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Abstract: It is shown that the electric dipole- and electric quadrupole–anapole polarizabilities,
denoted respectively by f ′αβ and g′α,βγ, and the anapole magnetizability aαβ, are intrinsic properties
of the electron cloud of molecules responding to optical fields. f ′αβ is a nonvanishing property
of chiral and achiral compounds, whereas aαβ is suitable for enantiomer discrimination of chiral
species. They can conveniently be evaluated by numerical integration, employing a formulation
complementary to that provided by perturbation theory and relying on the preliminary computation
of electronic current density tensors all over the molecular domain. The origin dependence of
the dynamic anapolar response is rationalized via related computational techniques employing
numerical integration, as well as definitions of molecular property tensors, for example, electric
dipole and electric quadrupole polarizabilties and magnetizability. A preliminary application of
the theory is reported for the Ra enantiomer of the hydrogen peroxide molecule, evaluating tensor
components of electric dipole-anapole polarizability and anapole magnetizability as functions of the
dihedral angle φ ≡ ∠ H-O-O-H in the range 0◦ ≤ φ ≤ 180◦.

Keywords: anapole-electric dipole polarizability; anapole magnetizability; anapole-electric quadrupole
polarizability; electronic current densities induced by optical fields

1. Introduction

A time-independent magnetic field induces toroidal electron flow in chiral molecules [1–8],
giving rise to a static toroidal moment, which can be represented by a vector odd under
charge conjugation C, parity P and time reversal T. The optical fields associated with
a beam of monochromatic light, oscillating with frequency ω, also induce the anapolar
response, which can be rationalized in terms of dynamic anapole polarizabilities and
magnetizabilities [9].

The relevance of the anapolar response cannot be overemphasized after the advent of
metamaterials, containing meta-atoms endowed with strong toroidal moments, used in a
wide series of promising technological applications [10].

Within the electric quadrupole approximation, two second- and one third-rank tensors,
depending on ω, have been introduced [9], namely anapole-electric dipole polarizability
f ′αβ, anapole magnetizability aαβ, and anapole-electric quadrupole polarizability g′α,βγ.
Corresponding quantum-mechanical definitions have been reported within the framework
of time-dependent perturbation theory [11], and their magnitude, as well as fundamental
properties under C, P, and T symmetry operations [12], have been discussed. In particular,
the origin dependence of these tensors has been investigated, determining equations that
connect values corresponding to a passive translation of the coordinate system [9].

The present paper sets out to propose a derivation of f ′αβ, aαβ, and g′α,βγ alternative
to that arrived at via perturbation theory, allowing for optional definitions of quantum-
mechanical anapole moments in terms of electronic current densities induced by monochro-
matic light shining on a molecule. Instead of going along an earlier trodden path [9], our
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investigation aims to reconceptualize a few aspects of the anapolar response. In fact, this
novel approach is expected to throw light on fundamental physical mechanisms that come
into play in determining the anapolar feedback, as it preludes to future visualization of
current density vector fields, toroidal flow in particular.

The paper is organized as follows. An outline of notation is presented in Section 2 and
a short description of the theoretical methods employed to compute anapolar response
properties is provided in Section 3, introducing current density tensors which depend on
the frequency ω of a beam of monochromatic light radiating on a probe molecule. An
application of theoretical methods relying on induced current densities is discussed in
Section 4 and concluding remarks are made in Section 5.

2. Outline of Notation and Theoretical Methods

Within the Born–Oppenheimer (BO) approximation [13], for a molecule with n elec-
trons and N clamped nuclei, charge, mass, position and canonical momentum of the k-th
electron are indicated, in the configuration space, by −e, me, rk, p̂k, k = 1, 2, . . . , n, using
boldface letters for electronic vector operators. Analogous quantities for nucleus I are ZIe,
MI , RI , and so forth, for I = 1, 2, . . . , N.

The imaginary unit is represented by a Roman i. Throughout this paper, SI units are
used and standard tensor formalism is employed; for example, the Einstein convention of
implicit summation over two repeated Greek indices is applied. The third-rank Levi–Civita
pseudotensor is indicated by εαβγ. Capitals denote n-electron vector operators; for example,
for position, canonical and angular momentum,

R̂ =
n

∑
k=1

rk, P̂ =
n

∑
k=1

p̂k, L̂ =
n

∑
k=1

l̂k,

except for the electric and magnetic dipole,

µ̂ = −eR̂, (1)

m̂ = − e
2me

L̂. (2)

Electronic tensor operators are expressed, specifying the components; for example, for
the second-rank electric quadrupole operator

µ̂αβ = − e
2

n

∑
k=1

(
rαrβ

)
k, (3)

for the diamagnetic contribution to magnetizability,

ξ̂d
αβ = − e2

4me

n

∑
k=1

(
r2δαβ − rαrβ

)
k
, (4)

for the magnetic quadrupole operator in Hermitian form

m̂αβ = − e
6me

n

∑
k=1

(
l̂αrβ + rβ l̂α

)
k
, (5)

and for the paramagnetic contribution to the anapole operator
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âγ = −1
2

εαβγm̂αβ =
e

6me

n

∑
k=1

[(
r2δβγ − rβrγ

)
p̂β + ih̄rγ

]
k

=
e

12me

n

∑
k=1

[(
r2δβγ − rβrγ

)
p̂β + p̂β

(
r2δβγ − rβrγ

)]
k
. (6)

A “perturbed” operator, linearly dependent on an external magnetic field B, is defined
via the relation,

â′α = âα + âd
αβBβ, (7)

where the diamagnetic contribution is given by

âd
αβ =

e2

12me
εαβγ

n

∑
k=1

(
r2rγ

)
k
. (8)

Expressions for the polarization charge density and current density induced in the
electrons of a molecule by a monochromatic plane wave are obtained by time-dependent
quantum mechanical perturbation theory [11], assuming that the eigenvalue problem for
the time-independent BO electronic Hamiltonian Ĥ(0)Ψ(0)

j = E(0)
j Ψ(0)

j has been solved to

determine a set of eigenfunctions Ψ(0)
j and corresponding energy eigenvalues E(0)

j . The

reference (ground) state is indicated by Ψ(0)
a and the natural transition frequencies are

ωja =
(

E(0)
j − E(0)

a

)
/h̄.

A general definition of n-electron density matrices is used throughout this work
allowing for the McWeeny normalization [14],

γ
(
x1; x′1

)
= n

∫
Ψ(x1, X1)Ψ∗

(
x′1, X1

)
dX1. (9)

They are functions of electronic space-spin coordinates xk = rk ⊗ sk, k = 1, 2, . . . , n,
where

X1 ≡ {x2, . . . , xn}, X = {x1, X1}, dX1 ≡ {dx2, . . . , dxn}, (10)

thus, integrating over ds1, one gets from Equation (9),

γ(0)(r) ≡ γ(0)(r; r)

= n
∫

Ψ(0)
a (r, X1)Ψ

(0)∗
a (r, X1)dX1 (11)

for the reference (ground) state Ψ(0)
a of the molecule. The probability current density [14] is

obtained from Equations (9)–(11) for the density matrix,

j(r) =
1

me
<
[
π̂γ
(
r; r′
)]

r′=r , (12)

in which one puts r′ = r after operating with the electronic mechanical momentum

π̂ = p̂ + eA, (13)

adopting the Bloch gauge [15] for the vector potential A. The corresponding charge current
density is obtained multiplying by −e, that is, J = −ej. The interaction Hamiltonian
considered in the present work does not contain terms depending on electron spin, therefore
the probability current density Equation (12) includes only orbital contributions.
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3. Current Density Approach to Anapolar Response Properties and Their Origin Dependence

The time derivative of the electric field associated with a beam of monochromatic light
impinging on a molecule induces an electronic current density J Ė(r) [16]. A corresponding
current density tensor (CDT),

J Ėβ
α (r, ω) = − ne

meh̄ ∑
j 6=a

(
ω2

ja −ω2
)−1

×=
{〈

a
∣∣µ̂β

∣∣j〉 ∫ Ψ(0)?
j (r, X1) p̂αΨ(0)

a (r, X1)dX1

−
∫

Ψ(0)?
a (r, X1) p̂αΨ(0)

j (r, X1)dX1
〈

j
∣∣µ̂β

∣∣a〉}, (14)

to first order in the electric field, is obtained by differentiation,

J Ėβ
α (r, ω) =

∂JĖ
α (r, ω)

∂Ėβ
. (15)

Allowing for the long-wavelength approximation, only electric dipole terms are
retained within the Goeppert–Mayer interaction Hamiltonian [17,18]. The electric field
of the monochromatic wave is assumed spatially uniform, and Equation (14) defines a
quantity independent of the origin of the coordinate system.

The mixed anapole-electric dipole polarizability induced by the time derivative of the
electric field of monochromatic radiation can be cast in the form [9]

f ′αβ = −1
h̄ ∑

j 6=a

2ω

ω2
ja −ω2

=
{
〈a|âα|j〉

〈
j
∣∣µ̂β

∣∣a〉}
= −1

6
ω
∫ (

r2δαγ − rαrγ

)
J Ėβ

γ d3r. (16)

The interesting feature of Equation (16), and of analogous relationships (34) and (41),
is that they provide computational recipes alternative to the definitions determined by
Rayleigh–Schrödinger perturbation theory [9] by expressing them as integrals of current
density tensors. Thus anapole polarizabilities and magnetizability can be calculated by
numerical integration using standard methods [19,20]. In this work, spatial integration of
the density functions has been performed using the Becke scheme, Ref. [21] adopting 131
angular points for the Lebedev’s quadrature of 59th order of accuracy [22] and 131 radial
points for the Gauss–Chebyshev radial quadrature of the second-kind [23].

According to Equation (16), the behavior of the f ′αβ polarizability under the funda-
mental symmetries is different from that of the anapole magnetizability aαβ [5]. Whereas
the former is even under C, P and T, the latter is C- and T-even and P-odd, therefore only
aαβ can be used for chiral discrimination [9].

Since the CDT in Equation (14) is invariant under a translation of coordinates, the
origin dependence of f ′αβ is only due to the prefactor within brackets in Equation (16),
which will change in a passive transformation of reference system,

r′ → r′′ = r′ + d, (17)

corresponding to an arbitrary shift d of the origin. In fact, a simple calculation allowing
for the second identity of (16) shows that two different observers, at the origin of refer-
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ence systems K′ and K′′, would calculate, or measure, different anapole-electric dipole
polarizabilities related by

f ′αβ(r
′′) = f ′αβ(r

′) +
ω

3
dδ

∫
(rδ − r′δ)J

Ėβ
α d3r− ω

6
dα

∫
(rγ − r′γ)J

Ėβ
γ d3r

−ω

6
(d2δαγ − dαdγ)

∫
J Ėβ

γ d3r− ω

6
dγ

∫
(rα − r′α)J

Ėβ
γ d3r. (18)

The fourth term on the r.h.s. of Equation (18) is soon evaluated via Equation (90) of
Ref. [24], as the argument (14) of the integral

∫
J Ėβ

α (r, ω)d3r = α
(R,P)
βα =

e2

meh̄ ∑
j 6=a

2
ω2

ja −ω2
=
{〈

a
∣∣R̂β

∣∣j〉〈j
∣∣P̂α

∣∣a〉} (19)

defines an origin-independent density of dynamic electric dipole polarizability in the (R, P)
gauge, identical to that in the (R, R) and (P, P) gauges

α
(R,R)
αβ =

1
h̄ ∑

j 6=a

2ωja

ω2
ja −ω2

<
(
〈a|µ̂α|j〉

〈
j
∣∣µ̂β

∣∣a〉), (20)

α
(P,P)
αβ =

e2

m2
e h̄ ∑

j 6=a

2
ωja(ω

2
ja −ω2)

<
{〈

a
∣∣P̂α

∣∣j〉〈j
∣∣P̂β

∣∣a〉}, (21)

if the hypervirial theorem [25–27]〈
a
∣∣P̂α

∣∣j〉 = −imeωja
〈

a
∣∣R̂α

∣∣j〉, 〈
j
∣∣P̂α

∣∣a〉 = imeωja
〈

j
∣∣R̂α

∣∣a〉, (22)

is satisfied [28].
Calculation of the other integrals appearing in Equation (18) is greatly facilitated by

employing a general and quite effective relationship for the moments of total electronic cur-
rent density [24]. According to Equation (82) of that paper, to first-order in the perturbing
fields of the monochromatic wave,∫

rα J(1)β d3r =
d
dt

∆
〈
µ̂αβ

〉
+ εαβγ∆〈m̂γ〉. (23)

Within the algebraic approximation [29], right- and left-hand sides of Equation (23) are
expected to yield different numerical results, unless the basis set is close to completeness,
or flexible enough to provide accurate representation of R̂, P̂ and L̂ at the same time, and
to satisfy hypervirial theorems [25–27] to a good extent. In fact, the current density tensors
in Equations (14), (26) and (27) are expressed in terms of p̂, whereas ∆

〈
µ̂αβ

〉
is usually

evaluated within the dipole length gauge in Equation (28). Thus the degree to which the
equality (23) is fulfilled provides a measure of basis set quality.

This relationship is applied in Equation (18) by taking into account terms that depend
on the same perturbing fields at both sides. Therefore, within the electric quadrupole
approximation [16], it is properly used relaxing the long wave-length assumption, that is,
supposing that JĖ

β (r, ω) is not origin independent, since it varies according to the change
of electric field at different points within the molecular region,

Eβ

(
r′′
)
= Eβ

(
r′
)
+ dγEγβ. (24)

At any rate, in Equations (23) and (24), both the electric field gradient∇γEβ ≡ Eγβ and
the magnetic field of the impinging radiation are assumed to be spatially uniform all over
the molecular domain. They are coupled with the electric quadrupole and magnetic dipole
operators, respectively, within the interaction Hamiltonian. This amounts to considering
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also the current density vector fields induced by the gradient ∇Ė and the magnetic field B,
that is,

J(1)α = JĖ
α + J∇Ė

α + JB
α , (25)

in agreement with the electric quadrupole approximation.
The current density terms appearing in Equation (25) are taken into account introduc-

ing the corresponding CDTs [16],

J Ėβγ
α (r, ω) = − ne

meh̄ ∑
j 6=a

(
ω2

ja −ω2
)−1
=
{〈

a
∣∣µ̂βγ

∣∣j〉
×
∫

Ψ(0)∗
j (r, X1) p̂αΨ(0)

a (r, X1)dX1

−
∫

Ψ(0)∗
a (r, X1) p̂αΨ(0)

j (r, X1)dX1
〈

j
∣∣µ̂βγ

∣∣a〉}, (26)

and

J Bβ
α (r, ω) = − ne

meh̄ ∑
j 6=a

ωja

ω2
ja −ω2

×<
{〈

a
∣∣m̂β

∣∣j〉 ∫ Ψ(0)?
j (r, X1) p̂αΨ(0)

a (r, X1)dX1

+
∫

Ψ(0)?
a (r, X1) p̂αΨ(0)

j (r, X1)dX1
〈

j
∣∣m̂β

∣∣a〉}
− e2

2me
εαβγrγγ(0)(r). (27)

On the r.h.s. of Equation (23), the electric quadrupole induced in the electronic cloud
is expressed, within the electric quadrupole approximation, in terms of intrinsic tensor
properties; see Appendix A,

∆
〈
µ̂αβ

〉
= αγ,αβEγ + ααβ,γδEδγ − D′γ,αβ Ḃγω−1. (28)

An analogous expression is used for the induced magnetic dipole:

∆〈m̂α〉 = −κ′βαĖβω−1 + D′α,βγĖγβω−1 + ξαβBβ. (29)

From Equations (18) and (23), one finds∫
(rδ − r′δ)J

Ėβ
α d3r = αβ,δα(r′)− εδαγκ′βγ(r

′), (30)∫
(rγ − r′γ)J

Ėβ
γ d3r = αβ,γγ(r′), (31)∫

(rα − r′α)J
Ėβ

γ d3r = αβ,γα(r′)− εαγλκ′βλ(r
′), (32)

hence the relationship connecting the anapole polarizability f ′αβ for the different origins
becomes

f ′αβ

(
r′′
)

= f ′αβ

(
r′
)
− ω

6
αβγ

(
d2δαγ − dαdγ

)
+

1
2

κ′βδ

(
r′
)
εαγδdγ

+
ω

6
[
αβ,αγ

(
r′
)
dγ − αβ,γγ

(
r′
)
dα

]
, (33)

the same as that arrived at via a more complicated procedure [9], allowing for the translation
of operators (6) and (7). Thus the origin dependence of f ′αβ is fully determined by the
prefactor in round brackets in Equation (16).
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The mixed anapole-electric quadrupole polarizability induced by the time derivative
of the gradient Eγβ associated with the monochromatic beam [9] can be expressed in the
form:

g′α,βγ = −1
h̄ ∑

j 6=a

2ω

ω2
ja −ω2

=
{
〈a|âα|j〉

〈
j
∣∣µ̂βγ

∣∣a〉}
= −1

6
ω
∫ (

r2δαδ − rαrδ

)
J Ėβγ

δ d3r, (34)

even under C and T and odd under P, hence suitable for chiral recognition. A procedure
allowing for the second identity in Equation (34), analogous to that leading to (18), gives

g′α,βγ(r
′′) = g′α,βγ(r

′) +
ω

3
dε

∫
(rε − r′ε)J

Ėβγ
α d3r− ω

6
dα

∫
(rδ − r′δ)J

Ėβγ

δ d3r

−ω

6
(d2δαδ − dαdδ)

∫
J Ėβγ

δ d3r− ω

6
dδ

∫
(rα − r′α)J

Ėβγ

δ d3r. (35)

The integral in the fourth term on the r.h.s. of Equation (35) corresponds to the electric
dipole-electric quadrupole polarizability in the dipole velocity gauge [24]:∫

J Ėγβ
α (r, ω)d3r = α

(P)
α,βγ,= − e

meh̄ ∑
j 6=a

2
ω2

ja −ω2
=
{〈

a
∣∣µ̂βγ

∣∣j〉〈j
∣∣P̂α

∣∣a〉}, (36)

identical to that in the dipole length gauge, reported in the Appendix A, Equation (A1), if
the hypervirial theorem (22) is fulfilled.

From Equations (23), (28) and (29) one finds∫
(rε − r′ε)J

Ėβγ
α d3r = αβγ,εα(r′)− εεδαD′δ,βγ(r

′), (37)∫
(rδ − r′δ)J

Ėβγ

δ d3r = αβγ,δδ(r′), (38)∫
(rα − r′α)J

Ėβγ

δ d3r = αβγ,αδ(r′)− εαεδD′δ,βγ(r
′); (39)

then the relationship connecting the anapole-electric quadrupole polarizability g′α,βγ for
the different origins becomes:

g′α,βγ

(
r′′
)

= g′α,βγ

(
r′
)
− ω

6
αδ,βγ

(
r′
)(

d2δαδ − dαdδ

)
+

ω

6
[
αβγ,αδ

(
r′
)
dδ − αβγ,δδ

(
r′
)
dα

]
+

1
2

εαδεD′δ,βγ

(
r′
)
dε. (40)

Thus the prefactor within round brackets in Equation (34) yields only a few terms
linear and quadratic in the d shift, as shown by comparison with Equation (96) of Ref. [9].
Missing contributions would be recovered by coupling the prefactor to terms arising from

a change of origin of the J Ėβγ
α CDT. In fact, only the total first order current density (25) is

origin independent, whereas the three contributions on the r.h.s. interchange in a passive
transformation of the coordinate system [16].
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The anapole magnetizability is evaluated via a magnetic-field induced current density
tensor (27),

aγδ = −1
6

∫ (
r2δαγ − rαrγ

)
J Bδ

α d3r = ap
γδ + ad

γδ, (41)

ap
γδ(ω) =

1
h̄ ∑

j 6=a

2ωja

ω2
ja −ω2

<{〈a|âγ|j〉〈j|m̂δ|a〉}, (42)

ad
γδ = 〈a|âd

γδ|a〉, (43)

and a straightforward calculation using the first identity in Equation (41) for different
origins yields

aγδ(r′′) = aγδ(r′) +
1
3

dβ

∫
(rβ − r′β)J

Bδ
γ d3r− 1

6
dα

∫
(rγ − r′γ)J

Bδ
α d3r

−1
6

dγ

∫
(rα − r′α)J

Bδ
α d3r− 1

6
(d2δαγ − dαdγ)

∫
J Bδ

α d3r. (44)

The fifth term on the r.h.s. is expressed via the magnetic CDT (27), which is related to
a density of electric dipole-magnetic dipole polarizability [24],∫

J Bβ
α (r, ω)d3r = −ωκ′αβ, (45)

and the other integrals are calculated allowing for Equations (23), (28) and (29). Thus
one finds ∫

(rβ − r′β)J
Bδ

γ d3r = ωD′δ,βγ

(
r′
)
+ εβγλξλδ (46)∫

(rγ − r′γ)J
Bδ

α d3r = −ωD′δ,αγ

(
r′
)
+ εβγλξλδ (47)∫

(rα − r′α)J
Bδ

α d3r = −ωD′δ,αα

(
r′
)
, (48)

then the relationship connecting the anapole magnetizability aγδ for the different origins be-
comes

aγδ

(
r′′
)

= aγδ

(
r′
)
+

ω

6

[
dαD′δ,αγ

(
r′
)
− dγD′δ,αα

(
r′
)]

+
1
2

dβεβγλξλδ −
ω

6

(
d2δαγ − dαdγ

)
κ′αδ

(
r′
)
. (49)

Therefore, for the anapole magnetizability (41), only a few terms of those appearing in
Equation (93) of Ref. [9] are recovered, for the reasons explained in the discussion following
Equation (35).

For static anapole magnetizabilties, Equation (44) becomes [5]

aγδ

(
r′′
)
= aγδ

(
r′
)
+

1
2

εαβγξδαdβ, (50)

thus the trace aγγ is invariant of the origin for ω = 0. For a freely tumbling chiral molecule
in disordered media, the isotropic anapole moment induced in the direction of the static
magnetic field is ∆〈âα〉 = (1/3)aγγBα, whereas the isotropic magnetic dipole moment
induced by the curl of a static magnetic field B, that is, C = ∇× B, is ∆〈m̂α〉 = (1/3)aγγCα.

4. Results and Discussion

A preliminary test of the theoretical scheme outlined in Sections 2 and 3 has been
conducted on the hydrogen peroxide molecule, by computing the anapole-electric dipole
polarizability f ′αβ, Equation (16), and anapole magnetizability aαβ, Equation (41). The origin
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dependence of the former has been investigated via Equations (18) and (33), which account
for all the terms reported in a previous study [9].

Calculations have been carried out for the Ra enantiomer of H2O2 shown in Fig-
ure 1, evaluating both f ′αβ and aαβ tensor components as functions of the dihedral angle
φ = ∠ H-O-O-H, at the time dependent Hartree–Fock (TD-HF) level of theory, equiva-
lent to random-phase approximation (RPA), adopting a fairly large basis set, that is, the
uncontracted d-aug-cc-pVQZ [30–32] on hydrogen atoms and d-aug-cc-pVTZ [30–32] on
oxygen atoms. Both basis sets have been downloaded from BSE [33,34]. In our implemen-
tation, outlined in detail in a previous reference [35], transition amplitudes Sj and T j and
corresponding transition energies have been obtained by means of TD-HF calculations.
The complete procedure for computing frequency dependent anapole polarizabilities f ′αβ

and anapole magnetizabilities aαβ has been coded within the freely available SYSMOIC
program package [36].

z

x
y

Figure 1. Rα enantiomer of the hydrogen peroxide molecule.

The results obtained via numerical integration [21] of Equations (16) and (41) for two
wavelengths, λ = 355 nm and λ = 589.3 nm, are displayed in the interval 0◦ ≤ φ ≤ 180◦

in Figures 2 and 3 for the anapole polarizability and in Figures 4 and 5 for the anapole
magnetizability.
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Figure 2. Tensor components of anapole polarizability f ′αβ for the Rα enantiomer of the hydrogen
peroxide molecule computed at the TD-HF level by Equation (16) for λ = 355 nm, as a function of
the dihedral angle.
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Figure 3. Tensor components of anapole polarizability f ′αβ for the Rα enantiomer of the hydrogen
peroxide molecule at λ = 589.3 nm, as a function of the dihedral angle.

As can be observed in Figures 2 and 3, the f ′yy component and the isotropic value
f ′αα/3 of the anapole-electric dipole polarizability are nearly independent of the dihedral
angle φ ≡ ∠ H-O-O-H for both λ values, that is, insensitive to rotation about the O-O
bond, which nearly coincides with the y axis. Thus, the anapole moment induced in
the y direction by the time derivative of an electric field Ey does not appreciably change
on varying φ. The average anapole moment ∆〈â〉 = (1/3) f ′ααĖ is similarly unaffected
by rotation.
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Figure 4. Tensor components of anapole magnetizability aαβ for the Rα enantiomer of the hydrogen
peroxide molecule computed at the TD-HF level by Equation (41) for λ = 355 nm, as a function of
the dihedral angle.
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Figure 5. Tensor components of the anapole magnetizability aαβ for the Rα enantiomer of the
hydrogen peroxide molecule at λ = 589.3 nm, as a function of the dihedral angle.

Quite remarkably, the curves representing isotropic anapole magnetizability in Figures 4 and 5,
for the frequencies λ = 355 nm and λ = 589.3 nm, vanish in the proximity of a dihedral
angle φ ≈ 100◦. The presence of an accidental null value of aαα for a geometrically chiral
conformation of hydrogen peroxide, also observed in previous studies of its static anapole
magnetizability [37], is due to a different sign of diagonal components: axx is positive and
quite large for φ ≈ 100◦, offsetting the algebraic sum of ayy and azz.

A test of accuracy of computations is provided by results obtained via numerical
integration, reported in Table 1. The quality of the basis sets adopted, and of its ability
to give quite reliable representations of operators R̂, P̂ and L̂, is evident by comparison
of electric dipole polarizabilities ααβ in different gauges (R, R), (P, R) and (P, P), as well
as electric dipole-magnetic dipole polarizabilities κ′αβ in (R, L) and (P, L) formalisms:
computed tensor components are nearly coincident to three or more significant figures.

Table 1. Molecular tensors evaluated at λ = 589.3 nm, in atomic units.

xx xy yx yy zz Av

f ′αβ(r
′) −0.4788 −0.1986 0.0441 −0.1374 −0.4130 −0.3431

aαβ(r′) 0.0988 0.0992 0.0207 −0.0136 −0.1172 −0.0107

α
(R,R)
αβ (r′) 11.9998 1.6039 1.6039 17.7995 11.0560 13.6184

α
(R,P)
αβ (r′) 11.9889 1.6014 1.6022 17.7779 11.0471 13.6046

α
(P,R)
αβ (r′) 11.9889 1.6022 1.6014 17.7779 11.0471 13.6046

α
(P,P)
αβ (r′) 11.9783 1.5997 1.5997 17.7566 11.0385 13.5911

κ
′(R,L)
αβ (r′) −0.0873 −0.0006 −0.1601 0.0157 0.0668 −0.0016

κ
′(P,L)
αβ (r′) −0.0874 −0.0006 −0.1598 0.0157 0.0670 −0.0016

Conversion factor for f ′αβ: e2a4
0/h̄ = 1.908 750 473 × 10−45 F m4s−1; Conversion factor for aαβ: e2a3

0/me =

4.175 756 730× 10−39 J T−2m; Conversion factor for ααβ: e2a2
0/Eh = 1.648 777 273× 10−41 F m2

Conversion factor for κ′αβ: e2a3
0/h̄ = 3.607 015 578× 10−35 F m3s−1.
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A similar conclusion is arrived at by inspection of Table 2, reporting electric dipole-
electric quadrupole polarizability within dipole length (R) and dipole velocity (P) for-
malisms, Equations (36) and (A1).

Table 2. Mixed electric dipole-electric quadrupole polarizability within (R) and (P) formalisms, in
atomic units.

R P

αz,xx 0.9771 0.9768
αz,yy 0.2270 0.2283
αz,zz 0.4920 0.4917
αz,xy 0.9826 0.9806
αx,xz 1.2897 1.2893
αx,yz 1.0418 1.0395
αy,xz 0.5711 0.5702
αy,yz 0.8197 0.8202

The conversion factor is e2a3
0/Eh = 8.724 953 446× 10−52 F m3.

A further proof of the near Hartree–Fock accuracy of the present calculations is ob-
tained by comparing results from either side of Equation (23), fulfilling the off-diagonal
hypervirial relations (22) quite nicely. The electric dipole electric anapole f ′αβ tensor ob-
tained by the integration of Equation (18) in the origin r′′ = (1, 2, 3) is

f ′αβ(r
′′) =

−2.3952 −0.0103 0.5099
0.0559 −2.5953 0.7955
0.7178 1.6330 −1.1715

, (51)

virtually identical to that obtained via Equation (33),

f ′αβ(r
′′) =

−2.3952 −0.0104 0.5099
0.0560 −2.5955 0.7955
0.7177 1.6330 −1.1714

. (52)

A broad discussion about the off-diagonal hypervirial relationship, concerning their
fulfillment within incomplete basis sets, can be found in Ref. [28]. Quite small differences
among (R, R), (R, P) and (P, P) gauges should only be imputed to basis set quality and
not to the numerical integration method.

5. Concluding Remarks and Outlook

The numerical results, arrived at in the present study within the theoretical scheme
outlined in Section 3 and the discussion in Section 4, show that frequency dependent
anapolar properties of chiral and achiral molecules responding to monochromatic radiation
can be easily computed by simple relationships expressed in terms of induced electronic
current densities.

Analogous procedures were found to be applicable to study the origin dependence of
anapole polarizabilities and magnetizability.

The method proposed and implemented in the present work is an alternative to the
conventional formulation based on perturbation theory. It appears to be practical to apply
and is computationally more advantageous, since it avails itself of numerical integration,
and is quite easy to perform whenever three-dimensional grids of values are available
for the current density vector fields induced by the magnetic field, the time derivative of
the electric field and of the electric field gradient associated with the impinging radiation.
Visualizations of these current densities, which will be available in future investigations,
are expected to yield very useful tools for the rationalization of mechanisms coming into
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play and giving rise to the anapolar response of electrons in a molecule. Effects due to
electron correlation will also be investigated in future work.
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Appendix A

Electric dipole-electric quadrupole polarizability

αα,βγ =
1
h̄ ∑

j 6=a

2ωja

ω2
ja −ω2

<
(
〈a|µ̂α|j〉

〈
j
∣∣µ̂βγ

∣∣a〉). (A1)

Electric quadrupole-electric quadrupole polarizability

ααβ,γδ =
1
h̄ ∑

j 6=a

2ωja

ω2
ja −ω2

<
(〈

a
∣∣µ̂αβ

∣∣j〉〈j
∣∣µ̂γδ

∣∣a〉). (A2)

Magnetic dipole-electric quadrupole polarizability

D′α,βγ = −1
h̄ ∑

j 6=a

2ω

ω2
ja −ω2

=
(
〈a|m̂α|j〉

〈
j
∣∣µ̂βγ

∣∣a〉). (A3)

Electric dipole-magnetic dipole polarizability

κ′αβ = −1
h̄ ∑

j 6=a

2ω

ω2
ja −ω2

=
(
〈a|µ̂α|j〉

〈
j
∣∣m̂β

∣∣a〉). (A4)

Magnetizability, diamagnetic and paramagnetic contributions,

ξαβ = ξd
αβ + ξ

p
αβ, ξd

αβ =
〈

a
∣∣∣ξ̂d

αβ

∣∣∣a〉, (A5)

ξ
p
αβ =

1
h̄ ∑

j 6=a

2ωja

ω2
ja −ω2

<
(
〈a|m̂α|j〉

〈
j
∣∣m̂β

∣∣a〉). (A6)

Anapole-electric dipole polarizability

f ′αβ(ω) = −1
h̄ ∑

j 6=a

2ω

ω2
ja −ω2

=
{
〈a|âα|j〉

〈
j
∣∣µ̂β

∣∣a〉}. (A7)

Anapole-electric quadrupole polarizability

g′α,βγ(ω) = −1
h̄ ∑

j 6=a

2ω

ω2
ja −ω2

=
{
〈a|âα|j〉

〈
j
∣∣µ̂βγ

∣∣a〉}. (A8)
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Anapole magnetizability, paramagnetic and diamagnetic contributions:

ap
αβ =

1
h̄ ∑

j 6=a

2ωja

ω2
ja −ω2

<
(
〈a|âα|j〉

〈
j
∣∣m̂β

∣∣a〉), (A9)

ad
αβ =

〈
a
∣∣∣âd

αβ

∣∣∣a〉 =
e2

12me
εαβγ

〈
a

∣∣∣∣∣ n

∑
k=1

(
r2rγ

)
k

∣∣∣∣∣a
〉

, (A10)

aαβ = ap
αβ + ad

αβ. (A11)
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