Polyvinylpyrrolidone-Stabilized Iridium Nanoparticles Catalyzed the Transfer Hydrogenation of Nitrobenzene Using Formic Acid as the Source of Hydrogen
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amini, B.; Lowenkron, S. Aniline and Its Derivatives. In Kirk-Othmer Encyclopedia of Chemical Technology; Ley, C., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 2003; Volume 2, pp. 783–800. [Google Scholar]
- USEPA. Methylene Diphenyl Diisocyanate (MDI) and Related Compounds Action Plan; USEPA: Washington, DC, USA, 2011.
- Parod, R.J. Diphenylmethane Diisocyanate (MDI), 4,4′. In Encyclopedia of Toxicology; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 1–5. [Google Scholar]
- Kurti, L.; Czako, B. Strategic Applications of Named Reactions in Organic Synthesis; Elsevier Academic Press: Burlington, NJ, USA, 2005. [Google Scholar]
- Hammond, C.N.; Schatz, P.F.; Mohrig, J.R.; Davidson, T.A. Synthesis and Hydrogenation of Disubstituted Chalcones. A Guided-Inquiry Organic Chemistry Project. J. Chem. Educ. 2009, 86, 234–239. [Google Scholar] [CrossRef]
- Ramirez Côté, C.; Ciriminna, R.; Pandarus, V.; Béland, F.; Pagliaro, M. Comparing the Pyrophoricity of Palladium Catalysts for Heterogeneous Hydrogenation. Org. Process Res. Dev. 2018, 22, 1852–1855. [Google Scholar] [CrossRef]
- Moreno, T.; García-Serna, J.; Plucinski, P.; Sánchez-Montero, M.J.; Cocero, M.J. Direct Synthesis of H2O2 in Methanol at Low Pressures Over Pd/C Catalyst: Semi-Continuous Process. Appl. Catal. A 2010, 386, 28–33. [Google Scholar] [CrossRef]
- Mirza, N.R.; Degenkolbe, S.; Witt, W. Analysis of Hydrogen Incidents to Support Risk Assessment. Int. J. Hydrog. Energy 2011, 36, 12068–12077. [Google Scholar] [CrossRef]
- Dorofeev, S.B.; Kochurko, A.S.; Efimenko, A.A.; Chaivanov, B.B. Evaluation of the Hydrogen Explosion Hazard. Nucl. Eng. Des. 1994, 148, 305–316. [Google Scholar] [CrossRef]
- IEA Energy Technology Essentials: Hydrogen Production & Distribution; International Energy Agency: Paris, France, 2007.
- Felpin, F.-X.; Fouquet, E. A Useful, Reliable and Safer Protocol for Hydrogenation and the Hydrogenolysis of O-Benzyl Groups: The In Situ Preparation of an Active Pd°/C Catalyst with Well-Defined Properties. Chem. Eur. J. 2010, 16, 12440–12445. [Google Scholar] [CrossRef]
- Wang, D.; Astruc, D. The Golden Age of Transfer Hydrogenation. Chem. Rev. 2015, 115, 6621–6686. [Google Scholar] [CrossRef]
- Hammond, C.; Schümperli, M.T.; Conrad, S.; Hermans, I. Hydrogen Transfer Processes Mediated by Supported Iridium Oxide Nanoparticles. ChemCatChem 2013, 5, 2983–2990. [Google Scholar] [CrossRef]
- Hillier, A.C.; Lee, H.M.; Stevens, E.D.; Nolan, S.P. Cationic Iridium Complexes Bearing Imidazol-2-ylidene Ligands as Transfer Hydrogenation Catalysts. Organometallics 2001, 20, 4246–4252. [Google Scholar] [CrossRef]
- Campos, J.S.; Sharninghausen, L.S.; Manas, M.G.; Crabtree, R.H. Methanol Dehydrogenation by Iridium N-Heterocyclic Carbene Complexes. Inorg. Chem. 2015, 54, 5079–5084. [Google Scholar] [CrossRef]
- Wang, D.; Deraedt, C.; Ruiz, J.; Astruc, D. Sodium Hydroxide-Catalyzed Transfer Hydrogenation of Carbonyl Compounds and Nitroarenes Using Ethanol or Isopropanol as Both Solvent and Hydrogen Donor. J. Mol. Catal. A Chem. 2015, 400, 14–21. [Google Scholar] [CrossRef]
- Sabater, S.; Mata, J.A.; Peris, E. Dual Catalysis with an IrIII–AuI Heterodimetallic Complex: Reduction of Nitroarenes by Transfer Hydrogenation using Primary Alcohols. Chem. Eur. J. 2012, 18, 6380–6385. [Google Scholar] [CrossRef]
- Cheng, S.; Meng, X.; Shang, N.; Gao, S.; Feng, C.; Wang, C.; Wang, Z. Pd Supported on g-C3N4 Nanosheets: Mott-Schottky Heterojunction Catalyst for Transfer Hydrogenation of Nitroarenes Using Formic Acid as Hydrogen Source. New J. Chem. 2018, 42, 1771–1778. [Google Scholar] [CrossRef]
- Neeli, C.K.P.; Puthiaraj, P.; Lee, Y.-R.; Chung, Y.-M.; Baeck, S.-H.; Ahn, W.-S. Transfer Hydrogenation of Nitrobenzene to Aniline in Water Using Pd Nanoparticles Immobilized on Amine-Functionalized UiO-66. Catal. Today 2018, 303, 227–234. [Google Scholar] [CrossRef]
- Tuteja, J.; Nishimura, S.; Ebitani, K. Base-free Chemoselective Transfer Hydrogenation of Nitroarenes to Anilines with Formic Acid as Hydrogen Source by a Reusable Heterogeneous Pd/ZrP Catalyst. RSC Adv. 2014, 4, 38241–38249. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, X.; Zhou, X.; Gao, S.; Shang, N.; Feng, C.; Wang, C. Ultrafine Pd Nanoparticles Anchored on Nitrogen-Doping Carbon for Boosting Catalytic Transfer Hydrogenation of Nitroarenes. ACS Omega 2018, 3, 10843–10850. [Google Scholar] [CrossRef]
- Duan, Y.; Song, T.; Dong, X.; Yang, Y. Enhanced Catalytic Performance of Cobalt Nanoparticles Coated with a N,P-Codoped Carbon Shell Derived from Biomass for Transfer Hydrogenation of Functionalized Nitroarenes. Green Chem. 2018, 20, 2821–2828. [Google Scholar] [CrossRef]
- Guo, H.; Gao, R.; Sun, M.; Guo, H.; Wang, B.; Chen, L. Cobalt Entrapped in N,S-Codoped Porous Carbon: Catalysts for Transfer Hydrogenation with Formic Acid. ChemSusChem 2019, 12, 487–494. [Google Scholar] [CrossRef]
- Yuan, M.; Long, Y.; Yang, J.; Hu, X.; Xu, D.; Zhu, Y.; Dong, Z. Biomass Sucrose-Derived Cobalt@Nitrogen-Doped Carbon for Catalytic Transfer Hydrogenation of Nitroarenes with Formic Acid. ChemSusChem 2018, 11, 4156–4165. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, P.; Zhang, H.-Y.; Yin, G.; Zhao, J. Cobalt Nanoparticles Anchoring on Nitrogen Doped Carbon with Excellent Performances for Transfer Hydrogenation of Nitrocompounds to Primary Amines and N-substituted Formamides with Formic Acid. Catal. Commun. 2019, 129, 105747. [Google Scholar] [CrossRef]
- Wienhöfer, G.; Sorribes, I.; Boddien, A.; Westerhaus, F.; Junge, K.; Junge, H.; Llusar, R.; Beller, M. General and Selective Iron-Catalyzed Transfer Hydrogenation of Nitroarenes without Base. J. Am. Chem. Soc. 2011, 133, 12875–12879. [Google Scholar] [CrossRef] [PubMed]
- Grasemann, M.; Laurenczy, G. Formic Acid as a Hydrogen Source—Recent Developments and Future Trends. Energy Environ. Sci. 2012, 5, 8171–8181. [Google Scholar] [CrossRef]
- Polshettiwar, V.; Varma, R.S. Revisiting the Meerwein–Ponndorf–Verley Reduction: A Sustainable Protocol for Transfer Hydrogenation of Aldehydes and Ketones. Green Chem. 2009, 11, 1313–1316. [Google Scholar] [CrossRef]
- Zhou, M. Characterizations of Surface Ligands and Stabilizers on Metallic Nanoparticles. In Catalysis by Metal Complexes and Nanomaterials: Fundamentals and Applications; American Chemical Society: Washington, DC, USA, 2019; Volume 1317, pp. 103–133. [Google Scholar]
- Ott, L.S.; Finke, R.G. Transition-Metal Nanocluster Stabilization for Catalysis: A Critical Review of Ranking Methods and Putative Stabilizers. Coord. Chem. Rev. 2007, 251, 1075–1100. [Google Scholar] [CrossRef]
- Martínez-Prieto, L.M.; Chaudret, B. Organometallic Ruthenium Nanoparticles: Synthesis, Surface Chemistry, and Insights into Ligand Coordination. Acc. Chem. Res. 2018, 51, 376–384. [Google Scholar] [CrossRef]
- Campos, C.; Torres, C.; Oportus, M.; Pena, M.A.; Fierro, J.L.G.; Reyes, P. Hydrogenation of substituted aromatic nitrobenzenes over 1% 1.0 wt.% Ir/ZrO2 catalyst: Effect of Meta Position and Catalytic Performance. Catal. Today 2013, 213, 93–100. [Google Scholar] [CrossRef]
- Fan, G.-Y.; Zhang, L.; Fu, H.-Y.; Yuan, M.-L.; Li, R.-X.; Chen, H.; Li, X.-J. Hydrous Zirconia Supported Iridium Nanoparticles: An Excellent Catalyst for the Hydrogenation of Haloaromatic Nitro Compounds. Catal. Commun. 2010, 11, 451–455. [Google Scholar] [CrossRef]
- Jiang, H.-Y.; Xu, J.; Sun, B. Selective Hydrogenation of Aromatic Compounds Using Modified Iridium Nanoparticles. Appl. Organomet. Chem. 2018, 32, e4260. [Google Scholar] [CrossRef]
- Li, H.-B.; Liu, L.; Ma, X.-Y. Effective Hydrogenation of Haloaromatic Nitro Compounds Catalysed by Iridium Nanoparticles Deposited on Multiwall Carbon Nanotubes. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2016, 46, 1499–1505. [Google Scholar] [CrossRef]
- Ma, L.; Wang, J.; Wang, H.; Zhang, Q.; Lu, C.; He, X.; Li, X. High Halogenated Nitrobenzene Hydrogenation Selectivity over Nano Ir and Pd Particles. Chin. J. Chem. Eng. 2017, 25, 306–312. [Google Scholar] [CrossRef]
- Motoyama, Y.; Taguchi, M.; Desmira, N.; Yoon, S.-H.; Mochida, I.; Nagashima, H. Chemoselective Hydrogenation of Functionalized Nitroarenes and Imines by Using Carbon Nanofiber-Supported Iridium Nanoparticles. Chem. Asian J. 2014, 9, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Tamura, M.; Kenichi, K.; Satsuma, A.; Shimizu, K.-I. Volcano-Curves for Dehydrogenation of 2-Propanol and Hydrogenation of Nitrobenzene by SiO2-Supported Metal Nanoparticles Catalysts as Described in Terms of a d-Band Model. ACS Catal. 2012, 2, 1904–1909. [Google Scholar] [CrossRef]
- Goel, A.; Bhatt, R. Synthesis and Characterization of Nanoscale Colloidal Iridium Metal Clusters by Chemical Reduction Method Using Monohydric and Dihydric Alcohols. Int. J. Chem. Appl. 2012, 4, 111–121. [Google Scholar]
- Bonet, F.; Delmas, V.; Grugeon, S.; Herrera Urbina, R.; Silvert, P.Y.; Tekaia-Elhsissen, K. Synthesis of Monodisperse Au, Pt, Pd, Ru and Ir Nanoparticles in Ethylene Glycol. Nanostruct. Mater. 1999, 11, 1277–1284. [Google Scholar] [CrossRef]
- Freakley, S.J.; Ruiz-Esquius, J.; Morgan, D.J. The X-ray Photoelectron Spectra of Ir, IrO2 and IrCl3 Revisited. Surf. Interface Anal. 2017, 49, 794–799. [Google Scholar] [CrossRef]
- Zaman, A.C.; Kaya, C. Determination of Quantity of Materials in Suspensions and in Electrophoretic Coatings by UV-Visible Absorption Spectroscopy. J. Electrochem. Soc. 2015, 162, D3109–D3111. [Google Scholar] [CrossRef]
- Schrader, I.; Warneke, J.; Neumann, S.; Grotheer, S.; Swane, A.A.; Kirkensgaard, J.J.K.; Arenz, M.; Kunz, S. Surface Chemistry of “Unprotected” Nanoparticles: A Spectroscopic Investigation on Colloidal Particles. J. Phys. Chem. C 2015, 119, 17655–17661. [Google Scholar] [CrossRef]
- Palo, D.R.; Dagle, R.A.; Holladay, J.D. Methanol Steam Reforming for Hydrogen Production. Chem. Rev. 2007, 107, 3992–4021. [Google Scholar] [CrossRef]
- Aboo, A.H.; Bennett, E.L.; Deeprose, M.; Robertson, C.M.; Iggo, J.A.; Xiao, J. Methanol as Hydrogen Source: Transfer Hydrogenation of Aromatic Aldehydes with a Rhodacycle. Chem. Commun. 2018, 54, 11805–11808. [Google Scholar] [CrossRef]
- Reed-Berendt, B.G.; Mast, N.; Morrill, L.C. Manganese-Catalyzed One-Pot Conversion of Nitroarenes into N-Methylarylamines Using Methanol. Eur. J. Org. Chem. 2020, 2020, 1136–1140. [Google Scholar] [CrossRef] [Green Version]
- Xiang, Y.; Li, X.; Lu, C.; Ma, L.; Zhang, Q. Water-Improved Heterogeneous Transfer Hydrogenation Using Methanol as Hydrogen Donor over Pd-Based Catalyst. Appl. Catal. A 2010, 375, 289–294. [Google Scholar] [CrossRef]
- Conley, R.T. Infrared Spectroscopy, 2nd ed.; Allyn and Bacon: Boston, MA, USA, 1972. [Google Scholar]
- Korányi, T.I.; Mihály, J.; Pfeifer, É.; Németh, C.; Yuzhakova, T.; Mink, J. Infrared Emission and Theoretical Study of Carbon Monoxide Adsorbed on Alumina-Supported Rh, Ir, and Pt Catalysts. J. Phys. Chem. A 2006, 110, 1817–1823. [Google Scholar] [CrossRef] [PubMed]
- Shido, T.; Okazaki, T.; Ichikawa, M. EXAFS/FT-IR Characterization of Tetra-Iridium Carbonyl Clusters Bound to Tris-(Hydroxymethyl)Phosphine Grafted Silica Surface Catalytically Active for Propene Oxidation to Acetone. J. Mol. Catal. A Chem. 1997, 120, 33–45. [Google Scholar] [CrossRef]
- Zhang, S.; Foyle, S.D.; Okrut, A.; Solovyov, A.; Katz, A.; Gates, B.C.; Dixon, D.A. Role of N-Heterocyclic Carbenes as Ligands in Iridium Carbonyl Clusters. J. Phys. Chem. A 2017, 121, 5029–5044. [Google Scholar] [CrossRef] [PubMed]
- Gelin, P.; Naccache, C.; Taarit, Y.B. Coordination Chemistry of Rhodium and Iridium in Constrained Zeolite Cavities: Methanol Carbonylation. Pure Appl. Chem. 1988, 60, 1315–1320. [Google Scholar] [CrossRef]
- Luo, Y.R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Imberdis, A.; Lefèvre, G.; Cantat, T. Transition-Metal-Free Acceptorless Decarbonylation of Formic Acid Enabled by a Liquid Chemical-Looping Strategy. Angew. Chem. Int. Ed. 2019, 58, 17215–17219. [Google Scholar] [CrossRef] [Green Version]
- Wakizaka, M.; Matsumoto, T.; Tanaka, R.; Chang, H.-C. Dehydrogenation of Anhydrous Methanol at Room Temperature by O-Aminophenol-Based Photocatalysts. Nat. Commun. 2016, 7, 12333. [Google Scholar] [CrossRef]
- Ruf, S.; May, A.; Emig, G. Anhydrous Formaldehyde by Sodium Catalysis. Appl. Catal. A 2001, 213, 203–215. [Google Scholar] [CrossRef]
- Raich, B.A.; Foley, H.C. Ethanol Dehydrogenation with a Palladium Membrane Reactor: An Alternative to Wacker Chemistry. Ind. Eng. Chem. Res. 1998, 37, 3888–3895. [Google Scholar] [CrossRef]
- Mooksuwan, W.; Kumar, S. Study on 2-Propanol/Acetone/Hydrogen Chemical Heat Pump: Endothermic Dehydrogenation of 2-Propanol. Int. J. Energy Res. 2000, 24, 1109–1122. [Google Scholar] [CrossRef]
- Davis, J.L.; Barteau, M.A. Decarbonylation and Decomposition Pathways of Alcohol’s on Pd(111). Surf. Sci. 1987, 187, 387–406. [Google Scholar] [CrossRef]
- Olsen, E.P.K.; Singh, T.; Harris, P.; Andersson, P.G.; Madsen, R. Experimental and Theoretical Mechanistic Investigation of the Iridium-Catalyzed Dehydrogenative Decarbonylation of Primary Alcohols. J. Am. Chem. Soc. 2015, 137, 834–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Orosz, K.; Papp, G.; Kathó, Á.; Joó, F.; Horváth, H. Strong Solvent Effects on Catalytic Transfer Hydrogenation of Ketones with [Ir(cod)(NHC)(PR3)] Catalysts in 2-Propanol-Water Mixtures. Catalysts 2020, 10, 17. [Google Scholar] [CrossRef] [Green Version]
- Pavlova, A.; Meijer, E.J. Understanding the Role of Water in Aqueous Ruthenium-Catalyzed Transfer Hydrogenation of Ketones. ChemPhysChem 2012, 13, 3492–3496. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, D.; Sprake, C.H.S.; Townsend, R. Thermodynamic Properties of Organic Oxygen Compounds XXXVII. Vapour Pressures of Methanol, Ethanol, Pentan-1-ol, and Octan-1-ol from the Normal Boiling Temperature to the Critical Temperature. J. Chem. Thermodyn. 1975, 7, 185–190. [Google Scholar] [CrossRef]
- Ruppert, A.M.; Jędrzejczyk, M.; Sneka-Płatek, O.; Keller, N.; Dumon, A.S.; Michel, C.; Sautet, P.; Grams, J. Ru Catalysts for Levulinic Acid Hydrogenation with Formic Acid as a Hydrogen Source. Green Chem. 2016, 18, 2014–2028. [Google Scholar] [CrossRef]
Entry | Solvent | Aniline Yield a | AZB Yield a | AZXB Yield a | Aniline to Dimer Selectivity | Recovered SM b | Mass Balance c |
1 | Ethanol | 5.30% | 1% | 7.10% | 0.65:1 | 7% | 29% |
2 | 2-propanol | 31% | 14% | 10% | 1.4:1 | 5% | 84% |
3 d | 2-propanol | 18% | 4% | 23% | 0.66:1 | 12% | 84% |
4 e | Methanol formic acid | 66% | <1% | <1% | >66:1 | 40% | 106% |
5 d,e,f | Methanol formic acid | <1% | <1% | 1% | N/A | 19 ± 1% | 22% |
Entry | Time (Hour/Minute) | Pressure (kg/cm2) | Temperature (°C) |
1 | 0:00 | 4 | 135 |
2 | 0:05 | 9 | 140 |
3 | 0:10 | 18 | 146 |
4 | 0:15 | 20 | 160 |
5 | 0:20 | 22 | 160 |
6 | 0:25 | 23 | 160 |
7 | 0:30 | 24 | 160 |
8 | 0:35 | 24 | 160 |
9 | 0:40 | 24 | 160 |
10 | 0:45 | 24 | 160 |
11 | 0:50 | 24 | 160 |
12 | 0:55 | 24 | 160 |
13 | 1:00 | 24 | 160 |
14 | 1:05 | 24 | 160 |
15 | 1:10 | 24 | 160 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Zhou, M. Polyvinylpyrrolidone-Stabilized Iridium Nanoparticles Catalyzed the Transfer Hydrogenation of Nitrobenzene Using Formic Acid as the Source of Hydrogen. Chemistry 2020, 2, 960-968. https://doi.org/10.3390/chemistry2040061
Zhou X, Zhou M. Polyvinylpyrrolidone-Stabilized Iridium Nanoparticles Catalyzed the Transfer Hydrogenation of Nitrobenzene Using Formic Acid as the Source of Hydrogen. Chemistry. 2020; 2(4):960-968. https://doi.org/10.3390/chemistry2040061
Chicago/Turabian StyleZhou, Xinrui, and Meng Zhou. 2020. "Polyvinylpyrrolidone-Stabilized Iridium Nanoparticles Catalyzed the Transfer Hydrogenation of Nitrobenzene Using Formic Acid as the Source of Hydrogen" Chemistry 2, no. 4: 960-968. https://doi.org/10.3390/chemistry2040061
APA StyleZhou, X., & Zhou, M. (2020). Polyvinylpyrrolidone-Stabilized Iridium Nanoparticles Catalyzed the Transfer Hydrogenation of Nitrobenzene Using Formic Acid as the Source of Hydrogen. Chemistry, 2(4), 960-968. https://doi.org/10.3390/chemistry2040061