Electronic Currents and Anapolar Response Induced in Molecules by Monochromatic Light
Abstract
:1. Introduction
2. Outline of Notation and Theoretical Methods
3. Current Density Approach to Anapolar Response Properties and Their Origin Dependence
4. Results and Discussion
5. Concluding Remarks and Outlook
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Pelloni, S.; Lazzeretti, P.; Monaco, G.; Zanasi, R. Magnetic-field induced electronic anapoles in small molecules. Rend. Lincei 2011, 22, 105–112. [Google Scholar] [CrossRef]
- Berger, R. Prediction of a Cyclic Helical Oligoacetylene Showing Anapolar Ring Currents in the Magnetic Field. Z. Naturforsch. 2012, 67, 1127–1131. [Google Scholar] [CrossRef]
- Tellgren, E.I.; Fliegl, H. Non-perturbative treatment of molecules in linear magnetic fields: Calculation of anapole susceptibilities. J. Chem. Phys. 2013, 139, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Pagola, G.I.; Ferraro, M.B.; Provasi, P.F.; Pelloni, S.; Lazzeretti, P. Theoretical estimates of the anapole magnetizabilities of C4H4X2 cyclic molecules for X=O, S, Se, and Te. J. Chem. Phys. 2014, 141, 094305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zarycz, N.; Provasi, P.F.; Pagola, G.I.; Ferraro, M.B.; Pelloni, S.; Lazzeretti, P. Computational study of basis set and electron correlation effects on anapole magnetizabilities of chiral molecules. J. Comp. Chem. 2016, 37, 1552–1558. [Google Scholar] [CrossRef] [PubMed]
- Reiter, K.; Weigend, F.; Wirz, L.N.; Dimitrova, M.; Sundholm, D. Magnetically Induced Current Densities in Toroidal Carbon Nanotubes. J. Phys. Chem. C 2019, 123, 15354–15365. [Google Scholar] [CrossRef] [Green Version]
- Orozco-Ic, M.; Dimitrova, M.; Barroso, J.; Sundholm, D.; Merino, G. Magnetically Induced Ring-Current Strengths of Planar and Nonplanar Molecules: New Insights from the Pseudo-π Model. J. Phys. Chem. A 2021, 125, 5753–5764. [Google Scholar] [CrossRef]
- Pagola, G.I.; Ferraro, M.B.; Provasi, P.F.; Pelloni, S.; Lazzeretti, P. Physical achirality in geometrically chiral rotamers of hydrazine and boranylborane molecules. J. Comp. Chem. 2021, 42, 1772. [Google Scholar] [CrossRef] [PubMed]
- Lazzeretti, P. Static and optical anapole magnetizabilities and polarizabilities. J. Chem. Phys. 2020, 153, 074102. [Google Scholar] [CrossRef]
- Nanz, S. Toroidal Multipole Moments in Classical Electrodynamics; Springer: Wiesbaden, Germany, 2016. [Google Scholar] [CrossRef]
- Langhoff, P.W.; Epstein, S.T.; Karplus, M. Aspects of Time-Dependent Perturbation Theory. Rev. Mod. Phys. 1972, 44, 602–644. [Google Scholar] [CrossRef]
- Lazzeretti, P. The abstract GPT and GCPT groups of discrete C, P and T symmetries. J. Mol. Spectrosc. 2017, 337, 178–184. [Google Scholar] [CrossRef]
- Born, M.; Oppenheimer, R. Zur Quantentheorie der Molekeln. Ann. Phys. 1927, 389, 457–484. [Google Scholar] [CrossRef]
- McWeeny, R. Methods of Molecular Quantum Mechanics, 2nd ed.; Theoretical Chemistry, OCLC: 247760584; Academic Press: London, UK, 1992. [Google Scholar]
- Bloch, F. Zur Wirkung äußerer elektromagnetischer Felder auf kleine Systeme. In W. Heisenberg und die Physik Unserer Zeit; Bopp, F., Ed.; Friedr. Wieveg & Son: Braunschweig, Germany, 1961; pp. 93–102. [Google Scholar]
- Lazzeretti, P. Gauge invariance and origin independence of electronic charge density and current density induced by optical fields. J. Chem. Phys. 2018, 149, 154106. [Google Scholar] [CrossRef]
- Göppert-Mayer, M. Über Elementarakte mit zwei Quantensprüngen. Ann. Phys. 1931, 401, 273–294. [Google Scholar] [CrossRef]
- Cohen-Tannoudji, C.; Dupont-Roc, J.; Grynberg, G. Photons and Atoms: Introduction to Quantum Electrodynamics; Wiley: New York, NY, USA, 1989. [Google Scholar]
- Jinger, R.K.; Fliegl, H.; Bast, R.; Dimitrova, M.; Lehtola, S.; Sundholm, D. Spatial Contributions to Nuclear Magnetic Shieldings. J. Phys. Chem. A 2021, 125, 1778–1786. [Google Scholar] [CrossRef] [PubMed]
- Lehtola, S.; Dimitrova, M.; Fliegl, H.; Sundholm, D. Benchmarking Magnetizabilities with Recent Density Functionals. J. Chem. Theory Comput. 2021, 17, 1457–1468. [Google Scholar] [CrossRef] [PubMed]
- Becke, A.D. A multicenter numerical integration scheme for polyatomic molecules. J. Chem. Phys. 1988, 88, 2547–2553. [Google Scholar] [CrossRef]
- Lebedev, V. A quadrature formula for the sphere of 59th algebraic order of accuracy. Dokl. Akad. Nauk 1994, 338, 454–456. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. (Eds.) Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables, 9th ed.; Dover Books on Mathematics; Dover Publ: New York, NY, USA, 2013. [Google Scholar]
- Lazzeretti, P. Frequency-dependent current density tensors as density functions of dynamic polarizabilities. J. Chem. Phys. 2019, 150, 184117. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.C.Y. Off–Diagonal Hypervirial Theorem and Its Applications. J. Chem. Phys. 1964, 40, 615–621. [Google Scholar] [CrossRef]
- Chong, D.P.; Benston, M.L. Off-Diagonal Hypervirial Theorems as Constraints. J. Chem. Phys. 1968, 49, 1302–1306. [Google Scholar] [CrossRef]
- Epstein, S.T. The Variation Method in Quantum Chemistry; Number v. 33 in Physical Chemistry, a Series of Monographs; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Summa, F.F.; Monaco, G.; Lazzeretti, P.; Zanasi, R. Assessment of the Performance of DFT Functionals in the Fulfillment of Off-Diagonal Hypervirial Relationships. Phys. Chem. Chem. Phys. 2021, 23, 15268–15274. [Google Scholar] [CrossRef]
- Moncrieff, D.; Wilson, S. On the accuracy of the algebraic approximation in molecular electronic structure calculations. III. Comparison of matrix Hartree-Fock and numerical Hartree-Fock calculations for the ground state of the nitrogen molecule. J. Phys. B At. Mol. Opt. Phys. 1993, 26, 1605. [Google Scholar] [CrossRef]
- Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007–1023. [Google Scholar] [CrossRef]
- Woon, D.E.; Dunning, T.H. Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties. J. Chem. Phys. 1994, 100, 2975–2988. [Google Scholar] [CrossRef] [Green Version]
- Kendall, R.A.; Dunning, T.H.; Harrison, R.J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96, 6796–6806. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, B.P.; Altarawy, D.; Didier, B.; Gibson, T.D.; Windus, T.L. New Basis Set Exchange: An Open, Up-to-Date Resource for the Molecular Sciences Community. J. Chem. Inf. Model. 2019, 59, 4814–4820. [Google Scholar] [CrossRef]
- Schuchardt, K.L.; Didier, B.T.; Elsethagen, T.; Sun, L.; Gurumoorthi, V.; Chase, J.; Li, J.; Windus, T.L. Basis Set Exchange: A Community Database for Computational Sciences. J. Chem. Inf. Model. 2007, 47, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Summa, F.F.; Monaco, G.; Zanasi, R.; Pelloni, S.; Lazzeretti, P. Electronic Currents Induced by Optical Fields and Rotatory Power Density in Chiral Molecules. Molecules 2021, 26, 4195. [Google Scholar] [CrossRef]
- Monaco, G.; Summa, F.F.; Zanasi, R. Program Package for the Calculation of Origin-Independent Electron Current Density and Derived Magnetic Properties in Molecular Systems. J. Chem. Inf. Model. 2021, 61, 270–283. [Google Scholar] [CrossRef]
- Pelloni, S.; Provasi, P.F.; Pagola, G.I.; Ferraro, M.B.; Lazzeretti, P. Electric Dipole–Magnetic Dipole Polarizability and Anapole Magnetizability of Hydrogen Peroxide as Functions of the HOOH Dihedral Angle. J. Phys. Chem. A 2017, 121, 9369–9376. [Google Scholar] [CrossRef] [PubMed]
−0.4788 | −0.1986 | 0.0441 | −0.1374 | −0.4130 | −0.3431 | |
0.0988 | 0.0992 | 0.0207 | −0.0136 | −0.1172 | −0.0107 | |
11.9998 | 1.6039 | 1.6039 | 17.7995 | 11.0560 | 13.6184 | |
11.9889 | 1.6014 | 1.6022 | 17.7779 | 11.0471 | 13.6046 | |
11.9889 | 1.6022 | 1.6014 | 17.7779 | 11.0471 | 13.6046 | |
11.9783 | 1.5997 | 1.5997 | 17.7566 | 11.0385 | 13.5911 | |
−0.0873 | −0.0006 | −0.1601 | 0.0157 | 0.0668 | −0.0016 | |
−0.0874 | −0.0006 | −0.1598 | 0.0157 | 0.0670 | −0.0016 |
R | P | |
---|---|---|
0.9771 | 0.9768 | |
0.2270 | 0.2283 | |
0.4920 | 0.4917 | |
0.9826 | 0.9806 | |
1.2897 | 1.2893 | |
1.0418 | 1.0395 | |
0.5711 | 0.5702 | |
0.8197 | 0.8202 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Summa, F.F.; Lazzeretti, P. Electronic Currents and Anapolar Response Induced in Molecules by Monochromatic Light. Chemistry 2021, 3, 1022-1036. https://doi.org/10.3390/chemistry3030073
Summa FF, Lazzeretti P. Electronic Currents and Anapolar Response Induced in Molecules by Monochromatic Light. Chemistry. 2021; 3(3):1022-1036. https://doi.org/10.3390/chemistry3030073
Chicago/Turabian StyleSumma, Francesco Ferdinando, and Paolo Lazzeretti. 2021. "Electronic Currents and Anapolar Response Induced in Molecules by Monochromatic Light" Chemistry 3, no. 3: 1022-1036. https://doi.org/10.3390/chemistry3030073
APA StyleSumma, F. F., & Lazzeretti, P. (2021). Electronic Currents and Anapolar Response Induced in Molecules by Monochromatic Light. Chemistry, 3(3), 1022-1036. https://doi.org/10.3390/chemistry3030073