LC-ESI-MS and GC-MS Profiling, Chemical Composition, and Cytotoxic Activity of Endophytic Fungus Pleosporales sp. Derived from Artemisia annua
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Isolation of Endophytic Fungi
2.3. Molecular Identification and Phylogenetic Analysis
2.4. Fermentation in Liquid Medium
2.5. LC–HR–ESI-MS
2.6. GC-MS Analysis
2.7. Extraction and Isolation of Secondary Metabolites
2.8. MTT Cytotoxicity Assay
3. Results and Discussion
3.1. LC-ESI-MS Profiling of Pleosporales sp.
3.2. GC-MS Profiling of Pleosporales sp.
3.3. Isolation of Secondary Metabolites
3.4. Cytotoxic Activity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Selim, K.A.; El-Beih, A.A.; AbdEl-Rahman, T.M.; El-Diwany, A.I. Biology of Endophytic Fungi. Curr. Res. Environm. Appl. Mycol. 2012, 2, 31–82. [Google Scholar] [CrossRef]
- Bérdy, J. Bioactive Microbial Metabolites. J. Antibiot 2005, 58, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Li, G.; Lou, H.-X. Structural Diversity and Biological Activities of Novel Secondary Metabolites from Endophytes. Molecules 2018, 23, 646. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Lou, H.-X. Strategies to Diversify Natural Products for Drug Discovery. Med. Res. Rev. 2018, 38, 1255–1294. [Google Scholar] [CrossRef]
- Zhang, H.W.; Song, Y.C.; Tan, R.X. Biology and chemistry of endophytes. Nat. Prod. Rep. 2006, 23, 753–771. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Meng, Z.H.; Wang, P.; Luo, D.Q.; Zhu, H.J. Dipleosporalones A and B, dimeric azaphilones from a marine-derived Pleosporales sp. fungus. J. Nat. Prod. 2020, 83, 1283–1287. [Google Scholar] [CrossRef]
- Cao, F.; Meng, Z.H.; Mu, X.; Yue, Y.F.; Zhu, H.J. Absolute configuration of bioactive azaphilones from the marine-derived fungus Pleosporales sp. CF09-1. J. Nat. Prod. 2019, 82, 386–392. [Google Scholar] [CrossRef]
- Cao, F.; Zhao, D.; Chen, X.-Y.; Liang, X.D.; Li, W.; Zhu, H.J. Antifungal drimane sesquiterpenoids from a marine-derived Pleosporales sp. fungus. Chem. Nat. Compd. 2017, 53, 1189–1191. [Google Scholar] [CrossRef]
- Zhang, L.-H.; Bai, J.; Yan, D.-J.; Wang, Y.-N.; Zhang, Y.-L.; Li, L.; Liu, B.-Y.; Hu, Y.-C. Pleosporalesones A–B, two unique polyketides isolated from Pleosporales sp. Tetrahedron Lett. 2019, 60, 375–377. [Google Scholar] [CrossRef]
- Chen, C.J.; Zhou, Y.Q.; Liu, X.X.; Zhang, W.J.; Hu, S.S.; Lin, L.P.; Huo, G.M.; Jiao, R.H.; Tan, R.X.; Ge, H.M. Antimicrobial and anti-inflammatory compounds from a marine fungus Pleosporales sp. Tetrahedron Lett. 2015, 56, 6183–6189. [Google Scholar] [CrossRef]
- Dong, L.; Kim, H.J.; Cao, T.Q.; Liu, Z.; Lee, H.; Ko, W.; Kim, Y.C.; Sohn, J.H.; Kim, T.K.; Yim, J.H.; et al. Anti-Inflammatory effects of metabolites from antarctic fungal strain Pleosporales sp. SF-7343 in HaCaT human keratinocytes. Int. J. Mol. Sci. 2021, 22, 9674. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Cao, T.Q.; Liu, Z.; Tuan, N.Q.; Kim, Y.C.; Sohn, J.H.; Yim, J.H.; Lee, D.S.; Oh, H. Anti-Inflammatory effects exerted by 14-methoxyalternate C from antarctic fungal strain Pleosporales sp. SF-7343 via the regulation of NF-κB and JAK2/STAT3 in HaCaT human keratinocytes. Int. J. Mol. Sci. 2022, 23, 14642. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Xu, K.; Chen, W.Q.; Guo, Z.H.; Liu, Y.T.; Qiao, Y.N.; Sun, Y.; Sun, G.; Peng, X.P.; Lou, H.X. Heptaketides from the endophytic fungus Pleosporales sp. F46 and their antifungal and cytotoxic activities. RSC Adv. 2019, 9, 12913–12920. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Zhang, H.; Ye, J.; Wu, X.; Wang, W.; Lin, H.; Yan, X.; Lazaro, J.E.H.; Wang, T.; Naman, C.B.; et al. Cytotoxic polyketide metabolites from a marine mesophotic zone Chalinidae sponge-associated fungus Pleosporales sp. NBUF144. Mar. Drugs 2021, 19, 186. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Sun, C.; Li, C.; Zhang, G.; Zhu, T.; Li, D.; Che, Q. Antibacterial phenalenone derivatives from marine-derived fungus Pleosporales sp. HDN1811400. Tetrahedron Lett. 2021, 68, 152938. [Google Scholar] [CrossRef]
- Xu, Y.; Zhu, A.; Cao, F.; Liu, Y.-F. Diketopiperazine alkaloids and steroids from a marine-derived Pleosporales sp. fungus. Chem. Nat. Compd. 2018, 54, 818–820. [Google Scholar] [CrossRef]
- Zeng, H.T.; Yu, Y.H.; Zeng, X.; Li, M.M.; Li, X.; Xu, S.S.; Tu, Z.C.; Yuan, T. Anti-inflammatory dimeric benzophenones from an endophytic Pleosporales species. J. Nat. Prod. 2022, 85, 162–168. [Google Scholar] [CrossRef]
- Alhadrami, H.A.; Sayed, A.M.; El-Gendy, A.O.; Shamikh, Y.I.; Gaber, Y.; Bakeer, W.; Sheirf, N.H.; Attia, E.Z.; Shaban, G.M.; Khalifa, B.A.; et al. A metabolomic approach to target antimalarial metabolites in the Artemisia annua fungal endophytes. Sci. Rep. 2021, 11, 2770. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef]
- Abdelaleem, E.R.; Samy, M.N.; Ali, T.F.S.; Mustafa, M.; Ibrahim, M.A.A.; Bringmann, G.; Ahmed, S.A.; Abdelmohsen, U.R.; Desoukey, S.Y. NS3 helicase inhibitory potential of the marine sponge Spongia irregularis. RSC Adv. 2022, 12, 2992–3002. [Google Scholar] [CrossRef]
- Attia, E.Z.; Khalifa, B.A.; Shaban, G.M.; Amin, M.N.; Akil, L.; Khadra, I.; Al Karmalawy, A.A.; Alnajjar, R.; Zaki, M.Y.W.; Aly, O.M.; et al. Abdelmohsen, U.R. Potential topoisomerases inhibitors from Aspergillus terreus using virtual screening. S. Afr. J. Bot. 2022, 149, 632–645. [Google Scholar] [CrossRef]
- Noor, A.O.; Almasri, D.M.; Bagalagel, A.A.; Abdallah, H.M.; Mohamed, S.G.A.; Mohamed, G.A.; Ibrahim, S.R.M. Naturally occurring isocoumarins derivatives from endophytic fungi: Sources, isolation, structural characterization, biosynthesis, and biological activities. Molecules 2020, 25, 395. [Google Scholar] [CrossRef] [PubMed]
- Wen, S.; Fan, W.; Guo, H.; Huang, C.; Yan, Z.; Long, Y. Two new secondary metabolites from the mangrove endophytic fungus Pleosporales sp. SK7. Nat. Prod. Res. 2020, 34, 2919–2925. [Google Scholar] [CrossRef] [PubMed]
- Aly, A.H.; Edrada-Ebel, R.; Indriani, I.D.; Wray, V.; Müller, W.E.; Totzke, F.; Lin, W. Cytotoxic metabolites from the fungal endophyte Alternaria sp. and their subsequent detection in its host plant Polygonum senegalense. J. Nat. Prod. 2008, 71, 972–980. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Ondeyka, J.G.; Zink, D.L.; Basilio, A.; Vicente, F.; Collado, J.; Platas, G.; Huber, J.; Dorso, K.; Motyl, M.; et al. Isolation, structure and antibacterial activity of pleosporone from a Pleosporalean ascomycete discovered by using antisense strategy. Bioorg. Med. Chem. 2009, 17, 2162–2166. [Google Scholar] [CrossRef] [PubMed]
- Okamura, N.; Haraguchi, H.; Hashimoto, K.; Yagi, A. Altersolanol-related antimicrobial compounds from a strain of Alternaria solani. Phytochemistry 1993, 34, 1005–1009. [Google Scholar] [CrossRef]
- Brian, P.W.; Curtis, P.J.; Grove, J.; Hemming, H.G.; Unwin, C.H.; Wright, J.M. Alternaric Acid, a Biologically Active Metabolic Product of the Fungus Alternaria solani. Nature 1949, 164, 534. [Google Scholar] [CrossRef]
- Seitz, L.M.; Paukstelis, J.V. Metabolites of Alternaria alternata: Ergosterol and ergosta-4, 6, 8 (14), 22-tetraen-3-one. J. Agric. Food Chem. 1977, 25, 838–841. [Google Scholar] [CrossRef]
- Ai, H.-L.; Zhang, L.-M.; Chen, Y.-P.; Zi, S.-H.; Xiang, H.; Zhao, D.-K.; Shen, Y. Two new compounds from an endophytic fungus Alternaria solani. J. Asian Nat. Prod. Res. 2012, 14, 1144–1148. [Google Scholar] [CrossRef]
- Krohn, K.; Biele, C.; Aust, H.J.; Draeger, S.; Schulz, B. Herbarulide, a ketodivinyllactone steroid with an unprecedented homo-6-oxaergostane skeleton from the endophytic fungus Pleospora herbarum. J. Nat. Prod. 1999, 62, 629–630. [Google Scholar] [CrossRef]
- Fujii, I.; Yoshida, N.; Shimomaki, S.; Oikawa, H.; Ebizuka, Y. An iterative type I polyketide synthase PKSN catalyzes synthesis of the decaketide alternapyrone with regio-specific octa-methylation. Chem. Biol. 2005, 12, 1301–1309. [Google Scholar] [CrossRef] [PubMed]
- Heidary Jamebozorgi, F.; Yousefzadi, M.; Firuzi, O.; Nazemi, M.; Jassbi, A.R. In vitro anti-proliferative activities of the sterols and fatty acids isolated from the Persian Gulf sponge; Axinella sinoxea. DARU J. Pharm. Sci. 2019, 27, 121–135. [Google Scholar] [CrossRef] [PubMed]
- Chamras, H.; Ardashian, A.; Heber, D.; Glaspy, J.A. Fatty acid modulation of MCF-7 human breast cancer cell proliferation, apoptosis and differentiation. J. Nutr. Biochem. 2002, 13, 711–716. [Google Scholar] [CrossRef]
- Serini, S.; Piccioni, E.; Merendino, N.; Calviello, G. Dietary polyunsaturated fatty acids as inducers of apoptosis: Implications for cancer. Apoptosis 2009, 14, 135–152. [Google Scholar] [CrossRef] [PubMed]
- Wen, B.; Deutsch, E.; Opolon, P.; Auperin, A.; Frascogna, V.; Connault, E.; Bourhis, J. n-3 Polyunsaturated fatty acids decrease mucosal/epidermal reactions and enhance antitumour effect of ionising radiation with inhibition of tumour angiogenesis. Br. J. Cancer 2003, 89, 1102–1107. [Google Scholar] [CrossRef]
- Spencer, L.; Mann, C.; Metcalfe, M.; Webb, M.; Pollard, C.; Spencer, D.; Berry, D.; Steward, W.; Dennison, A. The effect of omega-3 FAs on tumour angiogenesis and their therapeutic potential. Eur. J. Cancer 2009, 45, 2077–2086. [Google Scholar] [CrossRef]
No. | Compound Name | Mode | m/z | Rt | Molecular Weight | Exact Mass | Delta M | Molecular Formula |
---|---|---|---|---|---|---|---|---|
1 | 3,4-Dihydro-8-hydroxy-1-oxo-1H-2-benzopyran-3-methyl carboxylate | [M + H]+ | 223.0607 | 6.46 | 222.0534 | 222.0528 | 0.0006 | C11H10O5 |
2 | (1’S, 2Z)-3-methyl-5-(2,6,6-trimethyl-4-oxocyclohex-2-enyl)pent-2-enoicacid | [M − H]– | 249.1492 | 11.83 | 250.1727 | 250.1569 | 0.0158 | C15H22O |
3 | Desmethylaltenusin | [M + H]+ | 277.0714 | 4.51 | 276.0641 | 276.0634 | 0.0007 | C14H12O6 |
4 | Pleosporone | [M − H]– | 289.1067 | 6.09 | 290.1140 | 290.0790 | 0.0350 | C15H14O6 |
5 | Altersolanol G | [M + H]+ | 335.1130 | 4.05 | 334.1058 | 334.1053 | 0.0005 | C17H18O7 |
6 | Asterric acid | [M − H]– | 347.07601 | 4.38 | 348.0832 | 348.0845 | 0.0013 | C17H16O8 |
7 | 10,11-Dideoxy, 6,19-dihydro alternaric acid | [M − H]– | 379.2131 | 11.88 | 380.2204 | 380.2199 | 0.0005 | C21H32O6 |
8 | Ergosta-4,6,8(14),22-tetraen-3-one | [M + H]+ | 393.3153 | 15.30 | 392.3080 | 392.3079 | 0.0001 | C28H40O |
9 | Methyl 3-chloroasterric acid | [M − H]– | 395.15207 | 11.96 | 396.1593 | 396.0612 | 0.0981 | C18H17ClO8 |
10 | 20-Hydroxyergosta-4,6,8(14),22-tetraen-3-one | [M + H]+ | 409.3096 | 12.59 | 408.3024 | 408.3028 | 0.0004 | C28H40O2 |
11 | Herbarulide | [M + H]+ | 425.3049 | 10.61 | 424.2976 | 424.2977 | 0.0001 | C28H40O3 |
12 | Alternapyrone | [M + H]+ | 429.3363 | 13.40 | 428.3290 | 428.3290 | 0.0000 | C28H44O3 |
No. | Compound Name | Rt | Area % | Molecular Weight | Molecular Formula | Retention Index | Retention Index Standard |
---|---|---|---|---|---|---|---|
13 | Methyl palmitate | 30.29 | 18.72 | 270.5 | C17H34O2 | 1649 | 1922 |
14 | Ethyl palmitate | 31.51 | 12.60 | 284.5 | C18H36O2 | 1790 | 1996 |
15 | 13-Octadecenoic acid, methyl ester | 34.01 | 19.36 | 296.5 | C19H36O2 | 1747 | 2098 |
16 | Methyl linoleate | 34.29 | 11.92 | 294.5 | C19H34O2 | 1755 | 2097 |
17 | Ethyl linoleate | 35.35 | 3.25 | 270.5 | C20H36O2 | 1786 | 2173 |
No. | Compound Name | Rt | Area % | Molecular Weight | Molecular Formula | Retention Index | Retention Index Standard |
---|---|---|---|---|---|---|---|
13 | Methyl palmitate | 30.26 | 25.48 | 270.5 | C17H34O2 | 1648 | 1922 |
18 | Palmitic acid | 31.48 | 12.60 | 256.42 | C16H32O2 | 1677 | 1970 |
19 | Methyl oleate | 33.99 | 26.90 | 296.5 | C19H36O2 | 1746 | 2062 |
16 | Methyl linoleate | 34.28 | 23.39 | 294.5 | C19H34O2 | 1754 | 2097 |
20 | Oleic acid | 35.19 | 4.01 | 282.5 | C18H34O2 | 1781 | 2120 |
21 | Linoleic acid | 35.52 | 3.25 | 280.4 | C18H32O2 | 1791 | 2104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samy, M.N.; Attia, E.Z.; Khalifa, B.A.; Abdelmohsen, U.R.; Ross, S.A. LC-ESI-MS and GC-MS Profiling, Chemical Composition, and Cytotoxic Activity of Endophytic Fungus Pleosporales sp. Derived from Artemisia annua. Chemistry 2024, 6, 1336-1346. https://doi.org/10.3390/chemistry6060078
Samy MN, Attia EZ, Khalifa BA, Abdelmohsen UR, Ross SA. LC-ESI-MS and GC-MS Profiling, Chemical Composition, and Cytotoxic Activity of Endophytic Fungus Pleosporales sp. Derived from Artemisia annua. Chemistry. 2024; 6(6):1336-1346. https://doi.org/10.3390/chemistry6060078
Chicago/Turabian StyleSamy, Mamdouh Nabil, Eman Zekry Attia, Basma Ali Khalifa, Usama Ramadan Abdelmohsen, and Samir Anis Ross. 2024. "LC-ESI-MS and GC-MS Profiling, Chemical Composition, and Cytotoxic Activity of Endophytic Fungus Pleosporales sp. Derived from Artemisia annua" Chemistry 6, no. 6: 1336-1346. https://doi.org/10.3390/chemistry6060078
APA StyleSamy, M. N., Attia, E. Z., Khalifa, B. A., Abdelmohsen, U. R., & Ross, S. A. (2024). LC-ESI-MS and GC-MS Profiling, Chemical Composition, and Cytotoxic Activity of Endophytic Fungus Pleosporales sp. Derived from Artemisia annua. Chemistry, 6(6), 1336-1346. https://doi.org/10.3390/chemistry6060078