Pulsed and Cyclic Voltammetric Studies of Phenols and Naphthols in Dimethylformamide in Presence of Sodium 4-Vinylbenzenesulfonate
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Assessment of the Influence of Sodium 4-Vinylbenzenesulfonate on the Voltammograms of Phenol
3.2. Effect of Sodium 4-Vinylbenzenesulfonate Concentration
3.3. Effect of Water Content
3.4. Assessment of Pulsed Voltammetric Methods
3.5. Voltammetric Studies with Sodium Benzenesulfonate
3.6. Study of Other Phenols and Naphthols in DMF in Presence of Sodium 4-Vinylbenzenesulfonate
3.7. Estimation of Effect of Sodium 4-Vinylbenzenesulfonate on Analytical Signal of Picric Acid
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
DMF | Dimethylformamide |
TBAP | Tetrabutylammonium perchlorate |
DPV | Differential pulse voltammetry |
SWV | Square wave voltammetry |
NPV | Normal pulse voltammetry |
References
- Zhang, Y.; Zhuang, H. Poly(acridine orange) film modified electrode for the determination 1-naphthol in the presence of 2-naphthol. Electrochim. Acta 2009, 54, 7364–7369. [Google Scholar] [CrossRef]
- Guerrieri, A.; Lattanzio, V.; Palmisano, F.; Zambonin, P.G. Electrosynthesized poly(pyrrole)/poly(2-naphthol) bilayer membrane as an effective anti-interference layer for simultaneous determination of acethylcholine and choline by a dual electrode amperometric biosensor. Biosens. Bioelectron. 2006, 21, 1710–1718. [Google Scholar] [CrossRef]
- Li, T.; Xu, J.; Zhao, L.; Shen, S.; Yuan, M.; Liu, W.; Tu, Q.; Yu, R.; Wang, J. Au nanoparticles/poly(caffeic acid) composite modified glassy carbon electrode for voltammetric determination of acetaminophen. Talanta 2016, 159, 356–364. [Google Scholar] [CrossRef]
- Jin, G.P.; Peng, X.; Chen, Q.Z. Preparation of novel arrays silver nanoparticles modified polyrutin coat-paraffin-impregnated graphite electrode for tyrosine and tryptophan’s oxidation. Electroanal 2008, 20, 907–915. [Google Scholar] [CrossRef]
- Jin, G.P.; Chen, L.L.; Hang, G.P.; Yang, S.Z.; Wu, X.J. Stripping chronopotentiometric analysis of cysteine on nano-silver coat polyquercetin-MWCNT modified platinum electrode. J. Solid State Electrochem. 2009, 14, 1163–1169. [Google Scholar] [CrossRef]
- Ciriello, R.; Cataldi, T.R.I.; Centonze, D.; Guerrieri, A. Permselective behavior of an electrosynthesized, nonconducting thin film of poly(2-naphthol) and its application to enzyme immobilization. Electroanal 2000, 12, 825–830. [Google Scholar] [CrossRef]
- Kiss, L.; David, V.; David, I.G.; Lazar, P.; Mihailciuc, C.; Stamatin, I.; Ciobanu, A.; Stefanescu, C.D.; Nagy, L.; Nagy, G.; et al. Electropolymerized molecular imprinting on glassy carbon electrode for voltammetric detection of dopamine in biological samples. Talanta 2016, 160, 489–498. [Google Scholar] [CrossRef] [PubMed]
- Shojaei, S.; Nasirizadeh, N.; Entezam, M.; Koosha, M.; Azimzadeh, M. An electrochemical nanosensor based on molecularly imprinted polymer (MIP) for detection of gallic acid in fruit juices. Food Anal. Methods 2016, 9, 2721–2731. [Google Scholar] [CrossRef]
- Malinauskas, A.; Holze, R. Suppression of the “first cycle effect” in self-doped polyaniline. Electrochim. Acta 1998, 43, 515–520. [Google Scholar] [CrossRef]
- Mogi, I.; Kamiko, M. Suppression of growth instability in electropolymerization of pyrrole. Bull. Chem. Soc. Jpn. 1996, 69, 1889–1892. [Google Scholar] [CrossRef]
- Rehan, H.H. Electrosynthesis and characterization of new conducting copolymer films from 1-naphthol and methyl naphthyl ether. Polym. Int. 2000, 49, 645–653. [Google Scholar] [CrossRef]
- Cihaner, A.; Önal, A.M. Electroinitiated polymerization of 2-allylphenol. Polym. Bull. 2000, 45, 45–52. [Google Scholar] [CrossRef]
- Ciszewski, A.; Milczarek, G. Polyeugenol-modified platinum electrode for selective detection of dopamine in the presence of ascorbic acid. Anal. Chem. 1999, 71, 1055–1061. [Google Scholar] [CrossRef]
- Toniolo, R.; Dossi, N.; Pizzariello, A.; Susmel, S.; Bontempelli, G. Simultaneous detection of ascorbic acid and hydrogen peroxide by flow-injection analysis with a thin layer dual-electrode detector. Electroanal 2011, 23, 628–636. [Google Scholar] [CrossRef]
- Ciszewski, A.; Milczarek, G. Preparation and general properties of chemically modified electrodes based on electrosynthesized thin polymeric films derived from eugenol. Electroanal 2001, 13, 860–867. [Google Scholar] [CrossRef]
- Okumura, L.L.; Stradiotto, N.R.; Rees, N.V.; Compton, R.G. Modifying glassy carbon (GC) electrodes to confer selectivity for the voltammetric detection of L-cysteine in the presence of DL-homocysteine and glutathione. Electroanal 2008, 20, 916–918. [Google Scholar] [CrossRef]
- Paul, D.W.; Prajaprati, I.; Reed, M.L. Electropolymerized eugenol: Evaluation as a protective film for oxygen sensing. Sens. Actuators B Chem. 2013, 183, 129–135. [Google Scholar] [CrossRef]
- El Qouatli, S.; Ngono, R.T.; Najih, R.; Chtaini, A. Eugenol modified titanium electrode for the analysis of carbocysteine. Zastita Materijala 2011, 52, 242–246. [Google Scholar]
- Kiss, L.; Kunsági-Máté, S.; Szabó, P. Studies of phenol electrooxidation performed on platinum electrode in dimethyl sulphoxide medium. Determination of unreacted phenol by the effect of 4-vinylbenzenesulfonate on the electrooxidation process. Electroanal 2023, 35, e202200268. [Google Scholar] [CrossRef]
- Kiss, L.; Bősz, D.; Kovács, F.; Li, H.; Nagy, G.; Kunsági-Máté, S. Investigation of phenol electrooxidation in aprotic non-aqueous solvents by using cyclic and normal pulse voltammetry. Polym. Bull. 2019, 76, 5849–5864. [Google Scholar] [CrossRef]
- Fino, D.; Jara, C.C.; Saracco, G.; Specchia, V.; Spinelli, P.J. Deactivation and regeneration of Pt anodes for the electro-oxidation of phenol. J. Appl. Electrochem. 2005, 35, 405–411. [Google Scholar] [CrossRef]
- Jeffrey, A.R.; Paul, E.W.; Dennis, H.E. Electrochemical oxidation of 2,4,6-tri-tert-butylphenol. J. Electroanal. Chem. 1975, 53, 311–327. [Google Scholar]
- Dulal, S.M.S.I.; Won, M.; Shim, Y. Carbon fiber supported platinum nanoparticles for electrooxidation of methanol and phenol. J. Alloys Compd. 2010, 494, 463–467. [Google Scholar] [CrossRef]
- Kiss, L.; Kunsági-Máté, S. Scan rate and concentration dependence of the voltammograms of substituted phenols on electrodes with different size, diffusion coefficients of phenols in different solvents. Can. J. Chem. 2023, 101, 297–305. [Google Scholar] [CrossRef]
- García-Canadas, J.; Rodríguez, J.G.; Lafuente, A.; Marcos, M.L.; Velasco, J.G. Electropolymerization of phenylacetylene in acetonitrile. J. Polym. Sci. Part A Polym. Chem. 2005, 43, 2407–2416. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kiss, L.; Kiss, A. Pulsed and Cyclic Voltammetric Studies of Phenols and Naphthols in Dimethylformamide in Presence of Sodium 4-Vinylbenzenesulfonate. Chemistry 2025, 7, 69. https://doi.org/10.3390/chemistry7030069
Kiss L, Kiss A. Pulsed and Cyclic Voltammetric Studies of Phenols and Naphthols in Dimethylformamide in Presence of Sodium 4-Vinylbenzenesulfonate. Chemistry. 2025; 7(3):69. https://doi.org/10.3390/chemistry7030069
Chicago/Turabian StyleKiss, László, and András Kiss. 2025. "Pulsed and Cyclic Voltammetric Studies of Phenols and Naphthols in Dimethylformamide in Presence of Sodium 4-Vinylbenzenesulfonate" Chemistry 7, no. 3: 69. https://doi.org/10.3390/chemistry7030069
APA StyleKiss, L., & Kiss, A. (2025). Pulsed and Cyclic Voltammetric Studies of Phenols and Naphthols in Dimethylformamide in Presence of Sodium 4-Vinylbenzenesulfonate. Chemistry, 7(3), 69. https://doi.org/10.3390/chemistry7030069