Syntheses, Crystal and Electronic Structures of Rhodium and Iridium Pyridine Di-Imine Complexes with O- and S-Donor Ligands: (Hydroxido, Methoxido and Thiolato)
Abstract
:1. Foreword
2. Introduction
3. Materials and Methods
3.1. Syntheses
3.1.1. Synthesis of Ligand 2
3.1.2. Synthesis of the Rhodium and Iridium Chlorido Complexes
3.1.3. Synthesis of the Rhodium and Iridium Hydroxido and Methoxido Complexes
3.1.4. Synthesis of Cationic Rhodium and Iridium PDI Complexes
3.1.5. Synthesis of the Iridium Thiolato Complexes
3.1.6. Synthesis of the Iridium Methyl Complex 18
3.2. Methods
3.2.1. Theoretical Methods
DFT Calculations
Local Coupled Cluster Calculations
Charge Transfer and Electron Decomposition Analysis
Oxidation State Analysis
Bond Order Analysis
Wieghardt’s (Geometric) Analysis of Bonding Metrics
Local Vibrational Mode Analysis
4. Results and Discussion
4.1. X-ray Crystal Structures
4.2. Electronic Structure of the Complexes
4.2.1. Non-Innocence of the PDI Ligand
4.2.2. ALMO-EDA
4.2.3. Oxidation State Analysis
4.2.4. Bonding Metrics and Local Mode Vibrational Analysis
4.2.5. Characterization of the M-X Bond
4.3. Experimental Evidence for M-X π-Bonding–M-X-R Rotational Barrier
- b.
- R = H, Me, Ph: ionization and recombination of the ions (PDI)M-XR ⇆ (PDI)M+ + XR−
- c.
- R = H: sequence of α-H elimination (IrOH, IrSH) and the microscopic reverse 1,2-H shift (less likely for R = Me and Ph) (PDI)M-X-H ⇆ (PDI)M(H) = X
- d.
- “windshield wiper” process with a C2v-symmetrical transition state and sp-hybridized oxygen or sulfur atoms
- e.
- R = Me: β-H elimination, (rotation about of the form/thioaldehyde unit) and reinsertion (PDI)M-X-H ⇆ (PDI)M(H)(η2-CH2X) (⇆ rotation about (PDI)M(H)-(η2CH2X) ⇆ (PDI)M-X-H)
- b.
- Ionization and recombination
- c.
- α-H Elimination and the microscopic reverse step
- d.
- “Windshield” wiper process
- e.
- β-H Elimination and reinsertion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esteban, S. Liebig–Wöhler Controversy and the Concept of Isomerism. J. Chem. Educ. 2008, 85, 1201–1203. [Google Scholar] [CrossRef]
- Liebig, J. Ueber Laurent’s Theorie der organischen Verbindungen. Ann. Phar. 1838, 25, 1–31. [Google Scholar] [CrossRef]
- Liebig, J. Ueber einen neuen Apparat zur Analyse organischer Körper, und über die Zusammensetzung einiger organischen Substanzen. Ann. Phys. Chem. 1831, 97, 1–43. [Google Scholar] [CrossRef]
- Academic Tree. Available online: https://academictree.org/chemistry/tree.php?pid=747282 (accessed on 26 June 2023).
- Martínez-Prieto, L.M.; Cámpora, J. Nickel and Palladium Complexes with Reactive σ-Metal-Oxygen Covalent Bonds. Isr. J. Chem. 2020, 60, 373–393. [Google Scholar] [CrossRef]
- Groysman, S.; Grass, A. Alkoxide Ligands. In Comprehensive Coordination Chemistry III; Elsevier: Amsterdam, The Netherlands, 2021; pp. 158–177. [Google Scholar]
- Caulton, K.G. The Influence of π-Stabilized Unsaturation and Filled/Filled Repulsions in Transition Metal Chemistry. New J. Chem. 1994, 18, 25–41. [Google Scholar]
- Devarajan, D.; Gunnoe, T.B.; Ess, D.H. Theory of late-transition-metal alkyl and heteroatom bonding: Analysis of Pt, Ru, Ir, and Rh complexes. Inorg. Chem. 2012, 51, 6710–6718. [Google Scholar] [CrossRef]
- Yuwen, J.; Jiao, Y.; Brennessel, W.W.; Jones, W.D. Determination of Rhodium-Alkoxide Bond Strengths in Tp’Rh(PMe3)(OR)H. Inorg. Chem. 2016, 55, 9482–9491. [Google Scholar] [CrossRef] [PubMed]
- Holland, P.L.; Andersen, R.A.; Bergman, R.G. Application of the E-CApproach to Understanding the Bond Energies Thermodynamics of Late-Metal Amido, Aryloxo and Alkoxo Complexes: An Alternative to pπ/dπ Repulsion. Comments Inorg. Chem. 1999, 21, 115–129. [Google Scholar] [CrossRef]
- Martinez-Prieto, L.M.; Palma, P.; Alvarez, E.; Campora, J. Nickel Pincer Complexes with Frequent Aliphatic Alkoxo Ligands [((iPr)PCP)Ni-OR] (R = Et, nBu, iPr, 2-hydroxyethyl). An Assessment of the Hydrolytic Stability of Nickel and Palladium Alkoxides. Inorg. Chem. 2017, 56, 13086–13099. [Google Scholar] [CrossRef]
- Ashby, M.T.; Enemark, J.H.; Lichtenberger, D.L. Destabilizing dπ-pπ orbital interactions and the alkylation reactions of iron(II)-thiolate complexes. Inorg. Chem. 2002, 27, 191–197. [Google Scholar] [CrossRef]
- Mann, G.; Hartwig, J.F. Palladium Alkoxides: Potential Intermediacy in Catalytic Amination, Reductive Elimination of Ethers, and Catalytic Etheration. Comments on Alcohol Elimination from Ir(III). J. Am. Chem. Soc. 1996, 118, 13109–13110. [Google Scholar] [CrossRef]
- Bart, S.C.; Chlopek, K.; Bill, E.; Bouwkamp, M.W.; Lobkovsky, E.; Neese, F.; Wieghardt, K.; Chirik, P.J. Electronic structure of bis(imino)pyridine iron dichloride, monochloride, and neutral ligand complexes: A combined structural, spectroscopic, and computational study. J. Am. Chem. Soc. 2006, 128, 13901–13912. [Google Scholar] [CrossRef]
- Knijnenburg, Q.; Gambarotta, S.; Budzelaar, P.H. Ligand-centred reactivity in diiminepyridine complexes. Dalton Trans. 2006, 46, 5442–5448. [Google Scholar] [CrossRef]
- Römelt, C.; Weyhermüller, T.; Wieghardt, K. Structural characteristics of redox-active pyridine-1,6-diimine complexes: Electronic structures and ligand oxidation levels. Coord. Chem. Rev. 2019, 380, 287–317. [Google Scholar] [CrossRef]
- Zhu, D.; Budzelaar, P.H.M. A Measure for σ-Donor and π-Acceptor Properties of Diiminepyridine-Type Ligands. Organometallics 2008, 27, 2699–2705. [Google Scholar] [CrossRef]
- Zhu, D.; Thapa, I.; Korobkov, I.; Gambarotta, S.; Budzelaar, P.H. Redox-active ligands and organic radical chemistry. Inorg. Chem. 2011, 50, 9879–9887. [Google Scholar] [CrossRef] [PubMed]
- Angersbach-Bludau, F.; Schulz, C.; Schöffel, J.; Burger, P. Syntheses and electronic structures of mu-nitrido bridged pyridine, diimine iridium complexes. Chem. Commun. 2014, 50, 8735–8738. [Google Scholar] [CrossRef] [PubMed]
- Sieh, D.; Schlimm, M.; Andernach, L.; Angersbach, F.; Nückel, S.; Schöffel, J.; Šušnjar, N.; Burger, P. Metal–Ligand Electron Transfer in 4d and 5d Group 9 Transition Metal Complexes with Pyridine, Diimine Ligands. Eur. J. Inorg. Chem. 2012, 2012, 444–462. [Google Scholar] [CrossRef]
- Schiller, C.; Sieh, D.; Lindenmaier, N.; Stephan, M.; Junker, N.; Reijerse, E.; Granovsky, A.A.; Burger, P. Cleavage of an Aromatic C–C Bond in Ferrocene by Insertion of an Iridium Nitrido Nitrogen Atom. J. Am. Chem. Soc. 2023, 145, 11392–11401. [Google Scholar] [CrossRef]
- Schöffel, J.; Rogachev, A.Y.; DeBeer George, S.; Burger, P. Isolation and hydrogenation of a complex with a terminal iridium-nitrido bond. Angew. Chem. Int. Ed. 2009, 48, 4734–4738. [Google Scholar] [CrossRef] [PubMed]
- Schöffel, J.; Šušnjar, N.; Nückel, S.; Sieh, D.; Burger, P. 4D vs. 5D—Reactivity and Fate of Terminal Nitrido Complexes of Rhodium and Iridium. Eur. J. Inorg. Chem. 2010, 2010, 4911–4915. [Google Scholar] [CrossRef]
- Sieh, D.; Burger, P. Si-H activation in an iridium nitrido complex—A mechanistic and theoretical study. J. Am. Chem. Soc. 2013, 135, 3971–3982. [Google Scholar] [CrossRef]
- Sieh, D.; Schöffel, J.; Burger, P. Synthesis of a chloro protected iridium nitrido complex. Dalton Trans. 2011, 40, 9512–9524. [Google Scholar] [CrossRef] [PubMed]
- Nückel, S.; Burger, P. Transition Metal Complexes with Sterically Demanding Ligands, 3.1 Synthetic Access to Square-Planar Terdentate Pyridine−Diimine Rhodium(I) and Iridium(I) Methyl Complexes: Successful Detour via Reactive Triflate and Methoxide Complexes. Organometallics 2001, 20, 4345–4359. [Google Scholar] [CrossRef]
- Gibson, V.C.; Redshaw, C.; Solan, G.A. Bis(imino)pyridines: Surprisingly reactive ligands and a gateway to new families of catalysts. Chem. Rev. 2007, 107, 1745–1776. [Google Scholar] [CrossRef]
- Flisak, Z.; Sun, W.-H. Progression of Diiminopyridines: From Single Application to Catalytic Versatility. ACS Catal. 2015, 5, 4713–4724. [Google Scholar] [CrossRef]
- Reinhart, E.D.; Jordan, R.F. Synthesis and Ethylene Reactivity of Dinuclear Iron and Cobalt Complexes Supported by Macrocyclic Bis(pyridine-diimine) Ligands Containing o-Terphenyl Linkers. Organometallics 2020, 39, 2392–2404. [Google Scholar] [CrossRef]
- Stephan, M.; Dammann, W.; Burger, P. Synthesis and reactivity of dinuclear copper(I) pyridine diimine complexes. Dalton Trans. 2022, 51, 13396–13404. [Google Scholar] [CrossRef]
- Dammann, W.; Buban, T.; Schiller, C.; Burger, P. Dinuclear tethered pyridine, diimine complexes. Dalton Trans. 2018, 47, 12105–12117. [Google Scholar] [CrossRef]
- McTavish, S.; Britovsek, G.J.P.; Smit, T.M.; Gibson, V.C.; White, A.J.P.; Williams, D.J. Iron-based ethylene polymerization catalysts supported by bis(imino)pyridine ligands: Derivatization via deprotonation/alkylation at the ketimine methyl position. J. Mol. Catal. A Chem. 2007, 261, 293–300. [Google Scholar] [CrossRef]
- Lukmantara, A.Y.; Kalinowski, D.S.; Kumar, N.; Richardson, D.R. Synthesis and biological evaluation of 2-benzoylpyridine thiosemicarbazones in a dimeric system: Structure-activity relationship studies on their anti-proliferative and iron chelation efficacy. J. Inorg. Biochem. 2014, 141, 43–54. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, Q.; Jiang, H.; Chen, A.; Zou, C. Bidentate Pyridyl-Amido Hafnium Catalysts for Copolymerization of Ethylene with 1-Octene and Norbornene. Eur. J. Inorg. Chem. 2022, 26, e202200725. [Google Scholar] [CrossRef]
- Okamoto, I.; Terashima, M.; Masu, H.; Nabeta, M.; Ono, K.; Morita, N.; Katagiri, K.; Azumaya, I.; Tamura, O. Acid-induced conformational alteration of cis-preferential aromatic amides bearing N-methyl-N-(2-pyridyl) moiety. Tetrahedron 2011, 67, 8536–8543. [Google Scholar] [CrossRef]
- Hartwig, J.F. Organotransition Metal Chemistry: From Bonding to Catalysis; University Science Books: Melville, NY, USA, 2010. [Google Scholar]
- Wozniak, M.; Braun, T.; Ahrens, M.; Braun-Cula, B.; Wittwer, P.; Herrmann, R.; Laubenstein, R. Activation of SF6 at a Xantphos-Type Rhodium Complex. Organometallics 2018, 37, 821–828. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297–3305. [Google Scholar] [CrossRef]
- Andrae, D.; Huermann, U.; Dolg, M.; Stoll, H.; Preu, H. Energy-adjustedab initio pseudopotentials for the second and third row transition elements. Theor. Chim. Acta 1990, 77, 123–141. [Google Scholar] [CrossRef]
- Eichkorn, K.; Treutler, O.; Öhm, H.; Häser, M.; Ahlrichs, R. Auxiliary basis sets to approximate Coulomb potentials (Chem. Phys. Letters 240 (1995) 283–290). Chem. Phys. Lett. 1995, 242, 652–660. [Google Scholar] [CrossRef]
- Weigend, F. Accurate Coulomb-fitting basis sets for H to Rn. Phys. Chem. Chem. Phys. 2006, 8, 1057–1065. [Google Scholar] [CrossRef]
- Zhao, Y.; Truhlar, D.G. Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. J. Phys. Chem. A 2005, 109, 5656–5667. [Google Scholar] [CrossRef]
- Holzer, C. An improved seminumerical Coulomb and exchange algorithm for properties and excited states in modern density functional theory. J. Chem. Phys. 2020, 153, 184115. [Google Scholar] [CrossRef] [PubMed]
- Schäfer, A.; Klamt, A.; Sattel, D.; Lohrenz, J.C.W.; Eckert, F. COSMO Implementation in TURBOMOLE: Extension of an efficient quantum chemical code towards liquid systems. Phys. Chem. Chem. Phys. 2000, 2, 2187–2193. [Google Scholar] [CrossRef]
- Kästner, J.; Carr, J.M.; Keal, T.W.; Thiel, W.; Wander, A.; Sherwood, P. DL-FIND: An open-source geometry optimizer for atomistic simulations. J. Phys. Chem. A 2009, 113, 11856–11865. [Google Scholar] [CrossRef]
- ChemShell, a Computational Chemistry Shell. Available online: www.chemshell.org (accessed on 26 June 2023).
- Franzke, Y.J.; Holzer, C.; Andersen, J.H.; Begusic, T.; Bruder, F.; Coriani, S.; Della Sala, F.; Fabiano, E.; Fedotov, D.A.; Furst, S.; et al. TURBOMOLE: Today and Tomorrow. J. Chem. Theory Comput. 2023. [Google Scholar] [CrossRef] [PubMed]
- Nagy, P.R.; Kallay, M. Approaching the Basis Set Limit of CCSD(T) Energies for Large Molecules with Local Natural Orbital Coupled-Cluster Methods. J. Chem. Theory Comput. 2019, 15, 5275–5298. [Google Scholar] [CrossRef] [PubMed]
- Kallay, M.; Nagy, P.R.; Mester, D.; Rolik, Z.; Samu, G.; Csontos, J.; Csoka, J.; Szabo, P.B.; Gyevi-Nagy, L.; Hegely, B.; et al. The MRCC program system: Accurate quantum chemistry from water to proteins. J. Chem. Phys. 2020, 152, 074107. [Google Scholar] [CrossRef]
- Hellweg, A.; Rappoport, D. Development of new auxiliary basis functions of the Karlsruhe segmented contracted basis sets including diffuse basis functions (def2-SVPD, def2-TZVPPD, and def2-QVPPD) for RI-MP2 and RI-CC calculations. Phys. Chem. Chem. Phys. 2015, 17, 1010–1017. [Google Scholar] [CrossRef]
- Hellweg, A.; Hättig, C.; Höfener, S.; Klopper, W. Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn. Theor. Chem. Acc. 2007, 117, 587–597. [Google Scholar] [CrossRef]
- Weigend, F. Hartree-Fock exchange fitting basis sets for H to Rn. J. Comput. Chem. 2008, 29, 167–175. [Google Scholar] [CrossRef]
- Kanchanakungwankul, S.; JBao, J.L.; Zheng, J.; Alecu, I.M.; Lynch, B.J.; Zhao, Y.; Truhlar, D.G. Database of Frequency Scale Factors for Electronic Model Chemistries—Version 5. Available online: https://comp.chem.umn.edu/freqscale/ (accessed on 26 June 2023).
- Molpro 2022.3; 2022. Available online: www.molpro.net (accessed on 26 June 2023).
- Werner, H.J.; Knowles, P.J.; Manby, F.R.; Black, J.A.; Doll, K.; Hesselmann, A.; Kats, D.; Kohn, A.; Korona, T.; Kreplin, D.A.; et al. The Molpro quantum chemistry package. J. Chem. Phys. 2020, 152, 144107. [Google Scholar] [CrossRef] [PubMed]
- Levine, D.S.; Head-Gordon, M. Energy decomposition analysis of single bonds within Kohn-Sham density functional theory. Proc. Natl. Acad. Sci. USA 2017, 114, 12649–12656. [Google Scholar] [CrossRef]
- Khaliullin, R.Z.; Bell, A.T.; Head-Gordon, M. Analysis of charge transfer effects in molecular complexes based on absolutely localized molecular orbitals. J. Chem. Phys. 2008, 128, 184112. [Google Scholar] [CrossRef] [PubMed]
- Mao, Y.; Loipersberger, M.; Horn, P.R.; Das, A.; Demerdash, O.; Levine, D.S.; Prasad Veccham, S.; Head-Gordon, T.; Head-Gordon, M. From Intermolecular Interaction Energies and Observable Shifts to Component Contributions and Back Again: A Tale of Variational Energy Decomposition Analysis. Annu. Rev. Phys. Chem. 2021, 72, 641–666. [Google Scholar] [CrossRef]
- Epifanovsky, E.; Gilbert, A.T.B.; Feng, X.; Lee, J.; Mao, Y.; Mardirossian, N.; Pokhilko, P.; White, A.F.; Coons, M.P.; Dempwolff, A.L.; et al. Software for the frontiers of quantum chemistry: An overview of developments in the Q-Chem 5 package. J. Chem. Phys. 2021, 155, 084801. [Google Scholar] [CrossRef]
- Chai, J.D.; Head-Gordon, M. Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. Phys. Chem. Chem. Phys. 2008, 10, 6615–6620. [Google Scholar] [CrossRef]
- Matta, C.F.; Boyd, R.J. The Quantum Theory of Atoms in Molecules; Wiley-VCH: Weinheim, Germany, 2007. [Google Scholar]
- Lu, T.; Chen, F. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Available online: https://github.com/zorkzou/Molden2AIM (accessed on 1 May 2023).
- Weinhold, F.; Landis, C.R.; Glendening, E.D. What is NBO analysis and how is it useful? Int. Rev. Phys. Chem. 2016, 35, 399–440. [Google Scholar] [CrossRef]
- Glendening, E.D.; Badenhoop, J.K.; Reed, A.E.; Carpenter, J.E.; Bohmann, J.A.; Morales, C.M.; Karafiloglou, P.; Landis, C.R.; Weinhold, F. NBO 7.0; Theoretical Chemistry Institute, University of Wisconsin: Madison, WI, USA, 2018. [Google Scholar]
- Neese, F. Software Update: The ORCA Program System—Version 5.0. WIREs Comput. Mol. Sci. 2022, 12, e1606. [Google Scholar] [CrossRef]
- Zhurko, G.A. Chemcraft Ver. 1.80. Chemcraft—Graphical Program for Visualization of Quantum Chemistry Computations. Ivanovo, Russia. 2005. Available online: https://chemcraftprog.com (accessed on 1 August 2023).
- Thom, A.J.; Sundstrom, E.J.; Head-Gordon, M. LOBA: A localized orbital bonding analysis to calculate oxidation states, with application to a model water oxidation catalyst. Phys. Chem. Chem. Phys. 2009, 11, 11297–11304. [Google Scholar] [CrossRef] [PubMed]
- Gimferrer, M.; Comas-Vila, G.; Salvador, P. Can We Safely Obtain Formal Oxidation States from Centroids of Localized Orbitals? Molecules 2020, 25, 234. [Google Scholar] [CrossRef] [PubMed]
- Postils, V.; Delgado-Alonso, C.; Luis, J.M.; Salvador, P. An Objective Alternative to IUPAC’s Approach To Assign Oxidation States. Angew. Chem. Int. Ed. 2018, 57, 10525–10529. [Google Scholar] [CrossRef]
- Gimferrer, M.; Aldossary, A.; Salvador, P.; Head-Gordon, M. Oxidation State Localized Orbitals: A Method for Assigning Oxidation States Using Optimally Fragment-Localized Orbitals and a Fragment Orbital Localization Index. J. Chem. Theory Comput. 2022, 18, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian 16 Rev. C.01; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Salvador, P.; Ramos-Cordoba, E. APOST-3D; Universitat de Girona: Girona, Spain, 2012. [Google Scholar]
- Gorelsky, S.I. AOMix: Program for Molecular Orbital Analysis, 6.92. 2018. Available online: https://www.sg-chem.net/aomix/ (accessed on 27 July 2023).
- Gorelsky, S.I.; Lever, A.B.P. Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods. J. Organomet. Chem. 2001, 635, 187–196. [Google Scholar] [CrossRef]
- Gorelsky, S.I.; Basumallick, L.; Vura-Weis, J.; Sarangi, R.; Hodgson, K.O.; Hedman, B.; Fujisawa, K.; Solomon, E.I. Spectroscopic and DFT investigation of [MHB(3,5-iPr2pz)3(SC6F5)] (M = Mn, Fe, Co, Ni, Cu, and Zn) model complexes: Periodic trends in metal-thiolate bonding. Inorg. Chem. 2005, 44, 4947–4960. [Google Scholar] [CrossRef]
- Kraka, E.; Quintano, M.; La Force, H.W.; Antonio, J.J.; Freindorf, M. The Local Vibrational Mode Theory and Its Place in the Vibrational Spectroscopy Arena. J. Phys. Chem. A 2022, 126, 8781–8798. [Google Scholar] [CrossRef]
- Zou, W.L.; Tao, Y.W.; Freindorf, M.; Cremer, D.; Kraka, E. Local vibrational force constants—From the assessment of empirical force constants to the description of bonding in large systems. Chem. Phys. Lett. 2020, 748, 137337. [Google Scholar] [CrossRef]
- Kraka, E.; Zou, W.L.; Tao, Y.W. Decoding chemical information from vibrational spectroscopy data: Local vibrational mode theory. Wiley Rev. Comput. Mol. Sci. 2020, 10, e1480. [Google Scholar] [CrossRef]
- Kraka, E.; Zou, W.; Tao, Y. LMODEA(F90); Version 2.0.0; Computational and Theoretical Chemistry Group (CATCO): SMU: Dallas, TX, USA, 2020. [Google Scholar]
- Khaliullin, R.Z.; Cobar, E.A.; Lochan, R.C.; Bell, A.T.; Head-Gordon, M. Unravelling the origin of intermolecular interactions using absolutely localized molecular orbitals. J. Phys. Chem. A 2007, 111, 8753–8765. [Google Scholar] [CrossRef]
- Martinez-Prieto, L.M.; Avila, E.; Palma, P.; Alvarez, E.; Campora, J. β-Hydrogen Elimination Reactions of Nickel and Palladium Methoxides Stabilised by PCP Pincer Ligands. Chemistry 2015, 21, 9833–9849. [Google Scholar] [CrossRef]
- Mayer, J.; Nugent, W. Metal-Ligand Multiple Bonds: The Chemistry of Transition Metal Complexes Containing Oxo, Nitrido, Imido, Alkylidene, or Alkylidyne Ligands; John Wiley & Sons: Hoboken, NJ, USA, 1988. [Google Scholar]
- Delony, D.; Kinauer, M.; Diefenbach, M.; Demeshko, S.; Würtele, C.; Holthausen, M.C.; Schneider, S. A Terminal Iridium Oxo Complex with a Triplet Ground State. Angew. Chem. Int. Ed. 2019, 58, 10971–10974. [Google Scholar] [CrossRef]
- Appleton, T.G.; Clark, H.C.; Manzer, L.E. The trans-influence: Its measurement and significance. Coord. Chem. Rev. 1973, 10, 335–422. [Google Scholar] [CrossRef]
- Sajith, P.K.; Suresh, C.H. Quantification of mutual trans influence of ligands in Pd(II) complexes: A combined approach using isodesmic reactions and AIM analysis. Dalton Trans. 2010, 39, 815–822. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Boulet, P.; Record, M.-C. A rapid method for analyzing the chemical bond from energy densities calculations at the bond critical point. Comput. Theor. Chem. 2020, 1178, 112784. [Google Scholar] [CrossRef]
- Bryndza, H.E.; Fong, L.K.; Paciello, R.A.; Tam, W.; Bercaw, J.E. Relative metal-hydrogen, -oxygen, -nitrogen, and -carbon bond strengths for organoruthenium and organoplatinum compounds; equilibrium studies of Cp*(PMe3)2RuX and (DPPE)MePtX systems. J. Am. Chem. Soc. 2002, 109, 1444–1456. [Google Scholar] [CrossRef]
- Anslyn, E.V.; Dougherty, D.A. Modern Physical Organic Chemistry; University Science Books: Melville, NY, USA, 2005. [Google Scholar]
- Luecke, H.F.; Arndtsen, B.A.; Burger, P.; Bergman, R.G. Synthesis of Fischer Carbene Complexes of Iridium by C−H Bond Activation of Methyl and Cyclic Ethers: Evidence for Reversible α-Hydrogen Migration. J. Am. Chem. Soc. 1996, 118, 2517–2518. [Google Scholar] [CrossRef]
- Mei, J.; Carsch, K.M.; Freitag, C.R.; Gunnoe, T.B.; Cundari, T.R. Variable pathways for oxygen atom insertion into metal-carbon bonds: The case of Cp*W(O)2(CH2SiMe3). J. Am. Chem. Soc. 2013, 135, 424–435. [Google Scholar] [CrossRef] [PubMed]
- Blum, O.; Milstein, D. Direct Observation of OH Reductive Elimination from IrIII Complexes. Angew. Chem. Int. Ed. 1995, 34, 229–231. [Google Scholar] [CrossRef]
- Milstein, D. Carbon-hydrogen vs. oxygen-hydrogen reductive elimination of methanol from a metal complex. Which is a more likely process? J. Am. Chem. Soc. 2002, 108, 3525–3526. [Google Scholar] [CrossRef]
- Li, S.; Cui, W.; Wayland, B.B. Competitive O-H and C-H oxidative addition of CH3OH to rhodium(II) porphyrins. Chem. Commun. 2007, 4024–4025. [Google Scholar] [CrossRef] [PubMed]
- Poater, A. Versatile deprotonated NHC: C,N-bridged dinuclear iridium and rhodium complexes. Beilstein J. Org. Chem. 2016, 12, 117–124. [Google Scholar] [CrossRef]
- Vaughan, B.A.; Webster-Gardiner, M.S.; Cundari, T.R.; Gunnoe, T.B. Organic chemistry. A rhodium catalyst for single-step styrene production from benzene and ethylene. Science 2015, 348, 421–424. [Google Scholar] [CrossRef]
- Kleigrewe, N.; Steffen, W.; Blomker, T.; Kehr, G.; Frohlich, R.; Wibbeling, B.; Erker, G.; Wasilke, J.C.; Wu, G.; Bazan, G.C. Chelate bis(imino)pyridine cobalt complexes: Synthesis, reduction, and evidence for the generation of ethene polymerization catalysts by Li+ cation activation. J. Am. Chem. Soc. 2005, 127, 13955–13968. [Google Scholar] [CrossRef]
- Wark, T.A.; Stephan, D.W. Early metal thiolato species as metalloligands in the formation of early/late heterobimetallic complexes: Syntheses and molecular structures of Cp2Ti(SMe)2, Cp2V(SMe)2, (Cp2Ti(µ-SMe)2)2Ni and (Ni(µ-SMe)2)6. Organometallics 1989, 8, 2836–2843. [Google Scholar] [CrossRef]
- Nishiyama, Y.; Katsuura, A.; Okamoto, Y.; Hamanaka, S. Bis(acyl) Diselenides as Convenient Acylating Reagents. Chem. Lett. 2002, 18, 1825–1826. [Google Scholar] [CrossRef]
- Sheldrick, G.M. A short history of SHELX. Acta Crystallogr A 2008, 64, 112–122. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Balasubramani, S.G.; Chen, G.P.; Coriani, S.; Diedenhofen, M.; Frank, M.S.; Franzke, Y.J.; Furche, F.; Grotjahn, R.; Harding, M.E.; Hattig, C.; et al. TURBOMOLE: Modular program suite for ab initio quantum-chemical and condensed-matter simulations. J. Chem. Phys. 2020, 152, 184107. [Google Scholar] [CrossRef]
- Lefebvre, C.; Khartabil, H.; Boisson, J.C.; Contreras-Garcia, J.; Piquemal, J.P.; Henon, E. The Independent Gradient Model: A New Approach for Probing Strong and Weak Interactions in Molecules from Wave Function Calculations. ChemPhysChem 2018, 19, 724–735. [Google Scholar] [CrossRef]
- Ma, Q.; Werner, H.J. Scalable Electron Correlation Methods. 7. Local Open-Shell Coupled-Cluster Methods Using Pair Natural Orbitals: PNO-RCCSD and PNO-UCCSD. J. Chem. Theory Comput. 2020, 16, 3135–3151. [Google Scholar] [CrossRef]
- Neese, F.; Valeev, E.F. Revisiting the Atomic Natural Orbital Approach for Basis Sets: Robust Systematic Basis Sets for Explicitly Correlated and Conventional Correlated ab initio Methods? J. Chem. Theory Comput. 2011, 7, 33–43. [Google Scholar] [CrossRef]
Cpd./ Parameter | M: Σ of Angles [°] | Nimine-M-Nimine [°] | M-X-R [°] | ravg((PDI)Ir-X) [Å] | ravg (M-Nimine) [Å] | ravg(M-Npyridine) [Å] | ravg (Cim-Nim) [Å] | Δgeo [Å] a |
---|---|---|---|---|---|---|---|---|
IrSPh 15 | 359.89 (360.10) | 157.41 (157.31) | 122.38 (124.03) | 2.251 (2.252) | 2.032 (2.030) | 1.914 (1.929) | 1.332 (1.349) | 0.083 (0.072) |
IrSH 16 | 359.89 (360.0) | 157.90 (158.53) | (103.54) | 2.269 (2.262) | 2.019 (2.010) | 1.913 (1.922) | 1.338 (1.348) | 0.082 (0.078) |
IrSMe 14 | 360.04 (359.99) | 157.49 (157.63) | 118.76 (118.82) | 2.241 (2.243) | 2.017 (2.020) | 1.920 (1.931) | 1.340 (1.350) | 0.078 (0.074) |
IrOMe 9 | 359.95 (360.01) | 158.43 (159.21) | 130.50 (129.96) | 1.968 (1.954) | 2.022 (2.014) | 1.893 (1.896) | 1.337 (1.348) | 0.082 (0.071) |
MeIrOMe 17 | 359.98 | 159.01 | 134.24 | 1.951 | 2.00 | 1.870 | 1.349 | 0.063 |
RhOMe d 8 | 359.96 (360.01) | 158.69 (158.73) | 134.01 (130.39) | 1.942 (1.949) | 2.035 (2.028) | 1.889 (1.897) | 1.327 (1.338) | 0.100 (0.088) |
IrOH b 7 | 359.98 (360.0) | 159.29 (159.95) | (111.16) | 2.027 (1.964) | 2.00 (2.005) | 1.876 (1.892) | 1.335 (1.348) | 0.054 (0.074) |
RhOH 6 | 359.99 (359.99) | 158.76 (159.64) | (110.47) | 2.012 (1.957) | 2.010 (2.015) | 1.888 (1.892) | 1.325 (1.338) | 0.104 (0.095) |
IrCl c 5 | 359.87 (359.99) | 158.61 (159.88) | 2.256 (2.309) | 2.015 (2.008) | 1.910 (1.898) | 1.333 (1.343) | 0.088 (0.087) | |
RhCl 4 | 359.95 (359.99) | 157.03 (159.60) | 2.303 (2.309) | 2.075 (2.017) | 1.883 (1.897) | 1.319 (1.333) | 0.113 (0.102) | |
IrMe 18 | 359.97 (359.85) | 157.54 (157.46) | 2.115 (2.086) | 2.003 (2.008) | 1.933 (1.949) | 1.333 (1.340) | 0.091 (0.088) | |
Ir(MeOH)+ 11 | 359.96 (359.99) | 159.56 (160.30) | 2.097 (2.130) | 2.023 (2.012) | 1.891 (1.884) | 1.338 (1.336) | 0.081 (0.113) | |
Ir(H2O)+ d 12 | 360.00 (360.01) | 160.26 (161.05) | 2.090 (2.137) | 2.026 (2.002) | 1.873 (1.879) | 1.315 (1.335) | 0.132 (0.106) | |
Ir(THF)+ 13 | 360.18 (360.04) | 158.55 (159.59) | 2.111 (2.141) | 2.033 (2.026) | 1.883 (1.889) | 1.321 (1.336) | 0.108 (0.099) | |
Rh(THF)+ 10 | 360.14 (360.02) | 158.62 (159.3) | 2.181 (2.156) | 2.026 (2.036) | 1.901 (1.887) | 1.308 (1.328) | 0.123 (0.111) | |
IrN 19 | 360.1 (360.15) | 150.86 (149.71) | 1.647 (1.699) | 2.010 (2.031) | 2.003 (2.036) | 1.329 (1.347) | 0.065 (0.054) | |
IrNO 20 | 360.01 (360.01) | 156.55 (155.74) | 176.36 (179.83) | 1.751 (1.783) | 1.983 (2.017) | 1.886 (1.932) | 1.333 (1.354) | 0.037 (0.037) |
IrNH2 21 | 360.0 (360.0) | 159.51 (158.57) | 1.925 (1.938) | 2.002 (2.005) | 1.886 (1.904) | 1.363 (1.346) | 0.036 (0.063) | |
IrCO+ 22 | 360.0 (360.0) | 157.08 (156.82) | 180.0 (180.0) | 1.846 (1.873) | 2.022 (2.028) | 1.980 (1.990) | 1.308 (1.321) | 0.155 (0.135) |
Cpd. M-X/Method | ALMO-EDA | QTAIM | Oxidation State Analysis | Wieghardt Analysis | Local Force | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ECT/CT PDI → MX [kJ/mol]/[me−] | ECT/CT MX → PDI [kJ/mol] /[me−] | ΔCT [me−] | SPDI Charge [me−] | XPS /XAS | LOBA c M | EOS M, X, PDI | OSLO M, X, PDI | Δgeo Parameter [Å] | r(CpyCim) X-ray (calc.) [Å] | ν (CpyCim) [mdyn/Å] | |
IrNO | −383/148 | −151/208 | −60 | −627 | +1 | +1 | +1, +1, −2 | +5, −1, −4 * | 0.037 (0.037) | 1.377 (1.403) | 6.103 |
IrN | −348/132 | −128/157 | −25 | −530 | +3 | +3 | +3, −1, −2 b | +3, −1, −2 | 0.065 (0.054) | 1.424 (1.421) | 5.758 |
IrNH2 | −357/126 | −169/180 | −54 | −607 | +1 | +3 | +1, −1, 0 a | +1, −1, 0 * | 0.036 (0.063) | 1.392 (1.415) | 5.536 |
IrOMe | −368/132 | −153/150 | −18 | −487 | +3 | +1, −1, 0 | 1, −1, 0 * | 0.082 (0.071) | 1.444 (1.440) | 5.420 | |
IrMe | −342/120 | −152/154 | −34 | −469 | +1 | +1, −1, 0 | 1, 1, −2 * | 0.091 (0.088) | 1.445 (1.445) | 5.170 | |
IrSMe | −365/135 | −135/128 | 7 | −464 | +1 | +1, −1, 0 | 1, −1, 0 * | 0.078 (0.074) | 1.439 (1.441) | 5.426 | |
RhOMe | −251/102 | −111/102 | 0 | −376 | +1 | +1, −1, 0 | 1, −1, 0 * | 0.100 (0.088) | 1.451 (1.447) | 5.300 | |
IrCl | −390/146 | −135/117 | 29 | −362 | +1 | +1 | +1, −1, 0 | +1, −1, 0 * | 0.088 (0.087) | 1.438 (1.450) | 5.238 |
RhCl | −273/115 | −96/78 | 37 | −253 | +1 | +1, −1, 0 | +1, −1, 0 * | 0.113 (0.102) | 1.459 (1.456) | 5.098 | |
IrTHF+ | −403/156 | −114/91 | 65 | −8 | +1 | 1, 0, 0 | 1, 0, 0 | 0.108 (0.099) | 1.456 (1.456) | 5.190 | |
RhTHF+ | −282/125 | −81/60 | 65 | +82 | +1 | 1, 0, 0 | 1, 0, 0 | 0.123 (0.111) | 1.458 (1.461) | 5.075 | |
IrCO+ | −406/159 | −67/42 | 117 | +302 | +1 | +1, 0, 0 | 1, 0, 0 | 0.155 (0.135) | 1.481 (1.472) | 4.590 |
Property/Bond/Complex | Rh-OMe | Ir-OH | Ir-OMe | Ir-SH | Ir-SMe | Ir-SPh | Ir-NH2 | |
---|---|---|---|---|---|---|---|---|
Full Systems | ||||||||
Bond distance (M-X) [Å] | exp. a | 1.942 | 2.027 1.964 | 1.968 1.954 | 2.269 2.262 | 2.241 2.243 | 2.251 2.252 | 1.926 1.929 |
DFT b | 1.949 | |||||||
Bond angle (M-X-R) [°] | exp. a | 134.01 | n/a c | 130.37 | n/a c | 118.76 | 122.38 | |
DFT b | 130.39 | 111.16 | 130.27 | 103.54 | 118.82 | 124.03 | ||
Bond Order Analysis | Wiberg BO | 0.7179 | 0.8547 | 0.7679 | 1.0574 | 1.1407 | 1.0702 | |
Wiberg/ Löwdin BO | 0.967 | 1.0615 | 0.9953 | 1.3923 | 1.4068 | 1.3636 | ||
Fuzzy BO | 1.442 | 1.4573 | 1.4115 | 1.5550 | 1.5938 | 1.6791 | ||
QTAIM Analysis | ρ at BCP(M-X) [au] | 0.1228 | 0.1358 | 0.1364 | 0.1178 | 0.1225 | 0.1191 | |
∇2ρ BCP(M-X) [au] | 0.5853 | 0.5573 | 0.5866 | 0.1878 | 0.1856 | 0.1760 | ||
ellipticity at BCP(M-X) | 0.1471 | 0.2055 | 0.1819 | 0.3345 | 0.1961 | 0.1551 | ||
Local Force Constant k(M-X) [mdyn/Å] d | 2.543 | 2.999 | 3.000 | 2.083 | 2.187 | 2.015 | ||
Bond Dissociation Energy CCSD(T)/def2-TZVPP [kcal/mol] e | 69.28 | 87.90 | 76.36 | 79.08 | 74.36 | 71.03 | ||
small model complexes | ||||||||
Cs-symmetry: Wiberg Bond Order a′ σ (and π dxy) a″ π dxz C2v-symmetry: Wiberg Bond Order a1 σ b1 π dxy b2 π dxz | 0.729 | 0.872 | 0.819 | 1.098 | 1.165 | 1.106 | 0.975 | |
0.50 | 0.60 | 0.56 | 0.78 | 0.82 | 0.80 | 0.62 | ||
0.24 | 0.26 | 0.26 | 0.32 | 0.34 | 0.32 | 0.36 | ||
0.56 | ||||||||
0.06 | ||||||||
0.36 |
Method/Complex | TS(IrOMe) | TS(IrSH) | TS(IrSMe) | TS(IrSMe)THF) |
---|---|---|---|---|
ΔE# [kcal/mol] DFT(PW6B95-D3BJ(def2-TZVP))/ PBE-D3BJ(def2-TZVP) | 9.06 | 13.70 | 15.43 | 15.87 |
ΔE# [kcal/mol] LNO-CCSD(T)(def2-TZVPP)/ PBE-D3B-J(def2-TZVP) | 8.76 | 14.29 | 15.02 | 17.22 |
ΔG#298 [kcal/mol] LNO-CCSD(T)(def2-TZVPP)/ PBE-D3B-J(def2-TZVP) | 8.15 | 16.08 | 16.68 | 18.07 |
Wiberg Bond Order(GS)/ distance (Ir-X) [Å] | 0.768/1.954 | 1.057/2.264 | 1.141/2.243 | 1.141/2.243 |
Wiberg Bond Order(TS)/ distance (Ir-X) [Å] | 0.630/1.980 | 0.877/2.379 | 0.884/2.343 | 0.930/2.325 |
STEP/Method | ΔE#rel [kcal/mol] DFT(PW6B95-D3BJ (def2-TZVP)) | ΔE# [kcal/mol] LNO-CCSD(T) (def2-TZVPP) | ||
---|---|---|---|---|
Complex | X = O | X = S | X = O | X = S |
TS(ß-H elimination) | 17.91 | 24.21 | 18.27 | 22.97 |
intermediate | 11.82 | 18.48 | 11.71 | 16.28 |
product | 39.94 | 70.80 | 37.29 | 66.33 |
product–intermed. | 28.12 | 52.32 | 25.58 | 50.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stephan, M.; Völker, M.; Schreyer, M.; Burger, P. Syntheses, Crystal and Electronic Structures of Rhodium and Iridium Pyridine Di-Imine Complexes with O- and S-Donor Ligands: (Hydroxido, Methoxido and Thiolato). Chemistry 2023, 5, 1961-1989. https://doi.org/10.3390/chemistry5030133
Stephan M, Völker M, Schreyer M, Burger P. Syntheses, Crystal and Electronic Structures of Rhodium and Iridium Pyridine Di-Imine Complexes with O- and S-Donor Ligands: (Hydroxido, Methoxido and Thiolato). Chemistry. 2023; 5(3):1961-1989. https://doi.org/10.3390/chemistry5030133
Chicago/Turabian StyleStephan, Michel, Max Völker, Matthias Schreyer, and Peter Burger. 2023. "Syntheses, Crystal and Electronic Structures of Rhodium and Iridium Pyridine Di-Imine Complexes with O- and S-Donor Ligands: (Hydroxido, Methoxido and Thiolato)" Chemistry 5, no. 3: 1961-1989. https://doi.org/10.3390/chemistry5030133
APA StyleStephan, M., Völker, M., Schreyer, M., & Burger, P. (2023). Syntheses, Crystal and Electronic Structures of Rhodium and Iridium Pyridine Di-Imine Complexes with O- and S-Donor Ligands: (Hydroxido, Methoxido and Thiolato). Chemistry, 5(3), 1961-1989. https://doi.org/10.3390/chemistry5030133