.B. Considerations for spectroscopy of liquid-exfoliated 2D materials: Emerging photoluminescence of N-methyl-2-pyrrolidone. Sci. Rep. 2017, 7, 16706. [Google Scholar] [CrossRef] [PubMed]
- Tebbe, D.; Schütte, M.; Kundu, B.; Beschoten, B.; Sahoo, P.K.; Waldecker, L. Hyperspectral photoluminescence and reflectance microscopy of 2D materials. Meas. Sci. Technol. 2024, 35, 035501. [Google Scholar] [CrossRef]
- Kaplan, D.; Gong, Y.; Mills, K.; Swaminathan, V.; Ajayan, P.M.; Shirodkar, S.; Kaxiras, E. Excitation intensity dependence of photoluminescence from monolayers of MoS2 and WS2/MoS2 heterostructures. 2D Mater. 2016, 3, 015005. [Google Scholar] [CrossRef]
- Wang, Q.; Wee, A.T.S. Photoluminescence upconversion of 2D materials and applications. J. Phys. Condens. Matter 2021, 33, 223001. [Google Scholar] [CrossRef] [PubMed]
- Biswas, S.; Tiwary, C.S.; Vinod, S.; Kole, A.K.; Chatterjee, U.; Kumbhakar, P.; Ajayan, P.M. Nonlinear Optical Properties and Temperature Dependent Photoluminescence in hBN-GO Heterostructure 2D Material. J. Phys. Chem. C 2017, 121, 8060–8069. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, Y.; Wang, P.; Luo, C.; Wu, X.; Sun, Z.; Wang, J.; Hu, W.D.; Shen, G. Characterization of atomic defects on the photoluminescence in two-dimensional materials using transmission electron microscope. InfoMat 2019, 1, 85–97. [Google Scholar] [CrossRef]
- Tebyetekerwa, M.; Zhang, J.; Xu, Z.; Truong, T.N.; Yin, Z.; Lu, Y.; Ramakrishna, S.; Macdonald, D.; Nguyen, H.T. Mechanisms and Applications of Steady-State Photoluminescence Spectroscopy in Two-Dimensional Transition-Metal Dichalcogenides. ACS Nano 2020, 14, 14579–14604. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Liu, M.; Liu, X.; Wang, X.; Deng, H.-X.; Lei, M.; Wei, Z.; Wei, Z. Recent Advances of 2D Materials in Nonlinear Photonics and Fiber Lasers. Adv. Opt. Mater. 2020, 8, 1901631. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, G.; Huang, S.; Xie, Y.; Yan, H. The Optical Properties and Plasmonics of Anisotropic 2D Materials. Adv. Opt. Mater. 2020, 8, 1900996. [Google Scholar] [CrossRef]
- Ma, Q.; Ren, G.; Xu, K.; Ou, J.Z. Tunable Optical Properties of 2D Materials and Their Applications. Adv. Opt. Mater. 2021, 9, 2001313. [Google Scholar] [CrossRef]
- Yin, P.; Jiang, X.; Huang, R.; Wang, X.; Ge, Y.; Ma, C.; Zhang, H. 2D Materials for Nonlinear Photonics and Electro-Optical Applications. Adv. Mater. Interfaces 2021, 8, 2100367. [Google Scholar] [CrossRef]
- Shi, J.; Feng, S.; He, P.; Fu, Y.; Zhang, X. Nonlinear Optical Properties from Engineered 2D Materials. Molecules 2023, 28, 6737. [Google Scholar] [CrossRef] [PubMed]
- You, J.W.; Bongu, S.R.; Bao, Q.; Panoiu, N.C. Nonlinear optical properties and applications of 2D materials: Theoretical and experimental aspects. Nanophotonics 2019, 8, 63–97. [Google Scholar] [CrossRef]
- Xie, Z.; Zhao, T.; Yu, X.; Wang, J. Nonlinear Optical Properties of 2D Materials and their Applications. Small 2024, 20, 2311621. [Google Scholar] [CrossRef]
- Zhou, L.; Fu, H.; Lv, T.; Wang, C.; Gao, H.; Li, D.; Deng, L.; Xiong, W. Nonlinear Optical Characterization of 2D Materials. Nanomaterials 2020, 10, 2263. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Jiang, X.; Wang, C.; Kalsoom, U.E.; Wang, B.; Khan, J.; Muhammad, Y.; Duan, Y.; Zhu, H.; Ren, X.; et al. An Insightful Picture of Nonlinear Photonics in 2D Materials and their Applications: Recent Advances and Future Prospects. Adv. Opt. Mater. 2021, 9, 2001671. [Google Scholar] [CrossRef]
- Miao, X.; Xuan, N.; Liu, Q.; Wu, W.; Liu, H.; Sun, Z.; Ji, M. Optimizing Nonlinear Optical Visibility of Two-Dimensional Materials. ACS Appl. Mater. Interfaces 2017, 9, 34448–34455. [Google Scholar] [CrossRef]
- Liu, H.; Li, Z.; Yu, Y.; Lin, J.; Liu, S.; Pang, F.; Wang, T. Nonlinear optical properties of anisotropic two-dimensional layered materials for ultrafast photonics. Nanophotonics 2020, 9, 1651–1673. [Google Scholar] [CrossRef]
- Guo, B.; Xiao, Q.L.; Wang, S.H.; Zhang, H. 2D Layered Materials: Synthesis, Nonlinear Optical Properties, and Device Applications. Laser Photon. Rev. 2019, 13, 1800327. [Google Scholar] [CrossRef]
- Yamashita, S. Nonlinear optics in carbon nanotube, graphene, and related 2D materials. APL Photonics 2018, 4, 034301. [Google Scholar] [CrossRef]
- Zaręba, J.K.; Nyk, M.; Samoć, M. Nonlinear Optical Properties of Emerging Nano- and Microcrystalline Materials. Adv. Opt. Mater. 2021, 9, 2100216. [Google Scholar] [CrossRef]
- Autere, A.; Jussila, H.; Dai, Y.; Wang, Y.; Lipsanen, H.; Sun, Z. Nonlinear Optics with 2D Layered Materials. Adv. Mater. 2018, 30, 1705963. [Google Scholar] [CrossRef]
- Jia, J.; Ban, Y.; Liu, K.; Mao, L.; Su, Y.; Lian, M.; Cao, T. Reconfigurable Full Color Display using Anisotropic Black Phosphorus. Adv. Opt. Mater. 2021, 9, 2100499. [Google Scholar] [CrossRef]
- Mao, N.; Tang, J.; Xie, L.; Wu, J.; Han, B.; Lin, J.; Deng, S.; Ji, W.; Xu, H.; Liu, K.; et al. Optical Anisotropy of Black Phosphorus in the Visible Regime. J. Am. Chem. Soc. 2016, 138, 300–305. [Google Scholar] [CrossRef]
- Joshi, P.P.; Li, R.; Spellberg, J.L.; Liang, L.; King, S.B. Nanoimaging of the Edge-Dependent Optical Polarization Anisotropy of Black Phosphorus. Nano Lett. 2022, 22, 3180–3186. [Google Scholar] [CrossRef] [PubMed]
- Empedocles, S.A.; Neuhauser, R.; Shimizu, K.; Bawendi, M.G. Photoluminescence from Single Semiconductor Nanostructures. Adv. Mater. 1999, 11, 1243–1256. [Google Scholar] [CrossRef]
- He, K.; Kumar, N.; Zhao, L.; Wang, Z.; Mak, K.F.; Zhao, H.; Shan, J. Tightly Bound Excitons in Monolayer WSe2. Phys. Rev. Lett. 2014, 113, 026803. [Google Scholar] [CrossRef]
- Chernikov, A.; Berkelbach, T.C.; Hill, H.M.; Rigosi, A.; Li, Y.; Aslan, B.; Reichman, D.R.; Hybertsen, M.S.; Heinz, T.F. Exciton Binding Energy and Nonhydrogenic Rydberg Series in Monolayer WS2. Phys. Rev. Lett. 2014, 113, 076802. [Google Scholar] [CrossRef]
- Tanaka, K.; Hachiya, K.; Zhang, W.; Matsuda, K.; Miyauchi, Y. Machine-Learning Analysis to Predict the Exciton Valley Polarization Landscape of 2D Semiconductors. ACS Nano 2019, 13, 12687–12693. [Google Scholar] [CrossRef]
- Pozo-Zamudio, O.D.; Schwarz, S.; Sich, M.; Akimov, I.A.; Bayer, M.; Schofield, R.C.; Chekhovich, E.A.; Robinson, B.J.; Kay, N.D.; Kolosov, O.V.; et al. Photoluminescence of two-dimensional GaTe and GaSe films. 2D Mater. 2015, 2, 035010. [Google Scholar] [CrossRef]
- Molas, M.R.; Macewicz, Ł.; Wieloszyńska, A.; Jakóbczyk, P.; Wysmołek, A.; Bogdanowicz, R.; Jasinski, J.B. Photoluminescence as a probe of phosphorene properties. npj 2D Mater. Appl. 2021, 5, 83. [Google Scholar] [CrossRef]
- Tsu, R.; Shen, H.; Dutta, M. Correlation of Raman and photoluminescence spectra of porous silicon. Appl. Phys. Lett. 1992, 60, 112–114. [Google Scholar] [CrossRef]
- Mortazavi, B.; Shahrokhi, M.; Shojaei, F.; Rabczuk, T.; Zhuang, X. A machine learning-assisted exploration of the structural stability, electronic, optical, heat conduction and mechanical properties of C3N4 graphitic carbon nitride monolayers. Comput. Mater. Today 2025, 5, 100024. [Google Scholar] [CrossRef]
- Mortazavi, B. Recent Advances in Machine Learning-Assisted Multiscale Design of Energy Materials. Adv. Energy Mater. 2025, 15, 57. [Google Scholar] [CrossRef]
- Dong, Y.; Wan, J.; Wang, X.; Xue, J.H.; Zou, J.; He, H.; Li, P.; Hou, A.; Ma, H. A Polarization-Imaging-Based Machine Learning Framework for Quantitative Pathological Diagnosis of Cervical Precancerous Lesions. IEEE Trans. Med. Imaging 2021, 40, 3728–3738. [Google Scholar] [CrossRef]
- Nolen, C.M.; Denina, G.; Teweldebrhan, D.; Bhanu, B.; Balandin, A.A. High-Throughput Large-Area Automated Identification and Quality Control of Graphene and Few-Layer Graphene Films. ACS Nano 2011, 5, 914–922. [Google Scholar] [CrossRef]
- Lin, X.; Si, Z.; Fu, W.; Yang, J.; Guo, S.; Cao, Y.; Zhang, J.; Wang, X.; Liu, P.; Jiang, K.; et al. Intelligent identification of two-dimensional nanostructures by machine-learning optical microscopy. Nano Res. 2018, 11, 6316–6324. [Google Scholar] [CrossRef]
- Solís-Fernández, P.; Ago, H. Machine Learning Determination of the Twist Angle of Bilayer Graphene by Raman Spectroscopy: Implications for van der Waals Heterostructures. ACS Appl. Nano Mater. 2022, 5, 1356–1366. [Google Scholar] [CrossRef]
- Yang, J.; Yao, H. Automated identification and characterization of two-dimensional materials via machine learning-based processing of optical microscope images. Extreme Mech. Lett. 2020, 39, 100771. [Google Scholar] [CrossRef]
- Han, B.; Lin, Y.; Yang, Y.; Mao, N.; Li, W.; Fatemi, V.; Zhou, L.; Wang, J.; Ma, Q.; Cao, Y.; et al. Deep Learning Enabled Fast Optical Characterization of Two-Dimensional Materials. Adv. Mater. 2019, 32, 2000953. [Google Scholar] [CrossRef]
- Hu, Z.; Chen, W.; Qiao, H.; Huang, Z.; Qi, X. Machine Learning for Optical Anisotropy Identification of Few-Layer Black Phosphorus Based on Polarized Microscopic Images. ACS Appl. Nano Mater. 2024, 7, 27418–27425. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, T.; Wu, P.; Lee, H.W.; Liu, Z.; Tang, T.W.; Tang, S.-Y.; Kang, T.; Park, J.-H.; Wang, J.; et al. Boosting Monolayer Transition Metal Dichalcogenides Growth by Hydrogen-Free Ramping during Chemical Vapor Deposition. Nano Lett. 2024, 24, 8277–8286. [Google Scholar] [CrossRef] [PubMed]
- Lara Saenz, G.A.; Biswas, C.; Yamaguchi, H.; Narvaez Villarrubia, C.; Mohite, A.D.; Kaul, A.B. Effects of Synthesis Parameters on CVD Molybdenum Disulfide Growth. MRS Adv. 2016, 1, 2291–2296. [Google Scholar] [CrossRef]
- Zhang, Z.; Lagally, M.G. Atomistic Processes in the Early Stages of Thin-Film Growth. Science 1997, 276, 377–383. [Google Scholar] [CrossRef] [PubMed]
- Bhowmik, S.; Govind Rajan, A. Chemical vapor deposition of 2D materials: A review of modeling, simulation, and machine learning studies. iScience 2022, 25, 103832. [Google Scholar] [CrossRef]
- You, J.; Hossain, M.D.; Luo, Z. Synthesis of 2D transition metal dichalcogenides by chemical vapor deposition with controlled layer number and morphology. Nano Converg. 2018, 5, 26. [Google Scholar] [CrossRef]
- Zhu, D.; Shu, H.; Jiang, F.; Lv, D.; Asokan, V.; Omar, O.; Yuan, J.; Zhang, Z.; Jin, C. Capture the growth kinetics of CVD growth of two-dimensional MoS2. npj 2D Mater. Appl. 2017, 1, 8. [Google Scholar] [CrossRef]
- Lu, D.; Luo, C.; Qi, X.; Zhong, J. Robust temperature–strain coupling in phase and shape evolution of MoTe2 nanosheets. Appl. Phys. Lett. 2023, 122, 171902. [Google Scholar] [CrossRef]
- Zhang, G.; Wang, J.; Wu, Z.; Shi, R.; Ouyang, W.; Amini, A.; Chandrashekar, B.N.; Wang, N.; Cheng, C. Shape-Dependent Defect Structures of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition. ACS Appl. Mater. Interfaces 2017, 9, 763–770. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Ji, Q.; Ju, J.; Yuan, H.; Shi, J.; Gao, T.; Ma, D.; Liu, M.; Chen, Y.; et al. Controlled Growth of High-Quality Monolayer WS2 Layers on Sapphire and Imaging Its Grain Boundary. ACS Nano 2013, 7, 8963–8971. [Google Scholar] [CrossRef]
- Chen, J.; Liu, B.; Liu, Y.; Tang, W.; Nai, C.T.; Li, L.; Zheng, J.; Gao, L.; Zheng, Y.; Shin, H.S.; et al. Chemical Vapor Deposition of Large-Sized Hexagonal WSe2 Crystals on Dielectric Substrates. Adv. Mater. 2015, 27, 6722–6727. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Rong, Y.; Fan, Y.; Pacios, M.; Bhaskaran, H.; He, K.; Warner, J.H. Shape Evolution of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition. Chem. Mater. 2014, 26, 6371–6379. [Google Scholar] [CrossRef]
- Govind Rajan, A.; Warner, J.H.; Blankschtein, D.; Strano, M.S. Generalized Mechanistic Model for the Chemical Vapor Deposition of 2D Transition Metal Dichalcogenide Monolayers. ACS Nano 2016, 10, 4330–4344. [Google Scholar] [CrossRef] [PubMed]
- van der Zande, A.M.; Huang, P.Y.; Chenet, D.A.; Berkelbach, T.C.; You, Y.; Lee, G.-H.; Heinz, T.F.; Reichman, D.R.; Muller, D.A.; Hone, J.C. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 2013, 12, 554–561. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, N.; Tahara, Y.; Noda, M. Machine learning method for determining chemical vapor deposition conditions for large-area graphene growth. Asia-Pac. J. Chem. Eng. 2023, 18, e2911. [Google Scholar] [CrossRef]
- Krishnamoorthy, A.; Rajak, P.; Hong, S.; Nomura, K.-i.; Tiwari, S.; Kalia, R.K.; Nakano, A.; Vashishta, P. Reactive molecular dynamics simulations and machine learning. J. Phys. Conf. Ser. 2020, 1461, 012182. [Google Scholar] [CrossRef]
- Schiller, J.A.; Toro, R.; Shah, A.; Surana, M.; Zhang, K.; Robertson, M.; Miller, K.; Cruse, K.; Liu, K.; Seong, B.; et al. Crowd-Sourced Data and Analysis Tools for Advancing the Chemical Vapor Deposition of Graphene: Implications for Manufacturing. ACS Appl. Nano Mater. 2020, 3, 10144–10155. [Google Scholar] [CrossRef]
- Costine, A.; Delsa, P.; Li, T.; Reinke, P.; Balachandran, P.V. Data-driven assessment of chemical vapor deposition grown MoS2 monolayer thin films. J. Appl. Phys. 2020, 128, 235303. [Google Scholar] [CrossRef]
- Xu, M.; Tang, B.; Lu, Y.; Zhu, C.; Lu, Q.; Zhu, C.; Zheng, L.; Zhang, J.; Han, N.; Fang, W.; et al. Machine Learning Driven Synthesis of Few-Layered WTe2 with Geometrical Control. J. Am. Chem. Soc. 2021, 143, 18103–18113. [Google Scholar] [CrossRef]
- Tang, B.; Lu, Y.; Zhou, J.; Chouhan, T.; Wang, H.; Golani, P.; Xu, M.; Xu, Q.; Guan, C.; Liu, Z. Machine learning-guided synthesis of advanced inorganic materials. Mater. Today 2020, 41, 72–80. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, F.; Shenoy, V.B.; Tang, M.; Lou, J. Towards controlled synthesis of 2D crystals by chemical vapor deposition (CVD). Mater. Today 2020, 40, 132–139. [Google Scholar] [CrossRef]
- He, H.; Wang, Y.; Qi, Y.; Xu, Z.; Li, Y.; Wang, Y. From prediction to design: Recent advances in machine learning for the study of 2D materials. Nano Energy 2023, 118, 108965. [Google Scholar] [CrossRef]
- Das, S.; Mazumdar, H.; Khondakar, K.R.; Kaushik, A. Machine Learning Assisted Enhancement in a Two-Dimensional Material’s Sensing Performance. ACS Appl. Nano Mater. 2024, 7, 13893–13918. [Google Scholar] [CrossRef]
- Liu, Y.; Lin, L.; Sun, H.-B. Optical Modification of Two-Dimensional Materials: From Atomic to Electronic Scale. J. Phys. Chem. C 2024, 128, 2271–2290. [Google Scholar] [CrossRef]
- Wu, P.; He, T.; Zhu, H.; Wang, Y.; Li, Q.; Wang, Z.; Fu, X.; Wang, F.; Wang, P.; Shan, C.; et al. Next-generation machine vision systems incorporating two-dimensional materials: Progress and perspectives. InfoMat 2022, 4, e12275. [Google Scholar] [CrossRef]
- Gaultois, M.W.; Sparks, T.D.; Borg, C.K.H.; Seshadri, R.; Bonificio, W.D.; Clarke, D.R. Data-Driven Review of Thermoelectric Materials: Performance and Resource Considerations. Chem. Mater. 2013, 25, 2911–2920. [Google Scholar] [CrossRef]
- Das, S.; Pegu, H.; Sahu, K.K.; Nayak, A.K.; Ramakrishna, S.; Datta, D.; Swayamjyoti, S. 19—Machine learning in materials modeling—Fundamentals and the opportunities in 2D materials. In Synthesis, Modeling, and Characterization of 2D Materials, and Their Heterostructures; Yang, E.-H., Datta, D., Ding, J., Hader, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 445–468. [Google Scholar]
- Wang, Z.; Yang, M.; Xie, X.; Yu, C.; Jiang, Q.; Huang, M.; Algadi, H.; Guo, Z.; Zhang, H. Applications of machine learning in perovskite materials. Adv. Compos. Hybrid Mater. 2022, 5, 2700–2720. [Google Scholar] [CrossRef]
- Beckham, J.L.; Wyss, K.M.; Xie, Y.C.; McHugh, E.A.; Li, J.T.; Advincula, P.A.; Chen, W.Y.; Lin, J.; Tour, J.M. Machine Learning Guided Synthesis of Flash Graphene. Adv. Mater. 2022, 34, 11. [Google Scholar] [CrossRef]
- Park, J.-H.; Lu, A.-Y.; Tavakoli, M.M.; Kim, N.Y.; Chiu, M.-H.; Liu, H.; Zhang, T.; Wang, Z.; Wang, J.; Martins, L.G.P.; et al. Revealing Variable Dependences in Hexagonal Boron Nitride Synthesis via Machine Learning. Nano Lett. 2023, 23, 4741–4748. [Google Scholar] [CrossRef]
- Rajan, A.C.; Mishra, A.; Satsangi, S.; Vaish, R.; Mizuseki, H.; Lee, K.-R.; Singh, A.K. Machine-Learning-Assisted Accurate Band Gap Predictions of Functionalized MXene. Chem. Mater. 2018, 30, 4031–4038. [Google Scholar] [CrossRef]
2D Nanomaterial | Chemical Composition | Properties | Synthesis Methods | Applications in ML | Reference |
---|---|---|---|---|---|
Graphene | C60, C60H10, C70, etc. | High Conductivity, High Strength, High Thermal Conductivity, High Light Transmission | Mechanical stripping, CVD growth, chemical redox method | ML Analyzes Complex Nanofabrication Processes for Guided Flash Graphene Synthesis | Beckham et al. [160] (2022) |
Transition Metal Dichalcogenides (TMDs) | MoS2, WS2, MoSe2, WSe2, etc. | Strong exciton effect, tunable electronic structure, superconductivity | CVD growth, mechanical stripping, and liquid phase stripping | ML optimization of growth conditions and enhanced control of molybdenum disulfide layer preparation | Lu et al. [21] (2024) |
Boron Nitride (BN) | BN | Insulating, high thermal conductivity, chemically inert, atomically flat | CVD growth, high temperature and high pressure synthesis, stripping method | Analysis of growth mechanisms by machine learning reveals variable dependence in hexagonal boron nitride synthesis | Park et al. [161] (2023) |
Black Phosphorus (BP) | Pn | Tunable Bandgap, High Carrier Mobility, Optical/Electrical Anisotropy | Mechanical Stripping, Liquid Phase Stripping | ML predicts optical anisotropy characteristics of BP samples by analyzing RGB values | Park et al. [132] (2024) |
MXene | Ti3C2, V2C, Nb2C, etc. | High conductivity, hydrophilic surface | HF etching MAX phase, molten salt method, liquid phase stripping | ML-Assisted Functionalization of MXene for Accurate Bandgap Prediction | Rajan et al. [162] (2018) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Z.; Liu, J.; Li, X.; Huang, Z.; Qi, X.; Du, W. Machine Learning-Assisted Optical Characterization and Growth Modulation of Two-Dimensional Materials. Chemistry 2025, 7, 80. https://doi.org/10.3390/chemistry7030080
Hu Z, Liu J, Li X, Huang Z, Qi X, Du W. Machine Learning-Assisted Optical Characterization and Growth Modulation of Two-Dimensional Materials. Chemistry. 2025; 7(3):80. https://doi.org/10.3390/chemistry7030080
Chicago/Turabian StyleHu, Zihan, Jiayi Liu, Xuefei Li, Zongyu Huang, Xiang Qi, and Wenjuan Du. 2025. "Machine Learning-Assisted Optical Characterization and Growth Modulation of Two-Dimensional Materials" Chemistry 7, no. 3: 80. https://doi.org/10.3390/chemistry7030080
APA StyleHu, Z., Liu, J., Li, X., Huang, Z., Qi, X., & Du, W. (2025). Machine Learning-Assisted Optical Characterization and Growth Modulation of Two-Dimensional Materials. Chemistry, 7(3), 80. https://doi.org/10.3390/chemistry7030080