Selective Fluorimetric Detection of Pyrimidine Nucleotides in Neutral Aqueous Solution with a Styrylpyridine-Based Cyclophane
Abstract
:1. Introduction
2. Results
2.1. Synthesis
2.2. Solvent and pH-Dependent Absorption and Emission Properties
2.3. Nucleotide-Binding Properties of 4
3. Discussion
4. Conclusions
5. Materials and Methods
Synthesis of (12E,25E)-11,3,6,9,141,16,19,22-Octaazapentacyclo-1,14(3,6)-Dipyridina-11,24(1,4)-Dibenzenacyclo-Hexacosaphane-12,25-Diene (4)
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Lane, A.N.; Fan, T.W.-M. Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res. 2015, 43, 2466–2485. [Google Scholar] [CrossRef] [PubMed]
- Berdis, A. Nucleobase-modified nucleosides and nucleotides: Applications in biochemistry, synthetic biology, and drug discovery. Front. Chem. 2022, 10, 1051525. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, A.K.H.; Fischer, F.R.; Diederich, F. Phosphate recognition in structural biology. Angew. Chem. Int. Ed. 2007, 46, 338–352. [Google Scholar] [CrossRef]
- Illes, P.; Klotz, K.-N.; Lohse, M.J. Signaling by extracellular nucleotides and nucleosides. Naunyn Schmiedebergs Arch. Pharmacol. 2000, 362, 295–298. [Google Scholar] [CrossRef]
- Florea, M.; Nau, W.M. Implementation of anion-receptor macrocycles in supramolecular tandem assays for enzymes involving nucleotides as substrates, products, and cofactors. Org. Biomol. Chem. 2010, 8, 1033–1039. [Google Scholar] [CrossRef]
- Ojida, A.; Takashima, I.; Kohira, T.; Nonaka, H.; Hamachi, I. Turn-On Fluorescence Sensing of Nucleoside Polyphosphates Using a Xanthene-Based Zn(II) Complex Chemosensor. J. Am. Chem. Soc. 2008, 130, 12095–12101. [Google Scholar] [CrossRef] [PubMed]
- Malojčić, G.; Piantanida, I.; Marinić, M.; Žinić, M.; Marjanović, M.; Kralj, M.; Pavelić, K.; Schneider, H.-J. A novel bis-phenanthridine triamine with pH controlled binding to nucleotides and nucleic acids. Org. Biomol. Chem. 2005, 3, 4373–4381. [Google Scholar] [CrossRef]
- Sakamoto, T.; Ojida, A.; Hamachi, I. Molecular recognition, fluorescence sensing, and biological assay of phosphate anion derivatives using artificial Zn(ii)–Dpa complexes. Chem. Commun. 2009, 2, 141–152. [Google Scholar] [CrossRef]
- Hewitt, S.H.; Ali, R.; Mailhot, R.; Antonen, C.R.; Dodson, C.A.; Butler, S.J. A simple, robust, universal assay for real-time enzyme monitoring by signalling changes in nucleoside phosphate anion concentration using a europium(iii)-based anion receptor. Chem. Sci. 2019, 10, 5373–5381. [Google Scholar] [CrossRef]
- Sessler, J.L.; Gale, P.; Cho, W.-S. Anion Receptor Chemistry; The Royal Society of Chemistry: London, UK, 2006. [Google Scholar]
- Wu, Q.; Lei, Q.; Zhong, H.-C.; Ren, T.-B.; Sun, Y.; Zhang, X.-B.; Yuan, L. Fluorophore-based host-guest assembly complexes for imaging and therapy. Chem. Commun. 2023, 59, 3024–3039. [Google Scholar] [CrossRef]
- Niu, H.; Liu, J.; O’Connor, H.M.; Gunnlaugsson, T.; James, T.D.; Zhang, H. Photoinduced electron transfer (PeT) based fluorescent probes for cellular imaging and disease therapy. Chem. Soc. Rev. 2023, 52, 232–2357. [Google Scholar] [CrossRef] [PubMed]
- Klymchenko, A.S. Fluorescent Probes for Lipid Membranes: From the Cell Surface to Organelles. Acc. Chem. Res. 2023, 56, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Luo, C.; Zhang, Q.; Sun, S.; Li, H.; Xu, Y. Research progress of auxiliary groups in improving the performance of fluorescent probes. Chem. Commun. 2023, 59, 2199–2207. [Google Scholar] [CrossRef] [PubMed]
- Fang, H.; Chen, Y.; Jiang, Z.; He, W.; Guo, Z. Fluorescent Probes for Biological Species and Microenvironments: From Rational Design to Bioimaging Applications. Acc. Chem. Res. 2023, 56, 258–269. [Google Scholar] [CrossRef] [PubMed]
- Neto, B.A.D.; Correa, J.R.; Spencer, J. Fluorescent Benzothiadiazole Derivatives as Fluorescence Imaging Dyes: A Decade of New Generation Probes. Chem. Eur. J. 2022, 28, e202103262. [Google Scholar] [CrossRef]
- Manna, S.K.; Mondal, S.; Jana, B.; Samanta, K. Recent advances in tin ion detection using fluorometric and colorimetric chemosensors. New J. Chem. 2022, 46, 7309–7328. [Google Scholar] [CrossRef]
- Krämer, J.; Kang, R.; Grimm, L.M.; de Cola, L.; Picchetti, P.; Biedermann, F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem. Rev. 2022, 122, 3459–3636. [Google Scholar] [CrossRef]
- Niko, Y.; Klymchenko, A.S. Emerging solvatochromic push-pull dyes for monitoring the lipid order of biomembranes in live cells. J. Biochem. 2021, 170, 163–174. [Google Scholar] [CrossRef]
- Klymchenko, A.S. Solvatochromic and Fluorogenic Dyes as Environment-Sensitive Probes: Design and Biological Applications. Acc. Chem. Res. 2017, 50, 366–375. [Google Scholar] [CrossRef]
- Hargrove, A.E.; Nieto, S.; Zhang, T.; Sessler, J.L.; Anslyn, E.V. Artificial Receptors for the Recognition of Phosphorylated Molecules. Chem. Rev. 2011, 111, 6603–6782. [Google Scholar] [CrossRef]
- Kataev, E.A.; Shumilova, T.A.; Fiedler, B.; Anacker, T.; Friedrich, J. Understanding Stacking Interactions between an Aromatic Ring and Nucleobases in Aqueous Solution: Experimental and Theoretical Study. J. Org. Chem. 2016, 81, 6505–6514. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, Y.; Masuko, M.; Hashimoto, T.; Hayashita, T. Selective ATP recognition by boronic acid-appended cyclodextrin and a fluorescent probe supramolecular complex in water. New J. Chem. 2023, 47, 7035–7040. [Google Scholar] [CrossRef]
- Kuchelmeister, H.Y.; Schmuck, C. Molecular Recognition of Nucleotides. In Designing Receptors for the Next Generation of Biosensors; Piletsky, S.A., Whitcombe, M.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 53–65. ISBN 978-3-642-32329-4. [Google Scholar]
- Agafontsev, A.M.; Ravi, A.; Shumilova, T.A.; Oshchepkov, A.S.; Kataev, E.A. Molecular Receptors for Recognition and Sensing of Nucleotides. Chem. Eur. J. 2019, 25, 2684–2694. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Gong, X.; Fan, X.; Yin, S.; Su, D.; Zhang, X.; Yuan, L. Recent advances in molecular fluorescent probes for organic phosphate biomolecules recognition. Chin. Chem. Lett. 2019, 30, 1775–1790. [Google Scholar] [CrossRef]
- Yue, Y.; Huo, F.; Cheng, F.; Zhu, X.; Mafireyi, T.; Strongin, R.M.; Yin, C. Functional synthetic probes for selective targeting and multi-analyte detection and imaging. Chem. Soc. Rev. 2019, 48, 4155–4177. [Google Scholar] [CrossRef] [PubMed]
- Fontecilla-Camps, J.C. The Complex Roles of Adenosine Triphosphate in Bioenergetics. ChemBioChem 2022, 23, e202200064. [Google Scholar] [CrossRef] [PubMed]
- Pontes, M.H.; Sevostyanova, A.; Groisman, E.A. When Too Much ATP Is Bad for Protein Synthesis. J. Mol. Biol. 2015, 427, 2586–2594. [Google Scholar] [CrossRef]
- Vultaggio-Poma, V.; Sarti, A.C.; Di Virgilio, F. Extracellular ATP: A Feasible Target for Cancer Therapy. Cells 2020, 9, 2496. [Google Scholar] [CrossRef]
- Khojastehnezhad, A.; Taghavi, F.; Yaghoobi, E.; Ramezani, M.; Alibolandi, M.; Abnous, K.; Taghdisi, S.M. Recent achievements and advances in optical and electrochemical aptasensing detection of ATP based on quantum dots. Talanta 2021, 235, 122753. [Google Scholar] [CrossRef]
- Wu, Y.; Wen, J.; Li, H.; Sun, S.; Xu, Y. Fluorescent probes for recognition of ATP. Chin. Chem. Lett. 2017, 28, 1916–1924. [Google Scholar] [CrossRef]
- Kumar, P.; Pachisia, S.; Gupta, R. Turn-on detection of assorted phosphates by luminescent chemosensors. Inorg. Chem. Front. 2021, 8, 3587–3607. [Google Scholar] [CrossRef]
- Jun, Y.W.; Sarkar, S.; Kim, K.H.; Ahn, K.H. Molecular Probes for Fluorescence Imaging of ATP in Cells and Tissues. ChemPhotoChem 2019, 3, 214–219. [Google Scholar] [CrossRef]
- Huang, B.; Liang, B.; Zhang, R.; Xing, D. Molecule fluorescent probes for adenosine triphosphate imaging in cancer cells and in vivo. Coord. Chem. Rev. 2022, 452, 214302. [Google Scholar] [CrossRef]
- Butler, S.J.; Jolliffe, K.A. Anion Receptors for the Discrimination of ATP and ADP in Biological Media. ChemPlusChem 2021, 86, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Shang, L. Recent Advances in Nanomaterial-based Luminescent ATP Sensors. Curr. Anal. Chem. 2022, 18, 677–688. [Google Scholar] [CrossRef]
- Bazzicalupi, C.; Bencini, A.; Giorgi, C.; Valtancoli, B.; Lippolis, V.; Perra, A. Exploring the Binding Ability of Polyammonium Hosts for Anionic Substrates: Selective Size-Dependent Recognition of Different Phosphate Anions by Bis-macrocyclic Receptors. Inorg. Chem. 2011, 50, 7202–7216. [Google Scholar] [CrossRef]
- Yoo, S.; Kim, S.; Eom, M.S.; Kang, S.; Lim, S.-H.; Han, M.S. Development of a highly sensitive colorimetric thymidine triphosphate chemosensor using gold nanoparticles and the p-xylyl-bis(Hg2+-cyclen) complex: Improved selectivity by metal ion tuning. Tetrahedron Lett. 2016, 57, 4484–4487. [Google Scholar] [CrossRef]
- Zhao, X.J.; He, R.X.; Li, Y.F. A terbium(III)-organic framework for highly selective sensing of cytidine triphosphate. Analyst 2012, 137, 5190–5192. [Google Scholar] [CrossRef]
- Gupta, A.K.; Dhir, A.; Pradeep, C.P. Ratiometric Detection of Adenosine-5′-triphosphate (ATP) and Cytidine-5′-triphosphate (CTP) with a Fluorescent Spider-Like Receptor in Water. Eur. J. Org. Chem. 2015, 2015, 122–129. [Google Scholar] [CrossRef]
- Morozov, B.S.; Oshchepkov, A.S.; Klemt, I.; Agafontsev, A.M.; Krishna, S.; Hampel, F.; Xu, H.-G.; Mokhir, A.; Guldi, D.; Kataev, E. Supramolecular Recognition of Cytidine Phosphate in Nucleotides and RNA Sequences. JACS Au 2023, 3, 964–977. [Google Scholar] [CrossRef]
- Kim, H.N.; Moon, J.H.; Kim, S.K.; Kwon, J.Y.; Jang, Y.J.; Lee, J.Y.; Yoon, J. Fluorescent sensing of triphosphate nucleotides via anthracene derivatives. J. Org. Chem. 2011, 76, 3805–3811. [Google Scholar] [CrossRef] [PubMed]
- Roy, I.; David, A.H.G.; Das, P.J.; Pe, D.J.; Stoddart, J.F. Fluorescent cyclophanes and their applications. Chem. Soc. Rev. 2022, 51, 5557–5605. [Google Scholar] [CrossRef] [PubMed]
- Tay, H.M.; Beer, P. Optical sensing of anions by macrocyclic and interlocked hosts. Org. Biomol. Chem. 2021, 19, 4652–4677. [Google Scholar] [CrossRef]
- Wang, D.-X.; Wang, M.-X. Exploring Anion-π Interactions and Their Applications in Supramolecular Chemistry. Acc. Chem. Res. 2020, 53, 1364–1380. [Google Scholar] [CrossRef] [PubMed]
- Xiong, S.; He, Q. Photoresponsive macrocycles for selective binding and release of sulfate. Chem. Commun. 2021, 57, 13514–13517. [Google Scholar] [CrossRef] [PubMed]
- Lichosyt, D.; Dydio, P.; Jurczak, J. Azulene-Based Macrocyclic Receptors for Recognition and Sensing of Phosphate Anions. Chem. Eur. J. 2016, 22, 17673–17680. [Google Scholar] [CrossRef]
- Katayev, E.A.; Myshkovskaya, E.N.; Boev, N.V.; Khrustalev, V.N. Anion binding by pyrrole–pyridine-based macrocyclic polyamides. Supramol. Chem. 2008, 20, 619–624. [Google Scholar] [CrossRef]
- Flood, A.H. Creating molecular macrocycles for anion recognition. Beilstein J. Org. Chem. 2016, 12, 611–627. [Google Scholar] [CrossRef]
- Evans, N.H.; Beer, P.D. Advances in Anion Supramolecular Chemistry: From Recognition to Chemical Applications. Angew. Chem. Int. Ed. 2014, 53, 11716–11754. [Google Scholar] [CrossRef]
- Sarkar, S.; Ballester, P.; Spektor, M.; Kataev, E.A. Micromolar Affinity and Higher: Synthetic Host-Guest Complexes with High Stabilities. Angew. Chem. Int. Ed. 2022, e202214705. [Google Scholar] [CrossRef]
- Anda, C.; Angeles Martínez, M.; Llobet, A. A Systematic Evaluation of Molecular Recognition Phenomena: Part 5. Selective Binding of Tripolyphosphate and ATP to Isomeric Hexaazamacrocyclic Ligands Containing Xylylic Spacers. Supramol. Chem. 2005, 17, 257–266. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, L.; Nian, H.; Du, J.; Chen, T.; Cao, L. Adaptive chirality of achiral tetraphenylethene-based tetracationic cyclophanes with dual responses of fluorescence and circular dichroism in water. Chem. Commun. 2021, 57, 3135–3138. [Google Scholar] [CrossRef] [PubMed]
- Dhaenens, M.; Lehn, J.-M.; Vigneron, J.-P. Molecular Recognition of Nucleosides, Nucleotides and Anionic Planar Substrates by a Water-soluble Bis-intercaland-type Receptor Molecule. J. Chem. Soc. Perkin Trans. 2 1993, 7, 1379–1381. [Google Scholar] [CrossRef]
- Neelakandan, P.P.; Nandajan, P.C.; Subymol, B.; Ramaiah, D. Study of cavity size and nature of bridging units on recognition of nucleotides by cyclophanes. Org. Biomol. Chem. 2011, 9, 1021–1029. [Google Scholar] [CrossRef] [PubMed]
- van Eker, D.; Samanta, S.K.; Davis, A.P. Aqueous recognition of purine and pyrimidine bases by an anthracene-based macrocyclic receptor. Chem. Commun. 2020, 56, 9268–9271. [Google Scholar] [CrossRef] [PubMed]
- Neelakandan, P.P.; Hariharan, M.; Ramaiah, D. A supramolecular ON-OFF-ON fluorescence assay for selective recognition of GTP. J. Am. Chem. Soc. 2006, 128, 11334–11335. [Google Scholar] [CrossRef]
- Moreno-Corral, R.; Lara, K.O. Complexation Studies of Nucleotides by Tetrandrine Derivatives Bearing Anthraquinone and Acridine Groups. Supramol. Chem. 2008, 20, 427–435. [Google Scholar] [CrossRef]
- Rhaman, M.M.; Powell, D.R.; Hossain, M.A. Supramolecular Assembly of Uridine Monophosphate (UMP) and Thymidine Monophosphate (TMP) with a Dinuclear Copper(II) Receptor. ACS Omega 2017, 2, 7803–7811. [Google Scholar] [CrossRef]
- Ramaiah, D.; Neelakandan, P.P.; Nair, A.K.; Avirah, R.R. Functional cyclophanes: Promising hosts for optical biomolecular recognition. Chem. Soc. Rev. 2010, 39, 4158–4168. [Google Scholar] [CrossRef]
- Agafontsev, A.M.; Shumilova, T.A.; Rüffer, T.; Lang, H.; Kataev, E.A. Anthracene-Based Cyclophanes with Selective Fluorescent Responses for TTP and GTP: Insights into Recognition and Sensing Mechanisms. Chem. Eur. J. 2019, 25, 3541–3549. [Google Scholar] [CrossRef]
- Agafontsev, A.M.; Shumilova, T.A.; Oshchepkov, A.S.; Hampel, F.; Kataev, E.A. Ratiometric Detection of ATP by Fluorescent Cyclophanes with Bellows-Type Sensing Mechanism. Chem. Eur. J. 2020, 26, 9991–9997. [Google Scholar] [CrossRef] [PubMed]
- Agafontsev, A.M.; Oshchepkov, A.S.; Shumilova, T.A.; Kataev, E.A. Binding and Sensing Properties of a Hybrid Naphthalimide-Pyrene Aza-Cyclophane towards Nucleotides in an Aqueous Solution. Molecules 2021, 26, 980. [Google Scholar] [CrossRef] [PubMed]
- Kataev, E.A. Converting pH probes into “turn-on” fluorescent receptors for anions. Chem. Commun. 2023, 59, 1717–1727. [Google Scholar] [CrossRef] [PubMed]
- Granzhan, A.; Kotera, N.; Teulade-Fichou, M.-P. Finding needles in a basestack: Recognition of mismatched base pairs in DNA by small molecules. Chem. Soc. Rev. 2014, 43, 3630–3665. [Google Scholar] [CrossRef] [PubMed]
- Granzhan, A.; Largy, E.; Saettel, N.; Teulade-Fichou, M.-P. Macrocyclic DNA-mismatch-binding ligands: Structural determinants of selectivity. Chem. Eur. J. 2010, 16, 878–889. [Google Scholar] [CrossRef]
- Kotera, N.; Granzhan, A.; Teulade-Fichou, M.-P. Comparative study of affinity and selectivity of ligands targeting abasic and mismatch sites in DNA using a fluorescence-melting assay. Biochimie 2016, 128–129, 133–137. [Google Scholar] [CrossRef]
- Schlosser, J.; Ihmels, H. Ligands for Abasic-Site containing DNA and their Use as Fluorescent Probes. Curr. Org. Synth. 2023, 20, 96–113. [Google Scholar] [CrossRef]
- Yaragorla, S.; Singh, G.; Dada, R. C(sp3)–H functionalization of methyl azaarenes: A calcium-catalyzed facile synthesis of (E)-2-styryl azaarenes and 2-aryl-1,3-bisazaarenes. Tetrahedron Lett. 2015, 56, 5924–5929. [Google Scholar] [CrossRef]
- Seo, J.; Park, S.-R.; Kim, M.; Suh, M.C.; Lee, J. The role of electron-transporting Benzo[f]quinoline unit as an electron acceptor of new bipolar hosts for green PHOLEDs. Dyes Pigm. 2019, 162, 959–966. [Google Scholar] [CrossRef]
- Brouwer, A.M. Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 2213–2228. [Google Scholar] [CrossRef]
- Buettelmann, B.; Alanine, A.; Bourson, A.; Gill, R.; Heitz, M.-P.; Mutel, V.; Pinard, E.; Trube, G.; Wyler, R. 2-Styryl-pyridines and 2-(3,4-Dihydro-naphthalen-2-yl)pyridines as Potent NR1/2B Subtype Selective NMDA Receptor Antagonists. Chimia 2004, 58, 630. [Google Scholar] [CrossRef]
- Mittapalli, R.R.; Namashivaya, S.S.R.; Oshchepkov, A.S.; Kuczyńska, E.; Kataev, E.A. Design of anion-selective PET probes based on azacryptands: The effect of pH on binding and fluorescence properties. Chem. Commun. 2017, 53, 4822–4825. [Google Scholar] [CrossRef]
- Beggiato, G.; Favaro, G.; Mazzucato, U. Acid-base equilibria of dipyridylethylenes studied by absorption and fluorescence spectrometry. J. Heterocycl. Chem. 1970, 7, 583–587. [Google Scholar] [CrossRef]
- Zhang, C.; Li, M.; Liang, W.; Zhang, G.; Fan, L.; Yao, Q.; Shuang, S.; Dong, C. Substituent Effect on the Properties of pH Fluorescence Probes Containing Pyridine Group. ChemistrySelect 2019, 4, 5735–5739. [Google Scholar] [CrossRef]
- Budyka, M.F.; Fedulova, J.A.; Gavrishova, T.N.; Li, V.M.; Potashova, N.I.; Tovstun, S.A. 2+2 Photocycloaddition in a bichromophoric dyad: Photochemical concerted forward reaction following Woodward-Hoffmann rules and photoinduced stepwise reverse reaction of the ring opening via predissociation. Phys. Chem. Chem. Phys. 2022, 24, 24137–24145. [Google Scholar] [CrossRef]
- Chen, D.; Zhong, C.; Zhao, Y.; Nan, L.; Liu, Y.; Qin, J. A two-dimensional molecule with a large conjugation degree: Synthesis, two-photon absorption and charge transport ability. J. Mater. Chem. C 2017, 5, 5199–5206. [Google Scholar] [CrossRef]
- Budyka, M.F.; Potasheva, N.I.; Gavrishova, T.N.; Li, V.M. Photoisomerization and [2 + 2] photocycloaddition in bichromophoric styrylbenzoquinoline dyads with o-xylylene bridge group. High Energy Chem. 2017, 51, 201–208. [Google Scholar] [CrossRef]
- Budyka, M.F.; Gavrishova, T.N.; Li, V.M.; Potashova, N.I.; Fedulova, J.A. Emissive and reactive excimers in a covalently-linked supramolecular multi-chromophoric system with a balanced rigid-flexible structure. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 267, 120565. [Google Scholar] [CrossRef] [PubMed]
- Tripathy, M.; Subuddhi, U.; Patel, S. A styrylpyridinium dye as chromogenic and fluorogenic dual mode chemosensor for selective detection of mercuric ion: Application in bacterial cell imaging and molecular logic gate. Dyes Pigm. 2020, 174, 108054. [Google Scholar] [CrossRef]
- Sivakumar, R.; Lee, N.Y. Paper-Based Fluorescence Chemosensors for Metal Ion Detection in Biological and Environmental Samples. BioChip J. 2021, 15, 216–232. [Google Scholar] [CrossRef]
- Bazany-Rodríguez, I.J.; Salomón-Flores, M.K.; Bautista-Renedo, J.M.; González-Rivas, N.; Dorazco-González, A. Chemosensing of Guanosine Triphosphate Based on a Fluorescent Dinuclear Zn(II)-Dipicolylamine Complex in Water. Inorg. Chem. 2020, 59, 7739–7751. [Google Scholar] [CrossRef] [PubMed]
- Viviano-Posadas, A.O.; Romero-Mendoza, U.; Bazany-Rodríguez, I.J.; Velázquez-Castillo, R.V.; Martínez-Otero, D.; Bautista-Renedo, J.M.; González-Rivas, N.; Galindo-Murillo, R.; Salomón-Flores, M.K.; Dorazco-González, A. Efficient fluorescent recognition of ATP/GTP by a water-soluble bisquinolinium pyridine-2,6-dicarboxamide compound. Crystal structures, spectroscopic studies and interaction mode with DNA. RSC Adv. 2022, 12, 27826–27838. [Google Scholar] [CrossRef] [PubMed]
- Dorazco-González, A.; Alamo, M.F.; Godoy-Alcántar, C.; Höpfl, H.; Yatsimirsky, A.K. Fluorescent anion sensing by bisquinolinium pyridine-2,6-dicarboxamide receptors in water. RSC Adv. 2014, 4, 455–466. [Google Scholar] [CrossRef]
- Steenken, S.; Jovanovic, S.V. How Easily Oxidizable Is DNA? One-Electron Reduction Potentials of Adenosine and Guanosine Radicals in Aqueous Solution. J. Am. Chem. Soc. 1997, 119, 617–618. [Google Scholar] [CrossRef]
- Seidel, C.A.M.; Schulz, A.; Sauer, M.H.M. Nucleobase-Specific Quenching of Fluorescent Dyes. 1. Nucleobase One-Electron Redox Potentials and Their Correlation with Static and Dynamic Quenching Efficiencies. J. Phys. Chem. 1996, 100, 5541–5553. [Google Scholar] [CrossRef]
- Hu, P.; Yang, S.; Feng, G. Discrimination of adenine nucleotides and pyrophosphate in water by a zinc complex of an anthracene-based cyclophane. Org. Biomol. Chem. 2014, 12, 3701–3706. [Google Scholar] [CrossRef] [PubMed]
- Lohani, C.R.; Kim, J.-M.; Chung, S.-Y.; Yoon, J.; Lee, K.-H. Colorimetric and fluorescent sensing of pyrophosphate in 100% aqueous solution by a system comprised of rhodamine B compound and Al3+ complex. Analyst 2010, 135, 2079–2084. [Google Scholar] [CrossRef]
- MacDougall, D.; Crummett, W.B. Guidelines for data acquisition and data quality evaluation in environmental chemistry. Anal. Chem. 1980, 52, 2242–2249. [Google Scholar] [CrossRef]
λabs/nm [a] | Δλabs/nm | λfl/nm [a] | Δλfl/nm | logKb [b] | I/I0 | |
---|---|---|---|---|---|---|
4 | 314 (4.67) [c] | – | 429 (<0.01) [d] | – | – | – |
4/TMP | 317 | 3 | 384 | −45 | 2.8 ± 0.1 | 2.72 |
4/TTP | 317 | 3 | 384 | −45 | 3.2 ± 0.1 | 2.43 |
4/CMP | 314 | – | 388 | −41 | 2.3 ± 0.1 | 1.23 |
4/AMP | 319 | 5 | 395 | −34 | 4.1 ± 0.1 | 0.48 |
4/ATP | 319 | 5 | 395 | −34 | 5.0 ± 0.1 | 0.54 |
4/dGMP | 319 | 5 | 429 | – | 3.8 ± 0.1 | 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schlosser, J.; Hebborn, J.F.M.; Berdnikova, D.V.; Ihmels, H. Selective Fluorimetric Detection of Pyrimidine Nucleotides in Neutral Aqueous Solution with a Styrylpyridine-Based Cyclophane. Chemistry 2023, 5, 1220-1232. https://doi.org/10.3390/chemistry5020082
Schlosser J, Hebborn JFM, Berdnikova DV, Ihmels H. Selective Fluorimetric Detection of Pyrimidine Nucleotides in Neutral Aqueous Solution with a Styrylpyridine-Based Cyclophane. Chemistry. 2023; 5(2):1220-1232. https://doi.org/10.3390/chemistry5020082
Chicago/Turabian StyleSchlosser, Julika, Julian F. M. Hebborn, Daria V. Berdnikova, and Heiko Ihmels. 2023. "Selective Fluorimetric Detection of Pyrimidine Nucleotides in Neutral Aqueous Solution with a Styrylpyridine-Based Cyclophane" Chemistry 5, no. 2: 1220-1232. https://doi.org/10.3390/chemistry5020082
APA StyleSchlosser, J., Hebborn, J. F. M., Berdnikova, D. V., & Ihmels, H. (2023). Selective Fluorimetric Detection of Pyrimidine Nucleotides in Neutral Aqueous Solution with a Styrylpyridine-Based Cyclophane. Chemistry, 5(2), 1220-1232. https://doi.org/10.3390/chemistry5020082