Biogenic Silver and Copper Nanoparticles: Potential Antifungal Agents in Rice and Wheat Crops
Abstract
:1. Introduction
2. Materials and Methods
2.1. Organisms
2.2. Biological Synthesis and Purification of Metallic Nanoparticles
2.3. Characterization of Nanoparticles
2.3.1. UV-Vis Spectroscopy
2.3.2. Scanning Electron Microscopy (SEM) and High Resolution Transmission Microscopy (HR-TEM)–Energy Dispersive Spectroscopy (EDS)
2.3.3. Dynamic Light Scattering (DLS) and ζ-Potential
2.3.4. Confocal Raman Microscopy (CRM)
2.4. Antifungal Activity
2.5. Seed Germination Toxicity Test
2.6. Statistical Analysis
3. Results
3.1. Biological Synthesis of Metallic Nanoparticles
3.2. Characterization
3.2.1. SEM and HR-TEM-EDS
3.2.2. DLS and ζ-Potential
3.2.3. Confocal Raman Microscopy
3.3. Antifungal Activity
3.4. Seed Germination Toxicity Test
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hermosa, R.; Viterbo, A.; Chet, I.; Monte, E. Plant-beneficial effects of Trichoderma and of its genes. Microbiology 2012, 158, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Kubiak-Hardiman, P.; Haughey, S.A.; Meneely, J.; Miller, S.; Banerjee, K.; Elliot, C.T. Identifying gaps and challenges in global pesticide legislation that impact the protection of consumer health: Rice as a case study. Expo. Health 2020, 15, 597–618. [Google Scholar] [CrossRef]
- La Torre, A.; Iovino, V.; Caradonia, F. Copper in plant protection: Current situation and prospects. Phytopathol. Mediterr. 2018, 57, 201–236. [Google Scholar] [CrossRef]
- Rai, M.; Bonde, S.; Golinska, P.; Trzcińska-Wencel, J.; Gade, A.; Abd-Elsalam, K.A.; Ingle, A.P. Fusarium as a novel fungus for the synthesis of nanoparticles: Mechanism and applications. J. Fungi 2021, 7, 139. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Maksoud, G.; Gaballah, S.; Youssef, A.M.; Eid, A.M.; Sultan, M.H.; Fouda, A. Eco-friendly approach for control of fungal deterioration of archaeological skeleton dated back to the Greco-Roman period. J. Cult. Herit. 2023, 5, 38–48. [Google Scholar] [CrossRef]
- Sheikh, H.; Awad, M.F. Biogenesis of nanoparticles with inhibitory effects on aflatoxin B1 production by Aspergillus flavus. Electron. J. Biotechnol. 2022, 60, 26–35. [Google Scholar] [CrossRef]
- Kim, D.Y.; Saratale, R.G.; Shinde, S.; Syed, A.; Ameen, F.; Ghodake, G. Green synthesis of silver nanoparticles using laminaria japonica extract: Characterization and seedling growth assessment. J. Clean. Prod. 2017, 172, 2910–2918. [Google Scholar] [CrossRef]
- Achari, G.; Kowshik, M. Recent developments on nanotechnology in agriculture: Plant mineral nutrition, health, and interactions with soil microflora. J. Agric. Food Chem. 2018, 66, 8647–8661. [Google Scholar] [CrossRef]
- Guilger, M.; Pasquoto-Stigliani, T.; Bilesky-Jose, N.; Grillo, R.; Abhilash, P.C.; Fraceto, L.F.; de Lima, R. Biogenic silver nanoparticles based on Trichoderma harzianum: Synthesis, characterization, toxicity evaluation and biological activity. Sci. Rep. 2017, 7, 44421. [Google Scholar] [CrossRef] [PubMed]
- Nandini, B.; Hariprasad, P.; Prakash, H.S.; Shetty, H.S.; Geetha, N. Trichogenic-selenium nanoparticles enhance disease suppressive ability of trichoderma against downy mildew disease caused by Sclerospora graminicola in pearl millet. Sci. Rep. 2017, 7, 2612. [Google Scholar] [CrossRef]
- Lahuta, L.B.; Szablińska-Piernik, J.; Głowacka, K.; Stałanowska, K.; Railean-Plugaru, V.; Horbowicz, M.; Pomastowski, P. The effect of bio-synthesized silver nanoparticles on germination, early seedling development, and metabolome of wheat (Triticum aestivum L.). Molecules 2022, 27, 2303. [Google Scholar] [CrossRef]
- Khan, S.; Singh, S.; Gaikwad, S.; Junnarkar, M.; Pawar, S. Optimization of process parameters for the synthesis of silver nanoparticles from piper betle leaf aqueous extract, and evaluation of their antiphytofungal activity. Environ. Sci. Pollut. Res. 2020, 27, 27221–27233. [Google Scholar] [CrossRef]
- Fouda, A.; Hassan, S.E.; Abdo, A.M.; El-Gamal, M.S. Antimicrobial, antioxidant and larvicidal activities of spherical silver nanoparticles synthesized by Endophytic streptomyces spp. Biol. Trace Elem. Res. 2020, 195, 707–724. [Google Scholar] [CrossRef] [PubMed]
- Fouda, A.; Hassan, S.; Eid, A.; Awad, M.; Althumayri, K.; Badr, N.; Hamza, M. Endophytic bacterial strain, Brevibacillus brevis-mediated green synthesis of copper oxide nanoparticles, characterization, antifungal, in vitro cytotoxicity, and larvicidal activity. Green Process Synth 2022, 11, 931–950. [Google Scholar] [CrossRef]
- Rozhin, A.; Batasheva, S.; Kruychkova, M.; Cherednichenko, Y.; Rozhina, E.; Fakhrullin, R. Biogenic silver nanoparticles: Synthesis and application as antibacterial and antifungal agents. Micromachines 2021, 12, 1480. [Google Scholar] [CrossRef] [PubMed]
- Guilger-Casagrande, M.; de Lima, R. Synthesis of silver nanoparticles mediated by fungi: A review. Front. Bioeng. Biotechnol. 2019, 7, 287. [Google Scholar] [CrossRef]
- Balakumaran, M.D.; Ramachandran, R.; Balashanmugam, P.; Mukeshkumar, D.J.; Kalaichelvan, D.T. Mycosynthesis of silver and gold nanoparticles: Optimization, characterization and antimicrobial activity against human pathogens. Microbiol. Res. 2018, 182, 8–20. [Google Scholar] [CrossRef]
- Syed, A.; Saraswati, S.; Kundu, G.C.; Ahmad, A. Biological synthesis of silver nanoparticles using the Fungus humicola sp. and evaluation of their cytoxicity using normal and cancer cell lines. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 114, 144–147. [Google Scholar] [CrossRef]
- Zin, N.; Badaluddin, N. Biological functions of Trichoderma spp. for agriculture applications. Ann. Agric. Sci. 2020, 65, 168–178. [Google Scholar] [CrossRef]
- Sanguiñedo, P.; Fratila, R.; Estevez, M.B.; Martínez de la Fuente, J.; Grazú, V.; Alborés, S. Extracellular biosynthesis of silver nanoparticles using fungi and their antibacterial activity. Nano Biomed. Eng. 2018, 10, 165–173. [Google Scholar] [CrossRef]
- Sanguiñedo, P.; Estevez, M.B.; Faccio, R.; Alborés, S. Nanopartículas de plata biogénicas a partir del hongo Punctularia atropurpurascens para el control de microorganismos. Mundo Nano 2019, 12, 101–110. [Google Scholar] [CrossRef]
- Cuevas, R.; Durán, N.; Diez, M.; Tortella, G.; Rubilar, O. Extracellular biosynthesis of copper and copper oxide nanoparticles by stereum hirsutum, a native white-rot fungus from chilean forests. J. Nanomater. 2015, 2015, 1–7. [Google Scholar] [CrossRef]
- Paramelle, D.; Sadovoy, A.; Gorelik, S.; Free, P.; Hobley, J.; Ferning, D.G. A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst 2014, 139, 4855–4861. [Google Scholar] [CrossRef] [PubMed]
- CLSI. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi, 3rd ed.; Approved Standard; CLSI: Wayne, PA, USA, 2017. [Google Scholar]
- Melhem, M.S.C.; Coelho, V.C.; Fonseca, C.A.; Oliveira, L.; Bonfietti, L.X.; Szeszs, M.W.; Magri, M.M.C.; Dorneles, F.S.; Taguchi, H.; Moreira, D.V.S.; et al. Evaluation of the sensititre YeastOne and Etest in comparison with CLSI M38-A2 for antifungal susceptibility testing of three azoles, Amphotericin B, Caspofungin, and Anidulafungin, against Aspergillus fumigatus and other species, using new clinical breakpoints and epidemiological cutoff values. Pharmaceutics 2022, 14, 2161. [Google Scholar] [CrossRef]
- Mohammed, S.R.; Zeitar, E.M.; Eskov, I.D. Inhibition of mycelial growth of Rhizoctonia solani by chitosan in vitro and in vivo. Open Agric 2019, 13, 156–161. [Google Scholar] [CrossRef]
- Spagnoletti, F.N.; Spedalieri, C.; Kronberg, F.; Giacometti, R. Extracellular biosynthesis of bactericidal Ag/AgCl nanoparticles for crop protection using the fungus Macrophomina phaseolina. J. Environ. Manag. 2019, 231, 457–466. [Google Scholar] [CrossRef] [PubMed]
- Di Rienzo, J.; Guzma, A.; Casanove, F.A. Multiple-comparisons method based on the distribution of the root node distance of a binary tree. JABStatistics 2002, 7, 129–142. [Google Scholar] [CrossRef]
- De Gelder, J.; De Gussem, K.; Vandenabeele, P.; Moens, L. Reference database of Raman spectra of biological molecules. J. Raman Spectrosc. 2007, 38, 1133–1147. [Google Scholar] [CrossRef]
- Dieing, T.; Ibach, W. Software requirements and data analysis in confocal raman microscopy. In Confocal Raman Microscopy; Dieing, T., Hollricher, O., Toporski, J., Eds.; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 2010; Volume 158. [Google Scholar] [CrossRef]
- Muñoz-Escobar, A.; Reyes-López, S.Y. Antifungal susceptibility of Candida species to copper oxide nanoparticles on polycaprolactone fibers (PCL-CuONPs). PLoS ONE 2020, 15, e0228864. [Google Scholar] [CrossRef]
- Lamichhane, J.R.; Osdaghi, E.; Behlau, F.; Köhl, J.; Jones, J.B.; Aubertot, J.-N. Thirteen decades of antimicrobial copper compounds applied in agriculture. A review. Agron. Sustain. Dev. 2018, 38, 28. [Google Scholar] [CrossRef]
- Abdussalam-Mohammed, W.; Mohamed, L.; Abraheem, M.S.; Mansour, M.M.A.; Sherif, A.M. Biofabrication of Silver Nanoparticles Using Teucrium Apollinis Extract: Characterization, Stability, and Their Antibacterial Activities. Chemistry 2023, 5, 54–64. [Google Scholar] [CrossRef]
- Fatima, F.; Wahid, I. Eco-friendly synthesis of silver and copper nanoparticles by Shizophyllum commune fungus and its biomedical applications. Int. J. Mol. Sci. Technol. 2021, 19, 7915–7926. [Google Scholar] [CrossRef]
- Ovais, M.; Khalil, A.T.; Ayaz, M.; Ahmad, I.; Nethi, S.K.; Mukherjee, S. Biosynthesis of metal nanoparticles via microbial enzymes: A mechanistic approach. Int. J. Mol. Sci. Technol. 2018, 19, 4100. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Singh, B.; Singh, A.; Keswani, C.; Naqvi, A.; Singh, H. Biofabricated silver nanoparticles act as a strong fungicide against bipolaris sorokiniana causing spot blotch disease in wheat. PLoS ONE 2018, 9, e97881. [Google Scholar] [CrossRef] [PubMed]
- Panpatte, D.; Jhala, Y. Advances for sustainable agriculture. In Nanotechnology for Agriculture; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar] [CrossRef]
- Ramírez-Valdespino, C.A.; Orrantia-Borunda, E. Trichoderma and nanotechnology in sustainable agriculture: A review. Front. Fungal. Biol. 2021, 2, 764675. [Google Scholar] [CrossRef]
- Fayaz, A.M.; Balaji, K.; Girilal, M.; Yadav, R.; Kalaichelvan, P.T.; Venketesan, R. Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: A study against gram-positive and gram-negative bacteria. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 103–109. [Google Scholar] [CrossRef]
- Estevez, M.B.; Mitchell, S.G.; Faccio, R.; Alborés, S. Biogenic silver nanoparticles: Understanding the antimicrobial mechanism using Confocal Raman Microscopy. Mater. Res. Express 2020, 6, 1250f5. [Google Scholar] [CrossRef]
- Awwad, A.; Amer, M. Biosynthesis of copper oxide nanoparticles using Ailanthus altissima leaf extract and antibacterial activity. Chem. Int. 2020, 6, 210–217. [Google Scholar] [CrossRef]
- Wilson, B.K.; Prud’homme, R.K. Nanoparticle size distribution quantification from transmission electron microscopy (TEM) of ruthenium tetroxide stained polymeric nanoparticles. J. Colloid. Interface Sci. 2021, 604, 208–220. [Google Scholar] [CrossRef] [PubMed]
- Souza, T.; Ciminelli, V.; Mohallem, N. A comparison of TEM and DLS methods to characterize size distribution of ceramic nanoparticles. J. Phys. 2016, 733, 012039. [Google Scholar] [CrossRef]
- Estevez, M.B.; Casaux, M.L.; Fraga, M.; Faccio, R.; Alborés, S. Biogenic Silver Nanoparticles as a Strategy in the Fight Against Multi-Resistant Salmonella enterica Isolated From Dairy Calves. Front. Bioeng. Biotechnol. 2021, 9, 644014. [Google Scholar] [CrossRef]
- Joseph, E.; Singhvi, G. Chapter 4–Multifunctional nanocrystals for cancer therapy: A potential nanocarrier. In Nanomaterials for Drug Delivery and Therapy; Grumezescu, A.M., Ed.; William Andrew Publishing: Norwich, NY, USA, 2019; pp. 91–116. [Google Scholar] [CrossRef]
- Estevez, M.B.; Raffaelli, S.; Mitchell, S.G.; Faccio, R.; Alborés, S. Biofilm eradication using biogenic silver nanoparticles. Molecules 2020, 25, 2023. [Google Scholar] [CrossRef]
- Guilger-Casagrande, M.; Germano-Costa, T.; Bilesky-José, N.; Pasquoto-Stigliani, T.; Carvalho, L.; Fraceto, L.F.; de Lima, R. Influence of the capping of biogenic silver nanoparticles on their toxicity and mechanism of action towards Sclerotinia sclerotiorum. J. Nanobiotechnol. 2021, 19, 53. [Google Scholar] [CrossRef] [PubMed]
- Ahluwalia, V.; Kumar, J.; Sisodia, R.; Shakil, N.; Walia, S. Green synthesis of silver nanoparticles by Trichoderma harzianum and their bio-efficacy evaluation against Staphylococcus aureus and Klebsiella pneumonia. Ind. Crops Prod. 2014, 55, 202–206. [Google Scholar] [CrossRef]
- Noshad, A.; Iqbal, M.; Folkers, L.; Hetherington, C.; Khan, A.; Numan, M.; Ullah, S. Antibacterial Effect of Silver Nanoparticles (AgNPs) Synthesized from Trichoderma Harzianum against Clavibacter Michiganensis. Nano Res. 2019, 58, 10–19. [Google Scholar] [CrossRef]
- Konappa, N.; Udayashankar, A.; Dhamodaran, N.; Krishnamurthy, S.; Jagannath, S.; Uzma, F.; Pradeep, C.K.; De Britto, S.; Chowdappa, S.; Jogaiah, S. Ameliorated Antibacterial and Antioxidant Properties by Trichoderma harzianum Mediated Green Synthesis of Silver Nanoparticles. Biomolecules 2021, 11, 535. [Google Scholar] [CrossRef] [PubMed]
- Sundaravadivelan, C.; Padmanabhan, M. Effect of mycosynthesized silver nanoparticles from filtrate of Trichoderma harzianum against larvae and pupa of dengue vector Aedes aegypti L. Environ. Sci. Pollut. Res. 2014, 21, 4624–4633. [Google Scholar] [CrossRef] [PubMed]
- Shende, S.; Ingle, A.P.; Gade, A.; Raid, M. Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J. Microbiol. Biotechnol. 2015, 31, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.; Venugopal, K.; Bhat, A.H.; Kavitha, K.; Ramanan, A.; Rajagopal, K.; Srinivasan, R.; Manikandan, E. Enhanced Biosynthesis Synthesis of Copper Oxide Nanoparticles (CuO-NPs) for their Antifungal Activity Toxicity against Major Phyto-Pathogens of Apple Orchards. Pharm. Res. 2020, 37, 246. [Google Scholar] [CrossRef]
- Zia, R.; Riaz, M.; Farooq, N.; Qamar, A.; Anjum, S. Antibacterial activity of Ag and Cu nanoparticles synthesized by chemical reduction method: A comparative analysis. Mater. Res. Express 2018, 5, 075012. [Google Scholar] [CrossRef]
- Usman, M.; Farooq, M.; Wakeel, A.; Nawaz, A.; Cheema, S.A.; ur Rehman, H.; Ashraf, I.; Sanaullah, M. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci. Total Environ. 2020, 721, 137778. [Google Scholar] [CrossRef] [PubMed]
- Oluwaseun, A.; Sarin, N.B. Impacts of biogenic nanoparticle on the biological control of plant pathogens. Adv. Biotechnol. Micro 2017, 7, 555711. [Google Scholar] [CrossRef]
- Martínez, S. Stem rot management by nitrogen and potassium fertilization and effect on grain yield and quality of rice in Uruguay. Can. J. Plant Pathol. 2021, 41, 783–793. [Google Scholar] [CrossRef]
- Rangarani, A.; Rajan, C.P.D.; Sarada Jayalakshmi Devi, R.; Lakshmi Narayana Reddy, V.; Sudhakar, P. Evaluation of fungicides on Sclerotium oryzae, incitant of rice stem rot disease. J. Pharmacogn. Phytochem. 2018, 7, 01–03. [Google Scholar]
MIC * (µM) | ||
---|---|---|
F. graminearum | P. oryzae | |
AgNPs | 34 × 10−6 | 34 × 10−6 |
AgNO3 | 78 | 78 |
CuONPs | NI | 6.3 |
CuCl2 | NI | NI |
% Inhibition | ||
---|---|---|
R. oryzae-sativae | S. oryzae | |
AgNPs | 11 ± 1 | 19 ± 3 |
CuONPs | 22 ± 4 | 5 ± 2 |
% Germination | ||
---|---|---|
Wheat Seeds | Rice Seeds | |
Control | 78 ± 8 a | 98 ± 4 a |
CuONPs | 83 ± 10 a | 98 ± 4 a |
CuCl2 | 84 ± 8 a | 96 ± 5 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanguiñedo, P.; Faccio, R.; Abreo, E.; Alborés, S. Biogenic Silver and Copper Nanoparticles: Potential Antifungal Agents in Rice and Wheat Crops. Chemistry 2023, 5, 2104-2119. https://doi.org/10.3390/chemistry5040143
Sanguiñedo P, Faccio R, Abreo E, Alborés S. Biogenic Silver and Copper Nanoparticles: Potential Antifungal Agents in Rice and Wheat Crops. Chemistry. 2023; 5(4):2104-2119. https://doi.org/10.3390/chemistry5040143
Chicago/Turabian StyleSanguiñedo, Paula, Ricardo Faccio, Eduardo Abreo, and Silvana Alborés. 2023. "Biogenic Silver and Copper Nanoparticles: Potential Antifungal Agents in Rice and Wheat Crops" Chemistry 5, no. 4: 2104-2119. https://doi.org/10.3390/chemistry5040143