Process Improvement for the Continuous Synthesis of N-Benzylhydroxylamine Hydrochloride
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Equipments
2.2. Experimental Details
2.2.1. The Flow Reaction Process
2.2.2. Purification by Crystallization
2.2.3. Recycling Use of Hydroxylamine Hydrochloride
2.2.4. Calculation of the Recycling Rate of Hydroxylamine Hydrochloride
3. Results & Discussion
3.1. Condition Optimization of the Continuous-Flow Reaction
3.2. The Recycling of Hydroxylamine Hydrochloride
4. Conclusions
5. Patents
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Niu, D.Q.; Zhao, K. Concerted Conjugate Addition of Nucleophiles to Alkenoates. Part I: Mechanism of N-Alkylhydroxylamine Additions. J. Am. Chem. Soc. 1999, 121, 2456–2459. [Google Scholar] [CrossRef]
- Baldwin, S.W.; Aube, J.; Gross, P.M. Asymmetric Synthesis with Chiral Hydroxylamines. Tetrahedron Lett. 1987, 28, 183. [Google Scholar] [CrossRef]
- Bejjanki, N.K.; Venkatesham, A.; Madda, J.; Kommu, N.; Pombala, S.; Ganesh, K.; Prasad, K.R.; Nanubolu, J.B. Synthesis of new chromeno-annulated cis-fused pyrano[4,3-c]isoxazole derivatives via intramolecular nitrone cycloaddition and their cytotoxicity evaluation. Bioorg. Med. Chem. Lett. 2013, 23, 4061–4066. [Google Scholar] [CrossRef] [PubMed]
- Sibi, M.P.; Prabagaran, N.; Ghorpade, S.G.; Jasperse, C.P. Enantioselective Synthesis of α,β-Disubstituted-β-amino Acids. J. Am. Chem. Soc. 2003, 125, 11796–11797. [Google Scholar] [CrossRef] [PubMed]
- Charifson, P.S.; Clark, M.P.; Bandarage, U.K.; Bethiel, R.S.; Boyd, M.J.; Davies, I.; Deng, H.B.; Duffy, J.P.; Farmer, L.J.; Gao, H.; et al. Inhibitors of Infulenza Viruses Replication. U.S. Patent US9051319, 9 June 2015. [Google Scholar]
- Miller, W.H.; Pendrak, I.; Seefeld, M.A. Antibacterial Agents. US2007287701, 23 March 2006. [Google Scholar]
- Berthet, M.; Cheviet, T.; Dujardin, G.; Parrot, I.; Martinez, J. Isoxazolidine: A Privileged Scaffold for Organic and Medicinal Chemistry. Chem. Rev. 2016, 116, 15235–15283. [Google Scholar] [CrossRef] [PubMed]
- Ouzounthanasis, K.A.; Rizos, S.R.; Koumbis, A.E. A Convenient Synthesis of Novel Isoxazolidine and Isoxazole Isoquinolinones Fused Hybrids. Molecules 2024, 29, 91. [Google Scholar] [CrossRef] [PubMed]
- Sterk, D.; Casar, Z. Synthesis of Aminocyclopentanetriol Derivatives. EP2666771, 24 May 2012. [Google Scholar]
- Aschwanden, P.; Frantz, D.; Carreira, E. Synthesis of 2,3-Dihydro-isoxazoles from Propargylic N-Hydroxylamines: Ring Closure Reaction Catalyzed by Zn(II). Org. Lett. 2000, 2, 2331–2333. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Hu, J.G. Process for Producing N-Benzylhydroxylamine and Hydrochlorate. CN101429136, 13 May 2009. [Google Scholar]
- Zhou, S.; Chen, Z.Y.; Gan, J.R.; Jiang, Z.G.; Cao, B.W.; Liang, L. Method for Preparing N-Benzylhydroxylamine Hydrochloride with High Yield. CN113292446, 24 August 2021. [Google Scholar]
- Chen, X.Q.; Xia, Q.J.; Fang, H.; Wang, L.M. Production Process of N-Benzylhydroxylamine Hydrochloride. CN114292207, 8 April 2022. [Google Scholar]
- Ye, F.G.; Xu, J.F.; Ye, M. Method for Synthesizing N-Benzylhydroxylamine Hydrochloride. CN104529814, 22 April 2015. [Google Scholar]
- Matoušek, V.; Pietrasiak, E.; Sigrist, L.; Czarniecki, B.; Togni, A. O-Trifluoromethylation of N,N-Disubstituted Hydroxylamines with Hypervalent Iodine Reagents. Eur. J. Org. Chem. 2014, 15, 3087–3092. [Google Scholar] [CrossRef]
- Cisneros, L.; Rogers, W.; Mannan, M. Adiabatic calorimetric decomposition studies of 50 wt.% hydroxylamine/water. J. Hazard. Mater. 2001, 82, 13–24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.M.; Ji, Y.P.; Liu, W.X.; Liu, Y.J. Research Progress in Stabilization of Hydroxylamine. Chem. Propellants Polym. Mater. 2013, 11, 12–17. [Google Scholar]
- Audubert, C.; Bouchard, A.; Mathieu, G.; Lebel, H. Chemoselective Synthesis of Amines from Ammonium Hydroxide and Hydroxylamine in Continuous Flow. J. Org. Chem. 2018, 83, 14203–14209. [Google Scholar] [CrossRef] [PubMed]
- Jas, G.; Kirschning, A. Continuous Flow Techniques in Organic Synthesis. Chem. Eur. 2003, 9, 5708–5723. [Google Scholar] [CrossRef] [PubMed]
- Jahnisch, K.; Hessel, V.; Lowe, H.; Baerns, M. Chemistry in Microstructured Reactors. Angew. Chem. Int. Ed. 2004, 43, 406–446. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Chen, D.L.; Ismagilov, R.F. Reactions in Droplets in Microfluidic Channels. Angew. Chem. Int. Ed. 2006, 45, 7336–7356. [Google Scholar] [CrossRef] [PubMed]
- Plutschack, M.B.; Pieber, B.; Gilmore, K.; Seeberger, P.H. The Hitchhiker’s Guide to Flow Chemistry. Chem. Rev. 2017, 117, 11796–11893. [Google Scholar] [CrossRef] [PubMed]
- Baars, H.; Engel, J.; Mertens, L.; Meister, D.; Bolm, C. The Reactivity of Difluorocarbene with Hydroxylamines: Synthesis of Carbamoyl Fluorides. Adv. Synth. Catal. 2016, 358, 2293–2299. [Google Scholar] [CrossRef]
Entry | Hydroxylamine Hydrochloride/ Equiv. | Reaction Temperature/°C | Flow Rate of Benzyl Chloride/ mL*min−1 | Flow Rate of Hydroxylamine/ mL*min−1 | Concentration of Benzyl Chloride/ mol*L−1 | Crystallization Yield/% 1 |
---|---|---|---|---|---|---|
1 | 5.0 | 60 | 5.0 | 5.0 | 0.1 | 76 |
2 | 4.0 | 60 | 5.0 | 5.0 | 0.1 | 74 |
3 | 3.0 | 60 | 5.0 | 5.0 | 0.1 | 64 |
4 | 1.5 | 60 | 5.0 | 5.0 | 0.1 | 32 |
5 | 5.0 | 80 | 5.0 | 5.0 | 0.1 | 77 |
6 | 5.0 | 40 | 5.0 | 5.0 | 0.1 | nr |
7 | 5.0 | 60 | 10.0 | 10.0 | 0.1 | 37 |
8 | 5.0 | 60 | 4.0 | 4.0 | 0.1 | 78 |
9 | 5.0 | 60 | 3.0 | 3.0 | 0.1 | 82 |
10 | 5.0 | 60 | 5.0 | 5.0 | 0.3 | 77 |
11 | 5.0 | 60 | 5.0 | 5.0 | 0.5 | 77 |
12 | 5.0 | 60 | 5.0 | 5.0 | 1.0 | 77 |
13 | 4.0 | 60 | 5.0 | 5.0 | 0.5 | 75 |
Entry | Number | Input of Hydroxylamine Hydrochloride | Yield of N-Benzylhydroxylamine Hydrochloride/% | Purity of N-Benzylhydroxylamine Hydrochloride/% |
---|---|---|---|---|
1 | 0 | 139 g | 75 | 99.82 |
2 | 1 | 73 g + Recovered water phase | 75 | 99.79 |
3 | 2 | 73 g + Recovered water phase | 75 | 99.83 |
4 | 3 | 73 g + Recovered water phase | 75 | 99.59 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Chen, K.; Cai, G.; Xiang, H.; Chen, K.; Yang, H. Process Improvement for the Continuous Synthesis of N-Benzylhydroxylamine Hydrochloride. Chemistry 2025, 7, 70. https://doi.org/10.3390/chemistry7030070
Chen X, Chen K, Cai G, Xiang H, Chen K, Yang H. Process Improvement for the Continuous Synthesis of N-Benzylhydroxylamine Hydrochloride. Chemistry. 2025; 7(3):70. https://doi.org/10.3390/chemistry7030070
Chicago/Turabian StyleChen, Xiaoguang, Ke Chen, Guoxian Cai, Haoyue Xiang, Kai Chen, and Hua Yang. 2025. "Process Improvement for the Continuous Synthesis of N-Benzylhydroxylamine Hydrochloride" Chemistry 7, no. 3: 70. https://doi.org/10.3390/chemistry7030070
APA StyleChen, X., Chen, K., Cai, G., Xiang, H., Chen, K., & Yang, H. (2025). Process Improvement for the Continuous Synthesis of N-Benzylhydroxylamine Hydrochloride. Chemistry, 7(3), 70. https://doi.org/10.3390/chemistry7030070