Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (2)

Search Parameters:
Keywords = anapole-electric dipole polarizability

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 419 KiB  
Article
The Impact of Electric Currents on Majorana Dark Matter at Freeze Out
by Lukas Karoly and David C. Latimer
Universe 2025, 11(2), 66; https://doi.org/10.3390/universe11020066 - 14 Feb 2025
Viewed by 563
Abstract
Thermal relics with masses in the GeV to TeV range remain possible candidates for the Universe’s dark matter (DM). These neutral particles are often assumed to have vanishing electric and magnetic dipole moments so that they do not interact with single real photons, [...] Read more.
Thermal relics with masses in the GeV to TeV range remain possible candidates for the Universe’s dark matter (DM). These neutral particles are often assumed to have vanishing electric and magnetic dipole moments so that they do not interact with single real photons, but the anapole moment, a static electromagnetic property whose features are akin to that of a classical toroidal solenoid, can still be non-zero, permitting interactions with single virtual photons. In some models, DM predominantly annihilates into charged standard model particles through a p-wave process mediated by the anapole moment. The anapole moment is also responsible for another interaction of interest. If a DM medium were subjected to an electric current, a DM particle whose anapole moment was aligned with the current would have lower energy than the state with an antialigned anapole moment. Given these interactions, if a collection of initially unpolarized DM particles were subjected to an electric current, then the DM medium would become partially polarized, according to the Boltzmann distribution. In such a polarized medium, DM annihilation into photons, a subdominant s-wave process realizable through higher order interactions, would be somewhat suppressed. If the local electric current existed during a time in which the DM begins to drop out of thermal equilibrium with the rest of the Universe, the suppressed annihilation could lead to a small local excess in the relic DM density relative to a current-free region. This mechanism by which the local DM density can be perturbed is novel. Using effective interactions to model a DM particle’s anapole moment and polarizabilities (responsible for s-wave annihilation into two photons), we compute the changes in the DM density produced by long- and short-lived currents around freeze out. If we employ the most stringent constraints on DM annihilation into two photons, we find that long-lived currents can result in a fractional change in the DM density on the order of 1017 for DM masses around 100 GeV; for short-lived currents, this fractional change in local DM density is on the order of 1023 for the same DM mass. Full article
(This article belongs to the Section High Energy Nuclear and Particle Physics)
Show Figures

Figure 1

15 pages, 385 KiB  
Article
Electronic Currents and Anapolar Response Induced in Molecules by Monochromatic Light
by Francesco Ferdinando Summa and Paolo Lazzeretti
Chemistry 2021, 3(3), 1022-1036; https://doi.org/10.3390/chemistry3030073 - 5 Sep 2021
Cited by 4 | Viewed by 2136
Abstract
It is shown that the electric dipole- and electric quadrupole–anapole polarizabilities, denoted respectively by fαβ and gα,βγ, and the anapole magnetizability aαβ, are intrinsic properties of the electron cloud of molecules [...] Read more.
It is shown that the electric dipole- and electric quadrupole–anapole polarizabilities, denoted respectively by fαβ and gα,βγ, and the anapole magnetizability aαβ, are intrinsic properties of the electron cloud of molecules responding to optical fields. fαβ is a nonvanishing property of chiral and achiral compounds, whereas aαβ is suitable for enantiomer discrimination of chiral species. They can conveniently be evaluated by numerical integration, employing a formulation complementary to that provided by perturbation theory and relying on the preliminary computation of electronic current density tensors all over the molecular domain. The origin dependence of the dynamic anapolar response is rationalized via related computational techniques employing numerical integration, as well as definitions of molecular property tensors, for example, electric dipole and electric quadrupole polarizabilties and magnetizability. A preliminary application of the theory is reported for the Ra enantiomer of the hydrogen peroxide molecule, evaluating tensor components of electric dipole-anapole polarizability and anapole magnetizability as functions of the dihedral angle ϕ H-O-O-H in the range 0ϕ180. Full article
Show Figures

Figure 1

Back to TopTop