Synthesis of Nitroarenes by Oxidation of Aryl Amines
Abstract
:1. Introduction
2. Oxidation with Peroxyacids
3. Oxidation with Tert-butyl Hydroperoxide
4. Oxidation with Hydrogen Peroxide
5. Oxidation with Sodium Perborate
6. Oxidation with Dimethyldioxirane
7. Oxidations with Other Oxidising Agents
8. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New York, NY, USA, 2001. [Google Scholar]
- Muller, W.E. The Benzodiazepine Receptor; Cambridge University Press: New York, NY, USA, 1988. [Google Scholar]
- Belciug, M.; Ananthanarayanan, V.S. Interaction of calcium channel antagonists with calcium: Structural studies on nicardipine and its Ca2+ complex. J. Med. Chem. 1994, 37, 4392–4399. [Google Scholar] [CrossRef] [PubMed]
- Zollinger, H. Color Chemistry; Wiley-VCH: New York, NY, USA, 1987. [Google Scholar]
- Koh, J.; Kim, S.; Kim, J.P. Synthesis and spectral properties of azohydroxypyridone disperse dyes containing a fluorosulphonyl group. Color. Technol. 2004, 120, 241–246. [Google Scholar] [CrossRef]
- Fan, F.-R.F.; Yao, Y.; Cai, L.; Cheng, L.; Tour, J.M.; Bard, A.J. Structure-dependent charge transport and storage in self-assembled monolayers of compounds of interest in molecular electronics: Effects of tip material, headgroup, and surface concentration. J. Am. Chem. Soc. 2004, 126, 4035–4042. [Google Scholar] [CrossRef] [PubMed]
- Luckenbach, T.; Epel, D. Nitromusk and polycyclic musk compounds as long-term inhibitors of cellular xenobiotic defense systems mediated by multidrug transporters. Environ. Health Perspect. 2005, 113, 17–24. [Google Scholar] [CrossRef]
- Kresken, M.; Körber-Irrgang, B. In vitro activity of nitroxoline against escherichia coli urine isolates from outpatient departments in Germany. Antimicrob. Agents Chemother. 2014, 58, 7019–7020. [Google Scholar] [CrossRef] [Green Version]
- Singha, P.; Locklin, J.; Handa, H. A review of the recent advances in antimicrobial coatings for urinary catheters. Acta Biomater. 2017, 50, 20–40. [Google Scholar] [CrossRef] [Green Version]
- Townson, S.M.; Boreham, P.F.L.; Upcroft, P.; Upcroft, J.A. Resistance to the nitroheterocyclic drugs. Acta Trop. 1994, 56, 173–194. [Google Scholar] [CrossRef]
- Muller, A.E.; Verhaegh, E.M.; Harbarth, S.; Mouton, J.W.; Huttner, A. Nitrofurantoin’s efficacy and safety as prophylaxis for urinary tract infections: A systematic review of the literature and meta-analysis of controlled trials. Clin. Microbiol. Infect. 2017, 23, 355–362. [Google Scholar] [CrossRef] [Green Version]
- Rebstock, M.C.; Crooks, H.M.; Controulis, J.; Bartz, Q.R. Chloramphenicol (chloromycetin). IV. Chemical studies. J. Am. Chem. Soc. 1949, 71, 2458–2462. [Google Scholar] [CrossRef]
- Olah, G.A.; Malhorta, R.; Narang, S.C. Nitration: Methods and Mechanisms; VCH: New York, NY, USA, 1989. [Google Scholar]
- Yan, G.; Yang, M. Recent advances in the synthesis of aromatic nitro compounds. Org. Biomol. Chem. 2013, 11, 2554–2566. [Google Scholar] [CrossRef]
- Weissermel, K.; Arpe, H.-J. Industrial Organic Chemistry; Wiley-VCH: Weinheim, Germany, 2008. [Google Scholar]
- Prakash, G.K.S.; Mathew, T. ipso-Nitration of arenes. Angew. Chem. Int. Ed. 2010, 49, 1726–1728. [Google Scholar] [CrossRef]
- D’Ans, J.; Kneip, A. Über organische Persäuren. Ber. Dtsch. Chem. Ges. 1915, 48, 1144. [Google Scholar] [CrossRef]
- Bamberger, E.; Seligman, R. Oxydation aliphatischer Amine vom Typus >CH.NH2. Chem. Ber. 1903, 36, 701–710. [Google Scholar] [CrossRef]
- Emmons, W.D. The oxidation of amines with peracetic acid. J. Am. Chem. Soc. 1957, 79, 5528–5530. [Google Scholar] [CrossRef]
- Emmons, W.D. Peroxytrifluoroacetic acid. I. The oxidation of nitrosamines to nitramines. J. Am. Chem. Soc. 1954, 76, 3468–3470. [Google Scholar] [CrossRef]
- Chambers, R.D.; Clark, M. Hexafluoroacetone-hydrogen peroxide, a new peroxyacid. Tetrahedron Lett. 1970, 32, 2741–2742. [Google Scholar] [CrossRef]
- Gilbert, K.E.; Borden, W.T. Peracid oxidation of aliphatic amines: General synthesis of nitroalkanes. J. Org. Chem. 1979, 44, 659–661. [Google Scholar] [CrossRef]
- Robinson, C.H.; Milewich, L.; Hofer, P. The oxidation of steroidal amines to nitro steroids. J. Org. Chem. 1966, 31, 524–528. [Google Scholar] [CrossRef]
- Schwertfeger, H.; Würtele, C.; Schreiner, P.R. Synthesis of diamondoid nitro compounds from amines with m-chloroperbenzoic acid. Synlett 2010, 493–495. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, J.; Ren, J.; Zeng, B.-B. Oxidation of aromatic amines into nitroarenes with m-CPBA. Tetrahedron Lett. 2014, 55, 1581–1584. [Google Scholar] [CrossRef]
- Meenakshi, R.; Shakeela, K.; Kutti Rani, S.; Ranga Rao, G. Oxidation of aniline to nitrobenzene catalysed by 1-Butyl-3-methyl imidazolium phosphotungstate hybrid material using m-chloroperbenzoic acid as an oxidant. Catal. Lett. 2018, 148, 246–257. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Yoshida, C.; Uchida, S.; Mizuno, N. Peroxotungstate immobilized on ionic liquid-modified silica as a heterogeneous epoxidation catalyst with hydrogen peroxide. J. Am. Chem. Soc. 2005, 127, 530–531. [Google Scholar] [CrossRef]
- Ramalingam, M.; Manickam, S.; Srinivasalu, K.R.; Ismail, M.B.; Deivanayagam, E. Ionic immobilization of silicotungstic acid on amine-functionalized zirconia: A mesoporous catalyst for esterification of maleic acid. Eur. J. Inorg. Chem. 2016, 11, 1697–1705. [Google Scholar] [CrossRef]
- Patil, V.V.; Shankarling, G.S. Steric-hindrance-induced regio- and chemoselective oxidation of aromatic amines. J. Org. Chem. 2015, 80, 7876–7883. [Google Scholar] [CrossRef]
- Ke, Q.; Wu, M.; Yu, H.; Lu, G. Superior catalytic performance of hierarchically micro-meso-macroporous CuAlPO-5 for the oxidation of aromatic amines under mild conditions. Chem. Cat. Chem. 2017, 9, 733–737. [Google Scholar] [CrossRef]
- Jayachandran, B.; Sasidharan, M.; Sudalai, A.; Ravindranathan, T. Chromium silicalite-2 (CrS-2): An efficient catalyst for the direct oxidation of primary amines to nitro compounds with TBHP. J. Chem. Soc. Chem. Commun. 1995, 15, 1523–1524. [Google Scholar] [CrossRef]
- Ratnikov, M.O.; Farkas, L.E.; McLaughlin, E.C.; Chiou, G.; Choi, H.; El-Khalafy, S.H.; Doyle, M.P. Dirhodium-catalyzed phenol and aniline oxidations with T-HYDRO. Substrate scope and mechanism of oxidation. J. Org. Chem. 2011, 76, 2585–2593. [Google Scholar] [CrossRef]
- Tollari, S.; Vergani, D.; Banfi, S.; Porta, F. Oxidation of primary aromatic amines to nitro derivatives catalysed by iron(III) and manganese(III) tetraaryl porphyrins. J. Chem. Soc. Chem. Commun. 1993, 5, 442–444. [Google Scholar] [CrossRef]
- Krohn, K.; Kiipke, J.; Rieger, H. Zirkonium-katalysierte oxidation von primären aromatischen aminen zu nitroverbindungen mit tert-butylhydroperoxid. J. Prakt. Chem. Chem.-Ztg. 1997, 339, 335–339. [Google Scholar] [CrossRef]
- Reddy, K.R.; Maheswari, C.U.; Venkateshwar, M.; Kantam, M.L. Selective oxidation of aromatic amines to nitro derivatives using potassium iodide-tert-butyl hydroperoxide catalytic system. Adv. Synth. Catal. 2009, 351, 93–96. [Google Scholar] [CrossRef]
- Dewkar, G.K.; Nikalje, M.D.; Sayyed Ali, I.; Paraskar, A.S.; Jagtap, H.S.; Sudalai, A. An exceptionally stable ti superoxide radical ion: A novel heterogeneous catalyst for the direct conversion of aromatic primary amines to nitro compounds. Angew. Chem. Int. Ed. 2001, 40, 405–408. [Google Scholar] [CrossRef]
- Tressler, C.M.; Stonehouse, P.; Kyler, K.S. Calcium tungstate: A convenient recoverable catalyst for hydrogen peroxide oxidation. Green Chem. 2016, 18, 4875–4878. [Google Scholar] [CrossRef]
- Sakaue, S.; Tsubakino, T.; Nishiyama, Y.; Ishii, Y. Oxidation of aromatic amines with hydrogen peroxide catalyzed by cetylpyridinium heteropolyoxometalates. J. Org. Chem. 1993, 58, 3633–3638. [Google Scholar] [CrossRef]
- Tabatabaee, M.; Hashemian, S.; Roozbeh, M.; Roozbeh, M.; Mirjalili, M. Lacunary Keggin-type heteropolyanion, α-[PMo2W9O39]7−, as an efficient homogenous catalyst for oxidation of aromatic amines. Res. Chem. Intermed. 2015, 41, 231–234. [Google Scholar] [CrossRef]
- Tundo, P.; Romanelli, G.P.; Vázquez, P.G.; Loris, A.; Aricò, F. Multiphase oxidation of aniline to nitrosobenzene with hydrogen peroxide catalyzed by heteropolyacids. Synlett 2008, 967–970. [Google Scholar] [CrossRef] [Green Version]
- Sloboda-Rozner, D.; Witte, P.; Alsters, P.L.; Neumann, R. Aqueous biphasic oxidation: A water-soluble polyoxometalate catalyst for selective oxidation of various functional groups with hydrogen peroxide. Adv. Synth. Catal. 2004, 346, 339–345. [Google Scholar] [CrossRef]
- Defoin, A. Simple preparation of nitroso benzenes and nitro benzenes by oxidation of anilines with H2O2 catalysed with molybdenum salts. Synthesis 2004, 5, 706–710. [Google Scholar] [CrossRef]
- Voutyritsa, E.; Theodorou, A.; Kokotou, M.G.; Kokotos, C.G. Organocatalytic oxidation of substituted anilines to azoxybenzenes and nitro compounds: Mechanistic studies excluding the involvement of a dioxirane intermediate. Green Chem. 2017, 19, 1291–1298. [Google Scholar] [CrossRef]
- Gupta, S.; Ansari, A.; Sashidhara, K.V. Base promoted peroxide systems for the efficient synthesis of nitroarenes and benzamides. Tetrahedron Lett. 2019, 60, 151076. [Google Scholar] [CrossRef]
- Neimann, K.; Neumann, R. A new non-metal heterogeneous catalyst for the activation of hydrogen peroxide: A perfluorinated ketone attached to silica for oxidation of aromatic amines and alkenes. Chem. Commun. 2001, 5, 487–488. [Google Scholar] [CrossRef]
- Lenardão, E.J.; Santi, C.; Sancineto, L. New Frontiers in Organoselenium Compounds; Springer: Gewerbestrasse, Switzerland, 2018. [Google Scholar]
- Singh, F.V.; Wirth, T. Organoselenium Chemistry. Synthesis and Reactions; Wirth, T., Ed.; Wiley-VCH: Weinheim, Germany, 2012; Chapter 8. [Google Scholar]
- Rathore, V.; Jose, C.; Kumar, S. Organoselenium small molecules as catalysts for the oxidative functionalization of organic molecules. New J. Chem. 2019, 43, 8852–8864. [Google Scholar] [CrossRef]
- Młochowski, J.; Wójtowicz-Młochowska, H. Developments in synthetic application of selenium(IV) oxide and organoselenium compounds as oxygen donors and oxygen-transfer agents. Molecules 2015, 20, 10205–10243. [Google Scholar] [CrossRef] [Green Version]
- Młochowski, J.; Brząszcz, M.; Giurg, M.; Palus, J.; Wójtowicz, H. Selenium-promoted oxidation of organic compounds: Reactions and mechanisms. Eur. J. Org. Chem. 2003, 4329–4339. [Google Scholar] [CrossRef]
- Yu, L.; Wang, J.; Chen, T.; Wang, Y.; Xu, Q. Recyclable 1,2-bis[3,5-bis(trifluoromethyl)phenyl]diselane-catalyzed oxidation of cyclohexene with H2O2: A practical access to trans-1,2-cyclohexanediol. Appl. Organomet. Chem. 2014, 28, 652–656. [Google Scholar] [CrossRef]
- Jensen, H.P.; Sharpless, K.B. Selenium dioxide oxidation of d-limonene. Reinvestigation. J. Org. Chem. 1975, 40, 264–265. [Google Scholar] [CrossRef]
- Back, T.G. Oxidation of azasteroid lactams and alcohols with benzeneseleninic anhydride. J. Org. Chem. 1981, 46, 1442–1446. [Google Scholar] [CrossRef]
- Capperucci, A.; Petrucci, A.; Faggi, C.; Tanini, D. Click reaction of selenols with isocyanates: Rapid access to selenocarbamates as peroxide-switchable reservoir of thiol-peroxidase-like catalysts. Adv. Sinth. Catal. 2021, 363, 4256–4263. [Google Scholar] [CrossRef]
- Arai, K.; Sato, Y.; Nakajima, I.; Saito, M.; Sasaki, M.; Kanamori, A.; Iwaoka, M. Glutathione peroxidase-like functions of 1, 2-diselenane-4, 5-diol and its amphiphilic derivatives: Switchable catalytic cycles depending on peroxide substrates. Bioorg. Med. Chem. 2021, 29, 115866. [Google Scholar] [CrossRef]
- Tanini, D.; Capperucci, A. Synthesis and applications of organic selenols. Adv. Synth. Catal. 2021, 363, 5360–5385. [Google Scholar] [CrossRef]
- Tanini, D.; Lupori, B.; Malevolti, G.; Ambrosi, M.; Lo Nostro, P.; Capperucci, A. Direct biocatalysed synthesis of first sulfur-, selenium- and tellurium- containing L-ascorbyl hybrid derivatives with radical trapping and GPx-like properties. Chem.Commun. 2019, 55, 5705–5708. [Google Scholar] [CrossRef] [Green Version]
- Sands, K.N.; Tuck, T.A.; Back, T.G. Cyclic Seleninate esters, spirodioxyselenuranes and related compounds: New classes of biological antioxidants that emulate glutathione peroxidase. Chem. Eur. J. 2018, 24, 9714–9728. [Google Scholar] [CrossRef]
- Tanini, D.; Grechi, A.; Ricci, L.; Dei, S.; Teodori, E.; Capperucci, A. Novel functionalized organotellurides with enhanced thiol peroxidase catalytic activity. New J. Chem. 2018, 42, 6077–6083. [Google Scholar] [CrossRef] [Green Version]
- Kumakura, F.; Mishra, B.; Priyadarsini, K.I.; Iwaoka, M. A watersoluble cyclic selenide with enhanced glutathione peroxidase-like catalytic activities. Eur. J. Org. Chem. 2010, 3, 440–445. [Google Scholar] [CrossRef]
- Mugesh, G.; Singh, H.B. Synthetic organoselenium compounds as antioxidants: Glutathione peroxidase activity. Chem. Soc. Rev. 2000, 29, 347–357. [Google Scholar] [CrossRef]
- Tanini, D.; Dalia, C.; Capperucci, A. The polyhedral nature of selenium-catalysed reactions: Se(IV) species instead of Se(VI) species make the difference in the on water selenium-mediated oxidation of arylamines. Green Chem. 2021, 23, 5680–5686. [Google Scholar] [CrossRef]
- Zhao, D.; Johansson, M.; Bäckvall, J.-E. In situ generation of nitroso compounds from catalytic hydrogen peroxide oxidation of primary aromatic amines and their one-pot use in hetero-diels–alder reactions. Eur. J. Org. Chem. 2007, 4431–4436. [Google Scholar] [CrossRef]
- Priewisch, G.B.; Irran, E.; Rück-Braun, K. Oxidation of anilines with hydrogen peroxide and selenium dioxide as catalyst. Synthesis 2008, 12, 1889–1894. [Google Scholar]
- Sands, K.N.; Rengifo, E.M.; George, G.N.; Pickering, I.J.; Gelfand, B.S.; Back, T.G. The unexpected role of sevi species in epoxidations with benzeneseleninic acid and hydrogen peroxide. Angew. Chem. Int. Ed. 2020, 59, 4283–4287. [Google Scholar] [CrossRef]
- Marinescu, L.G.; Doyagüez, E.G.; Petrilli, M.; Fernández-Mayoralas, A.; Bols, M. Amino-acetone-bridged cyclodextrins—Artificial alcohol oxidases. Eur. J. Org. Chem. 2010, 157–167. [Google Scholar] [CrossRef]
- Marinescu, L.; Mølbach, M.; Rousseau, C.; Bols, M. Supramolecular oxidation of anilines using hydrogen peroxide as stoichiometric oxidant. J. Am. Chem. Soc. 2005, 127, 17578–17579. [Google Scholar] [CrossRef]
- McKillop, A.; Tarbin, J.A. Sodium perborate—A cheap and effective reagent for the oxidation of anilines and sulphides. Tetrahedron Lett. 1983, 24, 1505–1508. [Google Scholar] [CrossRef]
- Firouzabadi, H.; Iranpoor, N.; Amani, K. Tungstophosphoric acid catalyzed oxidation of aromatic amines to nitro compounds with sodium perborate in micellar media. Green Chem. 2001, 3, 131–132. [Google Scholar] [CrossRef]
- Habibi, D.; Zolfigol, M.A.; Safaiee, M. Silica sulphuric acid as an efficient catalyst for the catalytic and metal-free oxidation of aromatic amines to their corresponding nitro compounds with sodium perborate under micellar media. S. Afr. J. Chem. 2008, 61, 93–96. [Google Scholar]
- Murray, R.W.; Jeyaraman, H.; Mohan, L. A new synthesis of nitro compounds using dimethyldioxirane. Tetrahedron Lett. 1986, 27, 2335–2336. [Google Scholar] [CrossRef]
- Murray, R.W.; Rajadhyaksha, S.N.; Mohan, L. Oxidation of primary amines by dimethyldioxirane. J. Org. Chem. 1989, 54, 5783–5788. [Google Scholar] [CrossRef]
- Murray, R.W.; Jeyaraman, H. Dioxiranes: Synthesis and reactions of methyldioxiranes. J. Org. Chem. 1985, 50, 2847–2853. [Google Scholar] [CrossRef]
- Zabrowski, D.L.; Moormann, A.E.; Beck, K.R. The oxidation of aromatic amines in the presence of “electron-rich” aromatic systems. Tetrahedron Lett. 1988, 29, 4501–4504. [Google Scholar] [CrossRef]
- Webb, K.S.; Seneviratne, V. A Mild oxidation of aromatic amines. Tetrahedron Lett. 1995, 36, 2377–2378. [Google Scholar] [CrossRef]
- Shiney, A.; Rajan, P.K.; Sreekumar, K. Polystyrene-bound dioxirane: A new class of recyclable oxidising reagent. Polym. Int. 1996, 41, 377–381. [Google Scholar] [CrossRef]
- Vázquez Sánchez, A.; Ávila Zárraga, J.G. Green oxidation of organic compounds: Manganese sulphate/oxone®/water. J. Mex. Chem. Soc. 2007, 51, 213–216. [Google Scholar]
- Golan, E.; Rozen, S. A Fast, high-yield preparation of vicinal dinitro compounds using HOF‚CH3CN. J. Org. Chem. 2003, 68, 9170–9172. [Google Scholar] [CrossRef]
- Kol, M.; Rozen, S. Oxidizing aromatic amines to nitroarenes with the HOF–MeCN system. J. Chem. Soc. Chem. Commun. 1991, 567–568. [Google Scholar] [CrossRef]
- Rozen, S.; Bar-Haim, A.; Mishani, E. New efficient route to α-nitro acids. Oxidation of amino acids with HOF∙CH3CN. J. Org. Chem. 1994, 59, 1208–1209. [Google Scholar] [CrossRef]
- McPake, C.B.; Murray, C.B.; Sandford, G. Sequential continuous flow processes for the oxidation of amines and azides by using HOF·MeCN. ChemSusChem 2012, 5, 312–319. [Google Scholar] [CrossRef]
- Joshaghani, M.; Bahadori, M.; Rafiee, E.; Bagherzadeh, M. Oxidative transformation of organic compounds using bis(bipyridine)silver(II) peroxydisulfate. Arkivoc 2007, 16, 260–265. [Google Scholar] [CrossRef] [Green Version]
- Joshaghani, M.; Bahadori, M.; Rafiee, E.; Bagherzadeh, M. Oxidative transformation of organic compounds using bis(1,10-phenanthroline)silver(II) peroxydisulfate as a twin catalyst/oxidant. J. Iran. Chem. Soc. 2008, 5, S108–S112. [Google Scholar] [CrossRef]
- Das, S.S.; Nath, U.; Deb, D.; Das, P.J. A Convenient method for the oxidation of aromatic amines to nitro compounds using tetra-n-alkylammonium bromates. Synth. Commun. 2004, 34, 2359–2363. [Google Scholar] [CrossRef]
Entry | Catalyst/Promoter | Conditions | Scope (Substrates) | Limitations | Ref. |
---|---|---|---|---|---|
1 | none | Peracetic acid; refluxing CHCl3 or CH2Cl2 | Mainly ArNH2 | Formation of variable amounts of azoxyarenes | [19] |
2 | none | m-CPBA; refluxing Cl(CH2)2Cl | Electron-rich and electron-poor ArNH2 | -- | [25] |
3 | none | Nonanebis (peroxoic acid); MeCN, 50 °C | Electron-rich and electron-poor ArNH2 | Driven by the nature of the group at the ortho position. This also enabled regioselective oxidations for diamines. | [29] |
4 | CuAlPO-5 | TBHP, MeCN, 60 °C | Electron-rich and electron-poor ArNH2 | Moderate selectivity for some substrates | [30] |
5 | CrS-2 | TBHP; refluxing MeOH | ArNH2 and AlkNH2 | -- | [31] |
6 | Rh2(cap)4 | TBHP; CH2Cl2, NaHCO3 | Mainly electron-rich ArNH2 | Low yields for electron-poor ArNH2 and for o-aryl-substituted anilines | [32] |
7 | Ti catalyst | H2O2; MeOH, r.t. | Electron-rich and electron-poor ArNH2. AlkNH2 gave oximes. | Formation of variable amounts of azoxyarenes and nitrosoarenes | [36] |
8 | Buffer (K2CO3, EDTA disodium) | H2O2; MeCN, r.t. | Electron-rich and electron-poor ArNH2. | -- | [43] |
9 | K2CO3, | H2O2; MeCN, r.t. | Electron-rich and electron-poor ArNH2. | -- | [44] |
10 | PhSeSePh or PhSe(O)OH | H2O2; H2O, r.t. | Electron-rich and electron-poor ArNH2. | Variable amount of azoxyarenes for some substrates | [62] |
11 | H3PW∙nH2O | SPB; CTAB, 55–60 °C | Mainly electron-rich ArNH2 | Low yields for electron-poor ArNH2 | [69] |
12 | SSA | SPB; CTAB, 60 °C | Electron-rich ArNH2 | Low yields for electron-poor ArNH2 | [70] |
13 | none | Dimethyldioxirane (from Oxone® and acetone), r.t. | ArNH2 and AlkNH2 | -- | [73,74] |
14 | none | Polystyrene-supported dioxirane; CH2Cl2, r.t. | Electron-rich and electron-poor ArNH2 | -- | [76] |
15 | MnSO4 | Oxone®; ∙H2O, r.t. | Mainly electron-rich ArNH2 | Lower yields for electron-poor ArNH2 | [77] |
16 | none | HOF∙MeCN; CH2Cl2, flow conditions | ArNH2 and AlkNH2 | -- | [81] |
17 | none | R4N+BrO3−; CH3CO2H, H2SO4, reflux | Electron-rich and electron-poor ArNH2 | -- | [84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Capperucci, A.; Tanini, D. Synthesis of Nitroarenes by Oxidation of Aryl Amines. Chemistry 2022, 4, 77-97. https://doi.org/10.3390/chemistry4010007
Capperucci A, Tanini D. Synthesis of Nitroarenes by Oxidation of Aryl Amines. Chemistry. 2022; 4(1):77-97. https://doi.org/10.3390/chemistry4010007
Chicago/Turabian StyleCapperucci, Antonella, and Damiano Tanini. 2022. "Synthesis of Nitroarenes by Oxidation of Aryl Amines" Chemistry 4, no. 1: 77-97. https://doi.org/10.3390/chemistry4010007
APA StyleCapperucci, A., & Tanini, D. (2022). Synthesis of Nitroarenes by Oxidation of Aryl Amines. Chemistry, 4(1), 77-97. https://doi.org/10.3390/chemistry4010007