QSAR Modelling of Peptidomimetic Derivatives towards HKU4-CoV 3CLpro Inhibitors against MERS-CoV
Abstract
:1. Introduction
2. Material and Methods
2.1. Data Set
2.2. Statistical Analysis
2.3. Validation of the QSAR Model
3. Results and Discussion
3.1. Principal Components Analysis (PCA)
3.2. Multiple Linear Regression (MLR)
R2 = 0.691; R2test = 0.794; R2adj = 0.636; MSE = 0.108; RMSE = 0.328; F = 12.549; Pr < 0.0001.
3.3. Y-Randomization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Memish, Z.A.; Zumla, A.I.; Al-Hakeem, R.F.; AlRabeeah, A.A.; Stephens, G.M. Family cluster of Middle East respiratory syndrome coronavirus infections. N. Engl. J. Med. 2013, 368, 2487–2494. [Google Scholar] [CrossRef]
- Zaki, A.M.; Boheemen, S.V.; Bestebroer, T.M.; Osterhaus, A.D.; Fouchier, R.A. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. N. Engl. J. Med. 2012, 367, 1814–1820. [Google Scholar] [CrossRef] [PubMed]
- Bermingham, A.; Chand, M.A.; Brown, C.S.; Aarons, E.; Tong, C.; Langrish, C.; Hoschler, K.; Brown, K.; Galiano, M.; Myers, R.; et al. Severe respiratory illness caused by a novel coronavirus, in a patient transferred to the United Kingdom from the Middle East, September 2012. Euro. Surveill 2012, 17, 20290. [Google Scholar] [PubMed]
- Sridhar, S.; Brouqui, P.; Parola, P.; Gautret, P. Imported cases of Middle East respiratory syndrome: An update. Travel Med. Infect Dis. 2015, 13, 106–109. [Google Scholar] [CrossRef] [PubMed]
- Bialek, R.; Allen, D.; Alvarado-Ramy, F.; Arthur, R.; Balajee, A.; Bell, D.; Best, S.; Blackmore, C.; Breakwell, L.; Cannons, A.; et al. First confirmed cases of Middle East respiratory syndrome coronavirus (MERS-CoV) infection in the United States, updated information on the epidemiology of MERS-CoV infection, and guidance for the public, clinicians, and public health authorities—May 2014. MMWR. Morb. Mortal. Wkly. Rep. 2014, 63, 431–436. [Google Scholar]
- World Health Organization WHO. Middle East Respiratory Syndrome Coronavirus (MERS-CoV). 2019. Available online: https://www.who.int/health-topics/middle-east-respiratory-syndrome-coronavirus-merscom (accessed on 9 March 2021).
- Haagmans, B.L.; Al Dhahiry, S.H.S.; Reusken, C.B.E.M.; Raj, V.S.; Galiano, M.; Myers, R.; Godeke, G.J.; Jonges, M.; Farag, E.; Diab, A.; et al. Middle East respiratory syndrome coronavirus in dromedary camels: An outbreak investigation. Lancet Infect. Dis. 2014, 14, 140–145. [Google Scholar] [CrossRef] [Green Version]
- Sabir, J.S.M.; Lam, T.T.-Y.; Ahmed, M.M.M.; Li, L.; Shen, Y.; Abo-Aba, S.E.M.; Qureshi, M.I.; Abu-Zeid, M.; Zhang, Y.; Khiyami, M.A.; et al. Co-circulation of three camel coronavirus species and recombination of MERS-CoVs in Saudi Arabia. Science 2016, 351, 81–84. [Google Scholar] [CrossRef] [Green Version]
- Van den Brand, J.M.; Smits, S.L.; Haagmans, B.L. Pathogenesis of Middle East Respiratory Syndrome Coronavirus. J. Pathol. 2015, 235, 175–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, H.-J.; Shieh, C.-K.; Gorbalenya, A.E.; Koonin, E.V.; La Monica, N.; Tuler, J.; Bagdzhadzhyan, A.; Lai, M.M.C. The Complete Sequence (22 kilobases) of Murine Coronavirus Gene 1 Encoding the Putative Proteases and RNA Polymerase. Virology 1991, 180, 567–582. [Google Scholar] [CrossRef]
- Marra, M.A.; Jones, S.J.M.; Astell, C.R.; Holt, R.A.; Angela, B.W.; Butterfield, Y.S.N.; Jaswinder, K.; Asano, J.K.; Barber, S.A.; Chan, S.Y. The Genome Sequence of the SARS-Associated Coronavirus. Science 2003, 300, 1399–1404. [Google Scholar] [CrossRef] [Green Version]
- Woo, P.C.Y.; Huang, Y.; Lau, S.K.P.; Yuen, K.-Y. Coronavirus Genomics and Bioinformatics Analysis. Viruses 2010, 2, 1804–1820. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- St John, S.E.; Tomar, S.; Stauffer, S.R.; Mesecar, A.D. Targeting Zoonotic Viruses: Structure-Based Inhibition of the 3C-Like Protease from Bat Coronavirus HKU4-The Likely Reservoir Host to the Human Coronavirus that Causes Middle East Respiratory Syndrome (MERS). Bioorg. Med. Chem. 2015, 23, 6036–6048. [Google Scholar] [CrossRef]
- Ratia, K.; Saikatendu, K.S.; Santarsiero, B.D.; Barretto, N.; Baker, S.C.; Stevens, R.C.; Mesecar, A.D. Severe Acute Respiratory Syndrome Coronavirus Papain-Like Protease: Structure of a Viral Deubiquitinating Enzyme. Proc. Natl. Acad. Sci. USA 2006, 103, 5717–5722. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Chen, L.; Tan, J.; Chen, J.; Du, L.; Sun, T.; Shen, J.; Chen, K.; Jiang, H.; Shen, X. Severe Acute Respiratory Syndrome Coronavirus 3C-Like Proteinase N Terminus is Indispensable for Proteolytic Activity but not for Enzyme Dimerization. Biochemical and Thermodynamic Investigation in Conjunction with Molecular Dynamics Simulations. J. Biol. Chem. 2005, 280, 164–173. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojdyla, J.A.; Manolaridis, I.; van Kasteren, P.B.; Kikkert, M.; Snijder, E.J.; Gorbalenya, A.E.; Tucker, P.A. Papain-Like Protease 1 from Transmissible Gastroenteritis Virus: Crystal Structure and Enzymatic Activity toward Viral and Cellular Substrates. J. Virol. 2010, 84, 10063–10073. [Google Scholar] [CrossRef] [Green Version]
- Abuhammad, A.; Al-Aqtash, R.A.; Anson, B.J.; Mesecar, A.D.; Taha, M.O. Computational modeling of the bat HKU4 coronavirus 3CLpro inhibitors as a tool for the development of antivirals against the emerging Middle East respiratory syndrome (MERS) coronavirus. J. Mol. Recognit. 2017, 30, e2644. [Google Scholar] [CrossRef] [Green Version]
- Nantasenamat, C.; Isarankura-Na-Ayudhya, C.; Naenna, T.; Prachayasittikul, V. A practical overview of quantitative structure-activity relationship. J. Excli. 2009, 8, 74–88. [Google Scholar]
- Khan, A.U. Descriptors and their selection methods in QSAR analysis: Paradigm for drug design. Drug Discov. Today 2016, 21, 1291–1302. [Google Scholar]
- Toropova, A.P.; Toropov, A.A.; Benfenatia, E.; Leszczynska, D.; Leszczynski, J. QSAR model as a random event: A case of rat toxicity. Bioorg. Med. Chem. 2015, 23, 1223–1230. [Google Scholar] [CrossRef]
- Chtita, S.; Belhassan, A.; Bakhouch, M.; Taourat, A.I.; Aouidate, A.; Belaidi, S.; Moutaabbid, M.; Belaaouad, S.; Bouachrine, M.; Lakhlifi, T. QSAR study of unsymmetrical aromatic disulfides as potent avian SARS-CoV main protease inhibitors using quantum chemical descriptors and statistical methods. Chemo. Intel. Lab. Syst. 2021, 210, 104266. [Google Scholar] [CrossRef]
- Chtita, S.; Aouidate, A.; Belhassan, A.; Ousaa, A.; Taourati, A.I.; Elidrissi, B.; Ghamali, M.; Bouachrine, M.; Lakhlifi, T. QSAR study of N -substituted Oseltamivir derivatives as potent avian influenza virus H5N1 inhibitors using quantum chemical descriptors and statistical methods. New J. Chem. 2020, 44, 1747–1760. [Google Scholar] [CrossRef]
- XLSTAT Software. 2020. Available online: http://www.xlstat.com (accessed on 9 March 2021).
- Veerasamy, R.; Rajak, H.; Jain, A.; Sivadasan, S.; Varghese, C.; Agrawal, R. Validation of QSAR Models—Strategies and Importance. Int. J. Drug Disc. 2011, 2, 511–519. [Google Scholar]
- Muhammad, U.; Uzairu, A.; Arthur, D.E. Review on: Quantitative structure activity relationship (QSAR) modeling. J. Anal Pharm. Res. 2018, 7, 240–242. [Google Scholar] [CrossRef] [Green Version]
- Roy, K.; Mitra, I.; Kar, S.; Ojha, P.K.; Das, R.N.; Kabir, H. Comparative Studies on some metrics for external validation of QSAR model. J. Chem. Inf. Mdel. 2012, 52, 396–408. [Google Scholar] [CrossRef]
- Rücker, C.; Rücker, G.; Meringer, M. Y-Randomization and Its Variants in QSPR/QSAR. J. Chem. Inf. Model. 2007, 47, 2345–2357. [Google Scholar] [CrossRef] [PubMed]
- Pravin Ambure of Drug Theoretics & Cheminformatics (DTC) Laboratory; Jadavpur University: Kolkata, India, 2013.
- Chtita, S.; Belhassan, A.; Aouidate, A.; Belaidi, S.; Bouachrine, M.; Lakhlifi, T. Discovery of Potent SARS-CoV-2 Inhibitors from Approved Antiviral Drugs via Docking Screening. Comb. Chem. High Throughput Screen. 2020, 23, 441–454. [Google Scholar]
N° | R1 | R2 | R3 | R4 | pIC50 |
---|---|---|---|---|---|
1 | H | 6.48 | |||
2 | H | 6.39 | |||
3 | H | 5.92 | |||
4 | H | 5.92 | |||
5 | H | 5.82 | |||
6 | H | 5.80 | |||
7 | H | 5.77 | |||
8 | H | 5.77 | |||
9 | H | 5.70 | |||
10 | H | 5.66 | |||
11 | H | 5.62 | |||
12 | H | 5.55 | |||
13 | H | 5.51 | |||
14 | H | 5.51 | |||
15 | H | 5.43 | |||
16 | -NH-CH3 | H | 5.32 | ||
17 | H | 5.28 | |||
18 | H | 5.06 | |||
19 | H | 4.80 | |||
20 | 5.89 | ||||
21 | 5.82 | ||||
22 | 5.74 | ||||
23 | 5.66 | ||||
24 | 5.66 | ||||
25 | 5.57 | ||||
26 | 5.47 | ||||
27 | -OCH2F | 5.41 | |||
28 | 5.38 | ||||
29 | -CH(CH3)2 | 5.16 | |||
30 | 5.15 | ||||
31 | 5.07 | ||||
32 | -I | 5.02 | |||
33 | 4.83 | ||||
34 | 4.81 | ||||
35 | 4.76 | ||||
36 | 4.74 | ||||
37 | 4.73 | ||||
38 | -NH2 | 4.66 | |||
39 | 4.45 | ||||
40 | 4.28 | ||||
41 | 4.25 |
N° | pIC50 Exp. | MLR | ||
---|---|---|---|---|
pIC50 Pred. | Res. | |||
Training set | 1 | 6.481 | 6.238 | 0.243 |
2 | 6.387 | 6.181 | 0.206 | |
3 | 5.921 | 5.587 | 0.334 | |
4 | 5.921 | 5.830 | 0.091 | |
5 | 5.824 | 5.763 | 0.061 | |
6 | 5.796 | 5.496 | 0.299 | |
7 | 5.770 | 5.892 | −0.123 | |
8 | 5.721 | 5.570 | 0.151 | |
9 | 5.699 | 5.787 | −0.088 | |
10 | 5.658 | 5.677 | −0.020 | |
12 | 5.553 | 5.736 | −0.183 | |
13 | 5.509 | 5.555 | −0.047 | |
14 | 5.509 | 5.505 | 0.004 | |
15 | 5.432 | 5.452 | −0.021 | |
17 | 5.276 | 5.772 | −0.496 | |
18 | 5.056 | 5.305 | −0.249 | |
19 | 4.796 | 5.127 | −0.331 | |
21 | 5.824 | 5.519 | 0.305 | |
22 | 5.745 | 4.933 | 0.812 | |
23 | 5.658 | 5.632 | 0.026 | |
24 | 5.658 | 5.228 | 0.430 | |
28 | 5.377 | 5.315 | 0.062 | |
29 | 5.161 | 5.278 | −0.117 | |
30 | 5.155 | 5.531 | −0.376 | |
31 | 5.066 | 4.943 | 0.123 | |
32 | 5.022 | 4.954 | 0.069 | |
33 | 4.833 | 4.775 | 0.058 | |
34 | 4.812 | 4.252 | 0.561 | |
35 | 4.764 | 4.875 | −0.111 | |
36 | 4.738 | 4.906 | −0.168 | |
37 | 4.728 | 4.811 | −0.083 | |
38 | 4.658 | 5.070 | −0.412 | |
40 | 4.281 | 4.927 | −0.646 | |
41 | 4.255 | 4.618 | −0.363 | |
Test set | 11 | 5.620 | 5.763 | −0.144 |
16 | 5.319 | 5.060 | 0.259 | |
20 | 5.886 | 4.269 | 1.617 | |
25 | 5.569 | 4.851 | 0.717 | |
26 | 5.469 | 5.640 | −0.171 | |
27 | 5.409 | 4.926 | 0.483 | |
39 | 4.449 | 7.521 | −3.073 |
Random Models | Model Original | ||
---|---|---|---|
R | 0.380 | R | 0.831 |
R2 | 0.157 | R2 | 0.691 |
Q2 | 0.278 | Q2 | 0.528 |
CRP2 | 0.614 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hammoudan, I.; Matchi, S.; Bakhouch, M.; Belaidi, S.; Chtita, S. QSAR Modelling of Peptidomimetic Derivatives towards HKU4-CoV 3CLpro Inhibitors against MERS-CoV. Chemistry 2021, 3, 391-401. https://doi.org/10.3390/chemistry3010029
Hammoudan I, Matchi S, Bakhouch M, Belaidi S, Chtita S. QSAR Modelling of Peptidomimetic Derivatives towards HKU4-CoV 3CLpro Inhibitors against MERS-CoV. Chemistry. 2021; 3(1):391-401. https://doi.org/10.3390/chemistry3010029
Chicago/Turabian StyleHammoudan, Imad, Soumaya Matchi, Mohamed Bakhouch, Salah Belaidi, and Samir Chtita. 2021. "QSAR Modelling of Peptidomimetic Derivatives towards HKU4-CoV 3CLpro Inhibitors against MERS-CoV" Chemistry 3, no. 1: 391-401. https://doi.org/10.3390/chemistry3010029
APA StyleHammoudan, I., Matchi, S., Bakhouch, M., Belaidi, S., & Chtita, S. (2021). QSAR Modelling of Peptidomimetic Derivatives towards HKU4-CoV 3CLpro Inhibitors against MERS-CoV. Chemistry, 3(1), 391-401. https://doi.org/10.3390/chemistry3010029