Hydrothermally Synthesized Hydroxyapatite-Silica Composites with Enhanced Mechanical Properties for Bone Graft Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Instrumentation
2.3. Procedure
2.3.1. Synthesis of HA
2.3.2. Preparation of SiO2 from Rice Husk
2.3.3. Preparation of HA/SiO2 (HAS) Composites
2.3.4. Structural Investigation of HA/SiO2 (HAS) Composites
2.3.5. Characterization of HAS Composites Mechanical Properties
2.3.6. In Vitro Test for Biodegradation of HAS Composite Materials
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, T.-T.; Ling, L.; Lin, M.-C.; Peng, H.-K.; Ren, H.-T.; Lou, C.-W.; Lin, J.-H. Recent advances in multifunctional hydroxyapatite coating by electrochemical deposition. J. Mater. Sci. 2020, 55, 6352–6374. [Google Scholar] [CrossRef]
- Kim, S.; Park, C.B. Bio-Inspired Synthesis of Minerals for Energy, Environment, and Medicinal Applications. Adv. Funct. Mater. 2012, 23, 10–25. [Google Scholar] [CrossRef]
- Daulbayev, C.; Sultanov, F.; Korobeinyk, A.V.; Yeleuov, M.; Taurbekov, A.; Bakbolat, B.; Umirzakov, A.; Baimenov, A.; Daulbayev, O. Effect of graphene oxide/hydroxyapatite nanocomposite on osteogenic differentiation and antimicrobial activity. Surf. Interfaces 2022, 28, 101683. [Google Scholar] [CrossRef]
- Panda, S.; Biswas, C.K.; Paul, S. A comprehensive review on the preparation and application of calcium hydroxyapatite: A special focus on atomic doping methods for bone tissue engineering. Ceram. Int. 2021, 47, 28122–28144. [Google Scholar] [CrossRef]
- Chen, Q.; Zou, B.; Lai, Q.; Wang, Y.; Xue, R.; Xing, H.; Fu, X.; Huang, C.; Yao, P. A study on biosafety of HAP ceramic prepared by SLA-3D printing technology directly. J. Mech. Behav. Biomed. Mater. 2019, 98, 327–335. [Google Scholar] [CrossRef]
- Chen, Q.; Zou, B.; Lai, Q.; Zhao, Y.; Zhu, K. Influence of irradiation parameters on the curing and interfacial tensile strength of HAP printed part fabricated by SLA-3D printing. J. Eur. Ceram. Soc. 2022, 42, 6721–6732. [Google Scholar] [CrossRef]
- Wopenka, B.; Pasteris, J.D. A mineralogical perspective on the apatite in bone. Mater. Sci. Eng. C 2005, 25, 131–143. [Google Scholar] [CrossRef]
- Wang, L.; Nancollas, G.H. Calcium Orthophosphates: Crystallization and Dissolution. Chem. Rev. 2008, 108, 4628–4669. [Google Scholar] [CrossRef] [Green Version]
- Zakharova, O.; Gusev, A.; Chuprunov, K.; Yudin, A.; Kuznetsov, D. Cytotoxic Effects of Granulated Hydroxyapatite with Various Particle Size Distribution. IOP Conf. Ser. Mater. Sci. Eng. 2020, 731, 012020. [Google Scholar] [CrossRef]
- Nakonieczny, D.S.; Martynková, G.S.; Hundáková, M.; Kratošová, G.; Holešová, S.; Kupková, J.; Pazourková, L.; Majewska, J. Alkali-Treated Alumina and Zirconia Powders Decorated with Hydroxyapatite for Prospective Biomedical Applications. Materials 2022, 15, 1390. [Google Scholar] [CrossRef] [PubMed]
- Pazourková, L.; Reli, M.; Hundáková, M.; Pazdziora, E.; Predoi, D.; Simha, M.G.; Lafdi, K. Study of the structure and antimicrobial activity of Ca-deficient ceramics on chlorhexidine nanoclay substrate. Materials 2019, 12, 2996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, D.P.; Noronha, F.J.D.; Rossi, A.L.; Neves, d.E.A.; Portela, M.B.; Silva, d.E.M. Remineralizing potential of dental composites containing silanized silica-hydroxyapatite (Si-HAp) nanoporous particles charged with sodium fluoride (NaF). J. Dent. 2019, 90, 103211. [Google Scholar] [CrossRef] [PubMed]
- Tabor, D. Mohs’s Hardness Scale—A Physical Interpretation. Proc. Phys. Soc. Sect. B 1954, 67, 249–257. [Google Scholar] [CrossRef]
- Pai, S.; Kini, S.M.; Selvaraj, R.; Pugazhendhi, A. A review on the synthesis of hydroxyapatite, its composites and adsorptive removal of pollutants from wastewater. J. Water Process Eng. 2020, 38, 101574. [Google Scholar] [CrossRef]
- Irwansyah, F.S.; Noviyanti, A.R.; Eddy, D.R.; Risdiana, R. Green Template-Mediated Synthesis of Biowaste Nano-Hydroxyapatite: A Systematic Literature Review. Molecules 2022, 27, 5586. [Google Scholar] [CrossRef]
- Irwansyah, F.S.; Yusuf, A.; Eddy, D.R.; Risdiana, R.; Noviyanti, A.R. Effect of Sensitive pH on Hydroxyapatite Properties Synthesized from Chicken Eggshell. Indones. J. Chem. 2022, 22, 1418–1426. [Google Scholar] [CrossRef]
- Hartatiek; Reri, D.; Hartanto, Y.A.; Hidayat, N.; Yudyanto; Utomo, J. Sunaryono the Effect of Sonication Duration on the Characteristics of Nano Hydroxyapatite-Silica (nHAp/SiO2) Composite and its Mechanical Properties. J. Phys. Conf. Ser. 2018, 1093, 012019. [Google Scholar] [CrossRef] [Green Version]
- Noviyanti, A.R.; Akbar, N.; Deawati, Y.; Ernawati, E.E.; Malik, Y.T.; Fauzia, R.P. Risdiana A novel hydrothermal synthesis of nanohydroxyapatite from eggshell-calcium-oxide precursors. Heliyon 2020, 6, e03655. [Google Scholar] [CrossRef] [PubMed]
- Har, I.N.P.; Irzaman, N.P. Crystallinity and electrical properties of silicon dioxide (SiO2) from rice straw. AIPC 2019, 2202, 020028. [Google Scholar] [CrossRef]
- Palard, M.; Champion, E.; Foucaud, S. Synthesis of silicated hydroxyapatite Ca10(PO4)6−x(SiO4)x(OH)2−x. J. Solid State Chem. 2008, 181, 1950–1960. [Google Scholar] [CrossRef]
- Moreno-Perez, B.; Matamoros-Veloza, Z.; Rendon-Angeles, J.C.; Yanagisawa, K.; Onda, A.; Pérez-Terrazas, J.E.; Mejia-Martínez, E.E.; Díaz, O.B.; Rodríguez-Reyes, M. Synthesis of silicon-substituted hydroxyapatite using hydrothermal process. Boletín De La Soc. Española Cerámica Vidr. 2020, 59, 50–64. [Google Scholar] [CrossRef]
- Wang, H. Hydroxyapatite Degradation and Biocompatibility. 2004. Available online: https://www.researchgate.net/publication/252511979_Hydroxyapatite_degradation_and_biocompatibility (accessed on 28 March 2023).
- You, B.C.; Meng, C.E.; Nasir, N.F.M.; Tarmizi, E.Z.M.; Fhan, K.S.; Kheng, E.S.; Majid, M.S.A.; Jamir, M.R.M. Dielectric and biodegradation properties of biodegradable nano-hydroxyapatite/starch bone scaffold. J. Mater. Res. Technol. 2022, 18, 3215–3226. [Google Scholar] [CrossRef]
- Mudalige, T.; Qu, H.; Van Haute, D.; Ansar, S.M.; Paredes, A.; Ingle, T. Characterization of Nanomaterials. In Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 313–353. [Google Scholar] [CrossRef]
- Demianenko, E.; Ilchenko, M.; Grebenyuk, A.; Lobanov, V. A theoretical study on orthosilicic acid dissociation in water clusters. Chem. Phys. Lett. 2011, 515, 274–277. [Google Scholar] [CrossRef]
- Jurkić, L.M.; Cepanec, I.; Pavelić, S.K.; Pavelić, K. Biological and therapeutic effects of ortho-silicic acid and some ortho-silicic acid-releasing compounds: New perspectives for therapy. Nutr. Metab. 2013, 10, 1–12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Materials | Crystallite Size (nm) | Crystallinity (%) |
---|---|---|
HA [9] | 35.28 | 99.5 |
HAS90 | 34.82 | 50.5 |
HAS85 | 35.80 | 48.6 |
HAS80 | 34.21 | 53.1 |
Materials | Structure | Space Group | a = b (Å) | c (Å) | Intensity Ratio (27.2 to 31.78°) | Density (g·cm−3) |
---|---|---|---|---|---|---|
HA ICSD 96-900-2215 | Hexagonal | P 63/m | 9.4390 | 6.8860 | 3.14 | |
HAS90 | 9.4171 | 6.8753 | 0.77 | 3.16 | ||
HAS85 | 9.4168 | 6.8751 | 0.64 | 3.16 | ||
HAS80 | 9.4142 | 6.8749 | 0.49 | 3.16 |
Functional Groups | Wavenumber (cm−1) | |||
---|---|---|---|---|
Reference [18] | HAS90 | HAS85 | HAS80 | |
PO43− | 564 | 567.00 | 570.96 | 566.92 |
605 | 602.95 | 602.95 | 602.72 | |
964 | 963.01 | 963.02 | 962.84 | |
1062 | 1063.90 | 1061.59 | 1063.16 | |
2002 | 2002.94 | 2002.85 | 2002.84 | |
OH | 631 | 632.27 | 632.05 | 632.49 |
3568 | 3571.72 | 3571.54 | 3571.84 | |
CO32− | 1420 | 1421.95 | 1421.91 | 1423.14 |
Si–OH | 799 | 802.49 | 796.74 | 799.11 |
O–Si–O | 475 | 474.23 | 474.97 | 475.64 |
Sample | Measurement Parameters | ||||
---|---|---|---|---|---|
Mean (nm) | Mode (nm) | Median (nm) | Standard Deviation | PI | |
HAS 80 20 | 1631.0 | 1746.5 | 1640.0 | 190.5 | 1.250 |
HAS 85 15 | 1459.1 | 1643.7 | 1462.0 | 282.2 | 1.438 |
HAS 90 10 | 1649.4 | 1748 | 1660.1 | 182.1 | 0.807 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noviyanti, A.R.; Juliandri, J.; Ernawati, E.E.; Haryono, H.; Solihudin, S.; Dwiyanti, D.; Ma’amor, A.; Irwansyah, F.S.; Zain, S.B.M. Hydrothermally Synthesized Hydroxyapatite-Silica Composites with Enhanced Mechanical Properties for Bone Graft Applications. Chemistry 2023, 5, 1645-1655. https://doi.org/10.3390/chemistry5030113
Noviyanti AR, Juliandri J, Ernawati EE, Haryono H, Solihudin S, Dwiyanti D, Ma’amor A, Irwansyah FS, Zain SBM. Hydrothermally Synthesized Hydroxyapatite-Silica Composites with Enhanced Mechanical Properties for Bone Graft Applications. Chemistry. 2023; 5(3):1645-1655. https://doi.org/10.3390/chemistry5030113
Chicago/Turabian StyleNoviyanti, Atiek Rostika, Juliandri Juliandri, Engela Evy Ernawati, Haryono Haryono, Solihudin Solihudin, Dina Dwiyanti, Azman Ma’amor, Ferli Septi Irwansyah, and Sharifuddin Bin Md Zain. 2023. "Hydrothermally Synthesized Hydroxyapatite-Silica Composites with Enhanced Mechanical Properties for Bone Graft Applications" Chemistry 5, no. 3: 1645-1655. https://doi.org/10.3390/chemistry5030113