Polyvinylpyrrolidone-Stabilized Iridium Nanoparticles Catalyzed the Transfer Hydrogenation of Nitrobenzene Using Formic Acid as the Source of Hydrogen
Abstract
1. Introduction
2. Results and Discussion
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amini, B.; Lowenkron, S. Aniline and Its Derivatives. In Kirk-Othmer Encyclopedia of Chemical Technology; Ley, C., Ed.; John Wiley and Sons: Hoboken, NJ, USA, 2003; Volume 2, pp. 783–800. [Google Scholar]
- USEPA. Methylene Diphenyl Diisocyanate (MDI) and Related Compounds Action Plan; USEPA: Washington, DC, USA, 2011.
- Parod, R.J. Diphenylmethane Diisocyanate (MDI), 4,4′. In Encyclopedia of Toxicology; Wexler, P., Ed.; Academic Press: Oxford, UK, 2014; pp. 1–5. [Google Scholar]
- Kurti, L.; Czako, B. Strategic Applications of Named Reactions in Organic Synthesis; Elsevier Academic Press: Burlington, NJ, USA, 2005. [Google Scholar]
- Hammond, C.N.; Schatz, P.F.; Mohrig, J.R.; Davidson, T.A. Synthesis and Hydrogenation of Disubstituted Chalcones. A Guided-Inquiry Organic Chemistry Project. J. Chem. Educ. 2009, 86, 234–239. [Google Scholar] [CrossRef]
- Ramirez Côté, C.; Ciriminna, R.; Pandarus, V.; Béland, F.; Pagliaro, M. Comparing the Pyrophoricity of Palladium Catalysts for Heterogeneous Hydrogenation. Org. Process Res. Dev. 2018, 22, 1852–1855. [Google Scholar] [CrossRef]
- Moreno, T.; García-Serna, J.; Plucinski, P.; Sánchez-Montero, M.J.; Cocero, M.J. Direct Synthesis of H2O2 in Methanol at Low Pressures Over Pd/C Catalyst: Semi-Continuous Process. Appl. Catal. A 2010, 386, 28–33. [Google Scholar] [CrossRef]
- Mirza, N.R.; Degenkolbe, S.; Witt, W. Analysis of Hydrogen Incidents to Support Risk Assessment. Int. J. Hydrog. Energy 2011, 36, 12068–12077. [Google Scholar] [CrossRef]
- Dorofeev, S.B.; Kochurko, A.S.; Efimenko, A.A.; Chaivanov, B.B. Evaluation of the Hydrogen Explosion Hazard. Nucl. Eng. Des. 1994, 148, 305–316. [Google Scholar] [CrossRef]
- IEA Energy Technology Essentials: Hydrogen Production & Distribution; International Energy Agency: Paris, France, 2007.
- Felpin, F.-X.; Fouquet, E. A Useful, Reliable and Safer Protocol for Hydrogenation and the Hydrogenolysis of O-Benzyl Groups: The In Situ Preparation of an Active Pd°/C Catalyst with Well-Defined Properties. Chem. Eur. J. 2010, 16, 12440–12445. [Google Scholar] [CrossRef]
- Wang, D.; Astruc, D. The Golden Age of Transfer Hydrogenation. Chem. Rev. 2015, 115, 6621–6686. [Google Scholar] [CrossRef]
- Hammond, C.; Schümperli, M.T.; Conrad, S.; Hermans, I. Hydrogen Transfer Processes Mediated by Supported Iridium Oxide Nanoparticles. ChemCatChem 2013, 5, 2983–2990. [Google Scholar] [CrossRef]
- Hillier, A.C.; Lee, H.M.; Stevens, E.D.; Nolan, S.P. Cationic Iridium Complexes Bearing Imidazol-2-ylidene Ligands as Transfer Hydrogenation Catalysts. Organometallics 2001, 20, 4246–4252. [Google Scholar] [CrossRef]
- Campos, J.S.; Sharninghausen, L.S.; Manas, M.G.; Crabtree, R.H. Methanol Dehydrogenation by Iridium N-Heterocyclic Carbene Complexes. Inorg. Chem. 2015, 54, 5079–5084. [Google Scholar] [CrossRef]
- Wang, D.; Deraedt, C.; Ruiz, J.; Astruc, D. Sodium Hydroxide-Catalyzed Transfer Hydrogenation of Carbonyl Compounds and Nitroarenes Using Ethanol or Isopropanol as Both Solvent and Hydrogen Donor. J. Mol. Catal. A Chem. 2015, 400, 14–21. [Google Scholar] [CrossRef]
- Sabater, S.; Mata, J.A.; Peris, E. Dual Catalysis with an IrIII–AuI Heterodimetallic Complex: Reduction of Nitroarenes by Transfer Hydrogenation using Primary Alcohols. Chem. Eur. J. 2012, 18, 6380–6385. [Google Scholar] [CrossRef]
- Cheng, S.; Meng, X.; Shang, N.; Gao, S.; Feng, C.; Wang, C.; Wang, Z. Pd Supported on g-C3N4 Nanosheets: Mott-Schottky Heterojunction Catalyst for Transfer Hydrogenation of Nitroarenes Using Formic Acid as Hydrogen Source. New J. Chem. 2018, 42, 1771–1778. [Google Scholar] [CrossRef]
- Neeli, C.K.P.; Puthiaraj, P.; Lee, Y.-R.; Chung, Y.-M.; Baeck, S.-H.; Ahn, W.-S. Transfer Hydrogenation of Nitrobenzene to Aniline in Water Using Pd Nanoparticles Immobilized on Amine-Functionalized UiO-66. Catal. Today 2018, 303, 227–234. [Google Scholar] [CrossRef]
- Tuteja, J.; Nishimura, S.; Ebitani, K. Base-free Chemoselective Transfer Hydrogenation of Nitroarenes to Anilines with Formic Acid as Hydrogen Source by a Reusable Heterogeneous Pd/ZrP Catalyst. RSC Adv. 2014, 4, 38241–38249. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, X.; Zhou, X.; Gao, S.; Shang, N.; Feng, C.; Wang, C. Ultrafine Pd Nanoparticles Anchored on Nitrogen-Doping Carbon for Boosting Catalytic Transfer Hydrogenation of Nitroarenes. ACS Omega 2018, 3, 10843–10850. [Google Scholar] [CrossRef]
- Duan, Y.; Song, T.; Dong, X.; Yang, Y. Enhanced Catalytic Performance of Cobalt Nanoparticles Coated with a N,P-Codoped Carbon Shell Derived from Biomass for Transfer Hydrogenation of Functionalized Nitroarenes. Green Chem. 2018, 20, 2821–2828. [Google Scholar] [CrossRef]
- Guo, H.; Gao, R.; Sun, M.; Guo, H.; Wang, B.; Chen, L. Cobalt Entrapped in N,S-Codoped Porous Carbon: Catalysts for Transfer Hydrogenation with Formic Acid. ChemSusChem 2019, 12, 487–494. [Google Scholar] [CrossRef]
- Yuan, M.; Long, Y.; Yang, J.; Hu, X.; Xu, D.; Zhu, Y.; Dong, Z. Biomass Sucrose-Derived Cobalt@Nitrogen-Doped Carbon for Catalytic Transfer Hydrogenation of Nitroarenes with Formic Acid. ChemSusChem 2018, 11, 4156–4165. [Google Scholar] [CrossRef]
- Zhang, Y.; Cao, P.; Zhang, H.-Y.; Yin, G.; Zhao, J. Cobalt Nanoparticles Anchoring on Nitrogen Doped Carbon with Excellent Performances for Transfer Hydrogenation of Nitrocompounds to Primary Amines and N-substituted Formamides with Formic Acid. Catal. Commun. 2019, 129, 105747. [Google Scholar] [CrossRef]
- Wienhöfer, G.; Sorribes, I.; Boddien, A.; Westerhaus, F.; Junge, K.; Junge, H.; Llusar, R.; Beller, M. General and Selective Iron-Catalyzed Transfer Hydrogenation of Nitroarenes without Base. J. Am. Chem. Soc. 2011, 133, 12875–12879. [Google Scholar] [CrossRef] [PubMed]
- Grasemann, M.; Laurenczy, G. Formic Acid as a Hydrogen Source—Recent Developments and Future Trends. Energy Environ. Sci. 2012, 5, 8171–8181. [Google Scholar] [CrossRef]
- Polshettiwar, V.; Varma, R.S. Revisiting the Meerwein–Ponndorf–Verley Reduction: A Sustainable Protocol for Transfer Hydrogenation of Aldehydes and Ketones. Green Chem. 2009, 11, 1313–1316. [Google Scholar] [CrossRef]
- Zhou, M. Characterizations of Surface Ligands and Stabilizers on Metallic Nanoparticles. In Catalysis by Metal Complexes and Nanomaterials: Fundamentals and Applications; American Chemical Society: Washington, DC, USA, 2019; Volume 1317, pp. 103–133. [Google Scholar]
- Ott, L.S.; Finke, R.G. Transition-Metal Nanocluster Stabilization for Catalysis: A Critical Review of Ranking Methods and Putative Stabilizers. Coord. Chem. Rev. 2007, 251, 1075–1100. [Google Scholar] [CrossRef]
- Martínez-Prieto, L.M.; Chaudret, B. Organometallic Ruthenium Nanoparticles: Synthesis, Surface Chemistry, and Insights into Ligand Coordination. Acc. Chem. Res. 2018, 51, 376–384. [Google Scholar] [CrossRef]
- Campos, C.; Torres, C.; Oportus, M.; Pena, M.A.; Fierro, J.L.G.; Reyes, P. Hydrogenation of substituted aromatic nitrobenzenes over 1% 1.0 wt.% Ir/ZrO2 catalyst: Effect of Meta Position and Catalytic Performance. Catal. Today 2013, 213, 93–100. [Google Scholar] [CrossRef]
- Fan, G.-Y.; Zhang, L.; Fu, H.-Y.; Yuan, M.-L.; Li, R.-X.; Chen, H.; Li, X.-J. Hydrous Zirconia Supported Iridium Nanoparticles: An Excellent Catalyst for the Hydrogenation of Haloaromatic Nitro Compounds. Catal. Commun. 2010, 11, 451–455. [Google Scholar] [CrossRef]
- Jiang, H.-Y.; Xu, J.; Sun, B. Selective Hydrogenation of Aromatic Compounds Using Modified Iridium Nanoparticles. Appl. Organomet. Chem. 2018, 32, e4260. [Google Scholar] [CrossRef]
- Li, H.-B.; Liu, L.; Ma, X.-Y. Effective Hydrogenation of Haloaromatic Nitro Compounds Catalysed by Iridium Nanoparticles Deposited on Multiwall Carbon Nanotubes. Synth. React. Inorg. Met. Org. Nano-Met. Chem. 2016, 46, 1499–1505. [Google Scholar] [CrossRef]
- Ma, L.; Wang, J.; Wang, H.; Zhang, Q.; Lu, C.; He, X.; Li, X. High Halogenated Nitrobenzene Hydrogenation Selectivity over Nano Ir and Pd Particles. Chin. J. Chem. Eng. 2017, 25, 306–312. [Google Scholar] [CrossRef]
- Motoyama, Y.; Taguchi, M.; Desmira, N.; Yoon, S.-H.; Mochida, I.; Nagashima, H. Chemoselective Hydrogenation of Functionalized Nitroarenes and Imines by Using Carbon Nanofiber-Supported Iridium Nanoparticles. Chem. Asian J. 2014, 9, 71–74. [Google Scholar] [CrossRef] [PubMed]
- Tamura, M.; Kenichi, K.; Satsuma, A.; Shimizu, K.-I. Volcano-Curves for Dehydrogenation of 2-Propanol and Hydrogenation of Nitrobenzene by SiO2-Supported Metal Nanoparticles Catalysts as Described in Terms of a d-Band Model. ACS Catal. 2012, 2, 1904–1909. [Google Scholar] [CrossRef]
- Goel, A.; Bhatt, R. Synthesis and Characterization of Nanoscale Colloidal Iridium Metal Clusters by Chemical Reduction Method Using Monohydric and Dihydric Alcohols. Int. J. Chem. Appl. 2012, 4, 111–121. [Google Scholar]
- Bonet, F.; Delmas, V.; Grugeon, S.; Herrera Urbina, R.; Silvert, P.Y.; Tekaia-Elhsissen, K. Synthesis of Monodisperse Au, Pt, Pd, Ru and Ir Nanoparticles in Ethylene Glycol. Nanostruct. Mater. 1999, 11, 1277–1284. [Google Scholar] [CrossRef]
- Freakley, S.J.; Ruiz-Esquius, J.; Morgan, D.J. The X-ray Photoelectron Spectra of Ir, IrO2 and IrCl3 Revisited. Surf. Interface Anal. 2017, 49, 794–799. [Google Scholar] [CrossRef]
- Zaman, A.C.; Kaya, C. Determination of Quantity of Materials in Suspensions and in Electrophoretic Coatings by UV-Visible Absorption Spectroscopy. J. Electrochem. Soc. 2015, 162, D3109–D3111. [Google Scholar] [CrossRef]
- Schrader, I.; Warneke, J.; Neumann, S.; Grotheer, S.; Swane, A.A.; Kirkensgaard, J.J.K.; Arenz, M.; Kunz, S. Surface Chemistry of “Unprotected” Nanoparticles: A Spectroscopic Investigation on Colloidal Particles. J. Phys. Chem. C 2015, 119, 17655–17661. [Google Scholar] [CrossRef]
- Palo, D.R.; Dagle, R.A.; Holladay, J.D. Methanol Steam Reforming for Hydrogen Production. Chem. Rev. 2007, 107, 3992–4021. [Google Scholar] [CrossRef]
- Aboo, A.H.; Bennett, E.L.; Deeprose, M.; Robertson, C.M.; Iggo, J.A.; Xiao, J. Methanol as Hydrogen Source: Transfer Hydrogenation of Aromatic Aldehydes with a Rhodacycle. Chem. Commun. 2018, 54, 11805–11808. [Google Scholar] [CrossRef]
- Reed-Berendt, B.G.; Mast, N.; Morrill, L.C. Manganese-Catalyzed One-Pot Conversion of Nitroarenes into N-Methylarylamines Using Methanol. Eur. J. Org. Chem. 2020, 2020, 1136–1140. [Google Scholar] [CrossRef]
- Xiang, Y.; Li, X.; Lu, C.; Ma, L.; Zhang, Q. Water-Improved Heterogeneous Transfer Hydrogenation Using Methanol as Hydrogen Donor over Pd-Based Catalyst. Appl. Catal. A 2010, 375, 289–294. [Google Scholar] [CrossRef]
- Conley, R.T. Infrared Spectroscopy, 2nd ed.; Allyn and Bacon: Boston, MA, USA, 1972. [Google Scholar]
- Korányi, T.I.; Mihály, J.; Pfeifer, É.; Németh, C.; Yuzhakova, T.; Mink, J. Infrared Emission and Theoretical Study of Carbon Monoxide Adsorbed on Alumina-Supported Rh, Ir, and Pt Catalysts. J. Phys. Chem. A 2006, 110, 1817–1823. [Google Scholar] [CrossRef] [PubMed]
- Shido, T.; Okazaki, T.; Ichikawa, M. EXAFS/FT-IR Characterization of Tetra-Iridium Carbonyl Clusters Bound to Tris-(Hydroxymethyl)Phosphine Grafted Silica Surface Catalytically Active for Propene Oxidation to Acetone. J. Mol. Catal. A Chem. 1997, 120, 33–45. [Google Scholar] [CrossRef]
- Zhang, S.; Foyle, S.D.; Okrut, A.; Solovyov, A.; Katz, A.; Gates, B.C.; Dixon, D.A. Role of N-Heterocyclic Carbenes as Ligands in Iridium Carbonyl Clusters. J. Phys. Chem. A 2017, 121, 5029–5044. [Google Scholar] [CrossRef] [PubMed]
- Gelin, P.; Naccache, C.; Taarit, Y.B. Coordination Chemistry of Rhodium and Iridium in Constrained Zeolite Cavities: Methanol Carbonylation. Pure Appl. Chem. 1988, 60, 1315–1320. [Google Scholar] [CrossRef]
- Luo, Y.R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Imberdis, A.; Lefèvre, G.; Cantat, T. Transition-Metal-Free Acceptorless Decarbonylation of Formic Acid Enabled by a Liquid Chemical-Looping Strategy. Angew. Chem. Int. Ed. 2019, 58, 17215–17219. [Google Scholar] [CrossRef]
- Wakizaka, M.; Matsumoto, T.; Tanaka, R.; Chang, H.-C. Dehydrogenation of Anhydrous Methanol at Room Temperature by O-Aminophenol-Based Photocatalysts. Nat. Commun. 2016, 7, 12333. [Google Scholar] [CrossRef]
- Ruf, S.; May, A.; Emig, G. Anhydrous Formaldehyde by Sodium Catalysis. Appl. Catal. A 2001, 213, 203–215. [Google Scholar] [CrossRef]
- Raich, B.A.; Foley, H.C. Ethanol Dehydrogenation with a Palladium Membrane Reactor: An Alternative to Wacker Chemistry. Ind. Eng. Chem. Res. 1998, 37, 3888–3895. [Google Scholar] [CrossRef]
- Mooksuwan, W.; Kumar, S. Study on 2-Propanol/Acetone/Hydrogen Chemical Heat Pump: Endothermic Dehydrogenation of 2-Propanol. Int. J. Energy Res. 2000, 24, 1109–1122. [Google Scholar] [CrossRef]
- Davis, J.L.; Barteau, M.A. Decarbonylation and Decomposition Pathways of Alcohol’s on Pd(111). Surf. Sci. 1987, 187, 387–406. [Google Scholar] [CrossRef]
- Olsen, E.P.K.; Singh, T.; Harris, P.; Andersson, P.G.; Madsen, R. Experimental and Theoretical Mechanistic Investigation of the Iridium-Catalyzed Dehydrogenative Decarbonylation of Primary Alcohols. J. Am. Chem. Soc. 2015, 137, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Orosz, K.; Papp, G.; Kathó, Á.; Joó, F.; Horváth, H. Strong Solvent Effects on Catalytic Transfer Hydrogenation of Ketones with [Ir(cod)(NHC)(PR3)] Catalysts in 2-Propanol-Water Mixtures. Catalysts 2020, 10, 17. [Google Scholar] [CrossRef]
- Pavlova, A.; Meijer, E.J. Understanding the Role of Water in Aqueous Ruthenium-Catalyzed Transfer Hydrogenation of Ketones. ChemPhysChem 2012, 13, 3492–3496. [Google Scholar] [CrossRef] [PubMed]
- Ambrose, D.; Sprake, C.H.S.; Townsend, R. Thermodynamic Properties of Organic Oxygen Compounds XXXVII. Vapour Pressures of Methanol, Ethanol, Pentan-1-ol, and Octan-1-ol from the Normal Boiling Temperature to the Critical Temperature. J. Chem. Thermodyn. 1975, 7, 185–190. [Google Scholar] [CrossRef]
- Ruppert, A.M.; Jędrzejczyk, M.; Sneka-Płatek, O.; Keller, N.; Dumon, A.S.; Michel, C.; Sautet, P.; Grams, J. Ru Catalysts for Levulinic Acid Hydrogenation with Formic Acid as a Hydrogen Source. Green Chem. 2016, 18, 2014–2028. [Google Scholar] [CrossRef]
Entry | Solvent | Aniline Yield a | AZB Yield a | AZXB Yield a | Aniline to Dimer Selectivity | Recovered SM b | Mass Balance c |
1 | Ethanol | 5.30% | 1% | 7.10% | 0.65:1 | 7% | 29% |
2 | 2-propanol | 31% | 14% | 10% | 1.4:1 | 5% | 84% |
3 d | 2-propanol | 18% | 4% | 23% | 0.66:1 | 12% | 84% |
4 e | Methanol formic acid | 66% | <1% | <1% | >66:1 | 40% | 106% |
5 d,e,f | Methanol formic acid | <1% | <1% | 1% | N/A | 19 ± 1% | 22% |
Entry | Time (Hour/Minute) | Pressure (kg/cm2) | Temperature (°C) |
1 | 0:00 | 4 | 135 |
2 | 0:05 | 9 | 140 |
3 | 0:10 | 18 | 146 |
4 | 0:15 | 20 | 160 |
5 | 0:20 | 22 | 160 |
6 | 0:25 | 23 | 160 |
7 | 0:30 | 24 | 160 |
8 | 0:35 | 24 | 160 |
9 | 0:40 | 24 | 160 |
10 | 0:45 | 24 | 160 |
11 | 0:50 | 24 | 160 |
12 | 0:55 | 24 | 160 |
13 | 1:00 | 24 | 160 |
14 | 1:05 | 24 | 160 |
15 | 1:10 | 24 | 160 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, X.; Zhou, M. Polyvinylpyrrolidone-Stabilized Iridium Nanoparticles Catalyzed the Transfer Hydrogenation of Nitrobenzene Using Formic Acid as the Source of Hydrogen. Chemistry 2020, 2, 960-968. https://doi.org/10.3390/chemistry2040061
Zhou X, Zhou M. Polyvinylpyrrolidone-Stabilized Iridium Nanoparticles Catalyzed the Transfer Hydrogenation of Nitrobenzene Using Formic Acid as the Source of Hydrogen. Chemistry. 2020; 2(4):960-968. https://doi.org/10.3390/chemistry2040061
Chicago/Turabian StyleZhou, Xinrui, and Meng Zhou. 2020. "Polyvinylpyrrolidone-Stabilized Iridium Nanoparticles Catalyzed the Transfer Hydrogenation of Nitrobenzene Using Formic Acid as the Source of Hydrogen" Chemistry 2, no. 4: 960-968. https://doi.org/10.3390/chemistry2040061
APA StyleZhou, X., & Zhou, M. (2020). Polyvinylpyrrolidone-Stabilized Iridium Nanoparticles Catalyzed the Transfer Hydrogenation of Nitrobenzene Using Formic Acid as the Source of Hydrogen. Chemistry, 2(4), 960-968. https://doi.org/10.3390/chemistry2040061