Nanosensors for Exhaled Breath Condensate: Explored Models, Analytes, and Prospects
Abstract
1. Introduction
2. Data Collection
3. Nanoparticle-Based Sensors for Biomolecule Detection in EBC
3.1. Iron Oxide/Magnetic Nanoparticles
(a) EBC Extraction Methodology and Nanosensor-Based Analysis | |||||||
EBC Methodology | Nanosensor | ||||||
Refs | Condenser | Extraction Temp/Time | Vol. | Storage Temp/Time | Biomarker/Drug | Outcomes | |
Xu et al., 2014 [31] | Commercial RTubeTM technique | Magnetic solid-phase extraction n/a 10 min | 0.7–2.5 mL | −20 °C n/a * | Aldehydes (butanal, pentanal, hexanal, heptanal, octanal, nonanal) |
| |
Tarfiei et al., 2020 [33] | Lab-made setup | n/a 20 min | n/a | −20 °C n/a | Metoprolol drug |
| |
Heidari et al., 2022 [32] | Lab-made setup | n/a | n/a | n/a | Daclatasvir drug |
| |
Zambrano et al., 2022 [40] | RTubeTM technique | Room temp/ 5–15 min | 1 mL | −80 °C n/a | ADAM 33; Granzyme B Chemokine (CCL20) IL-6; MMP-8; NSE; arginase |
| |
(b) Performance Parameters of Iron Oxide Nanoparticles/Magnetic Nanoparticles | |||||||
Refs. | Age | Groups (N)/Health Status | Read-Out Method | Reproducibility/Storage | Linear Range [µmol/L] | LOD [nmol/L] | |
Xu et al., 2014 [31] | n/a | >Healthy (8) (used for calibration after spiking with aldehydes) >Lung cancer (6) | NP-aldehyde metabolites detected by high-performance liquid chromatography–photo diode array detector HPLC/PDA | RSD of 2.9–13.1% for all intra- and inter-day standard determinations |
|
| |
Tarfiei et al., 2020 [33] | n/a | >Healthy (n/a) (spiked with metoprolol) >Metoprolol-treated (n/a) | Spectrofluorophotometer | Intra- and inter-day precision values were lower than 5% | n/a | 2.29 ng/mL | |
Heidari et al., 2022 [32] | n/a | Healthy (n/a) (spiked with daclatasvir) | FP-750 spectrofluorometer | Intra- and inter-day RSD of 3.2 and 3.9% | 0.5–15 ng/mL | 0.12 ng/mL | |
Zambrano et al., 2022 [40] | n/a | >Mice (8) >Non-asthmatic patients (3) >Mild asthma patients (3) | Fluorescence intensity | Stored > 1 year at 253 K under argon | n/a | Sub-femtomolar (10 × more sensitive than ELISA or other immunoassays) at least 10−14 M |
3.2. Gold Nanoparticles
(a) EBC Extraction Methodology and Nanosensor-Based Analysis | |||||||||
EBC Methodology | Nanosensor | ||||||||
Refs. | Condenser | Extraction Temp/Time | Vol. | Storage Temp/ Time | Biomarker/Drug | Outcomes | |||
Peng et al., 2009 [34] | Mouthpiece with filter (EcoMedicDuerten) | Room temp/ 5 min | n/a * | Air stored in Mylar bags; analyzed within 2 days of collection | Lung cancer VOCs |
| |||
Peng et al., 2010 [48] | Mouthpiece with filter (EcoMedic Duerten) | Room temp/ 3–5 min | n/a | Air stored in Mylar bags; analyzed within 4 days of collection | Endogenous cancer VOCs |
| |||
Zou et al., 2014 [50] | Commercial EBC collection device (EcoScreen (Jaeger) | −10 °C/ 10 min | n/a | Immediate use | CEA, NSE, and SCC |
| |||
Zhang et al., 2015 [49] | Commercial EBC collection device (EcoScreen (Jaeger) | −10 °C/ 10 min | 1–3 mL | Immediate use | CEA |
| |||
Chen et al., 2019 [59] | Commercial disposable EBC collection system (Ecoscreen Jaeger) | n/a | Diluted to 900 μL with ultrapure water | −20 °C n/a | Polyamines |
| |||
Ding et al., 2020 [52] | Frozen pipe mouthpiece | n/a | 30 µL | Freshly used | Nitrite ions |
| |||
Ding et al., 2022 [51] | Condensate device | Room temp | 0.5 mL | EBC centrifuged at 5000 rpm and supernatant freshly used | CEA |
| |||
Diouf et al., 2020 [55] | Condensate device | Room temp/ n/a | 0.5 mL | EBC centrifuged at 5000 rpm and supernatant freshly used | CEA, NSE, and SCC |
| |||
Karimzadeh et al., 2022 [61] | Lab-made setup | Room temp/ n/a | 200 µL | n/a | Daclatasvir drug |
| |||
(b) Design and Performance Parameters of AuNPs Nanosensors | |||||||||
Refs. | Age | Groups (N)/Health Status | Biomarkers/Drugs | Read-Out Method | Reproducibility/Storage | Linear Range | LOD | ||
Peng et al., 2009 [34] | 28–60 | >Healthy (56) >Lung cancer (40) | Endogenous cancer VOCs | Electrical resistance signals detected by computer system | >90% reproducibility for readings on different days | n/a | 1 to 5 ppb | ||
Peng et al., 2010 [48] | 20–75 | >Lung cancer (30) Colon cancer (26) >Breast cancer (22) >Healthy (22–59) | Endogenous cancer VOCs | Electrical resistance signals detected by computer system | >87% reproducibility for a specific volunteer who was examined multiple times over a period of 6 months | 300–400 different VOCs/ breath | n/a | ||
Zou et al., 2014 [50] | n/a | >Healthy (13) (spiked with CEA or NSE) >Lung cancer (17) | CEA, neuron-specific enolase, and SCC | Love Wave sensor; surface acoustic wave (SAW) immunosensor | 10 replicates for each biomarker RSD (n/a) used to calculate precision and accuracy | n/a | CEA, 0.967 ng/mL NSE, 1.598 ng/mL SCC, 0.663 ng/mL | ||
Zhang et al., 2015 [49] | n/a | Healthy (28) | CEA | Love Wave sensor | 3 repetitions performed to confirm linearity | 1–16 ng/mL | 1 ng/mL | ||
Chen et al., 2019 [59] | n/a | >Healthy (12) (spiked with polyamines) | Polyamines | Field-amplified sample stacking (FASS) coupled with capillary electrophoresis and FASS-CEC4D | RSDs for intraday reproducibility: 1.0–1.8% and 1.1–2.7% (n = 7), respectively; RSDs for inter-day reproducibility: within 4.7% (n = 5) | 0.20–20 ng/mL | 0.070–0.17 ng/mL | ||
Ding et al., 2020 [52] | n/a | Healthy (8) | Carcinoembryonic antigen (CEA) | SEECL with resonance energy transfer [66] recorded by CV using ultra-weak luminescence | 10 consecutive repetitions without CEA with RSD of 1.67%; 6 different sensors tested at different time points with CEA; RSD 2.14% | 1.0 pg/mL–5.0 ng/mL | 0.3 pg/mL | ||
Ding et al., 2022 [51] | n/a | Healthy (n/a) | CEA, neuron-specific enolase, and SCC | SEECL-I compared with ELISA results | 6 batches tested with 1 ng/mL of antigens with RSD for CEA 3.02%, NSE 2.91%, and SCC 2.68% | CEA, 0.5 pg/mL NSE, 1.0 pg/mL SCC, 1.0 pg/mL | CEA, 0.17 pg/mL NSE, 0.33 pg/mL SCC, 0.33 pg/mL | ||
Diouf et al., 2020 [55] | n/a | Healthy (n/a) | Nitrite ion | Electrochemical Impedance Spectroscopy and Differential Pulse Voltammetry | Reproducibility only checked for 4 replicates with RSD of 4% | 0.5–50 μg/mL | 4 μmol/L | ||
Karimzadeh et al., 2022 [61] | n/a | Healthy (n/a) (spiked with daclatasvir) | Daclatasvir | Colorimetric change from pink to blue LSPR using UV–vis spectrophotometer | 3 replicates at different DAC concentrations. At DAC of 1 μg/mL, recovery of 99.27%, and RSD of 0.992 ± 0.018 | 0.01–1.0 µg/mL | 0.008 µg/mL |
3.3. Silver Nanoparticles
(a) Extraction Method and Nanosensor Detection Outcomes | ||||||||
EBC Methodology | Nanosensor | |||||||
Refs. | Condenser | Extraction Temp/Time | Vol | Storage Temp/Time | Biomarker/Drug | Outcomes | ||
Mohamadian et al., 2017 [68] | Lab-made setup | −20 °C/10 min | n/a * | −20 °C/ 3 weeks | Deferiprone (DEF) drug |
| ||
Jouyban et al., 2017 [69] | Lab-made setup | n/a | 1 mL | Freshly used | Lamotrigine (LTG) drug |
| ||
Jouyban et al., 2019 [70] | Lab-made setup | n/a | n/a | n/a | Doxorubicin (DOX) drug |
| ||
Hasanzadeh et al., 2018 [74] | Lab-made pipe with a cooling mouthpiece | Room temp | 1 mL | −25 °C | Malondialdehyde |
| ||
Khoubnasab et al., 2019 [71] | Lab-made system | n/a | n/a | n/a | Phenytoin drug |
| ||
Jafari et al., 2019 [75] | Lab-made setup | −20 °C/n/a | 1 mL | n/a | Malondialdehyde |
| ||
Abachi et al., 2022 [72] | Lab-made system | n/a | n/a | Dark/ 4 °C | Aspirin drug |
| ||
Rezaei et al., 2020 [73] | Lab-made system | Room temp | 0.25 mL | n/a | Tobramycin, gentamycin, and amikacin antibiotics |
| ||
(b) Type and Performance Properties of Silver NPs | ||||||||
Refs. | Age | Groups (N)/ Health Status | Read-Out Method | Reproducibility/Storage | Linear Range | LOD | ||
Mohamadian et al., 2017 [68] | 15–24 years | >Healthy (1) (used for calibration after spiking with deferiprone) >DEF-treated (16) | JASCO FP-750 spectrofluorometer | RSD inter-day analysis: 2.65–5.10% RSD intra-day: 3.68–6.21% | 0.06–1.50 μg/mL | 0.06 μg/mL | ||
Jouyban et al., 2017 [69] | n/a | >Healthy (n/a) (used for calibration after spiking with lamotrigine) >Epileptic LTG-treated (3) | UV-2550 spectrophotometer | RSD of 2.37% for five replicates for 0.1 μg·mL−1 of LTG ASA-AgNPs | 0.02–0.4 µg/mL | 0.005 µg/mL | ||
Jouyban et al., 2019 [70] | n/a | >Healthy (n/a) (used for calibration after spiking with doxorubicin) >Healthy (4) (DOX-spiked) | Shimadzu UV–visible double-beam UV-1800 | RSD of 2.7% (n = 3) | 0.02–2 µg/mL | 0.004 µg/mL | ||
Hasanzadeh et al., 2018 [74] | n/a | Healthy (4) | Electrochemical technique: square-wave voltammetry (SWV) | Highly stable for up to 100 replicates with an error of 2.1% | 0.817–3.15 µmol/L | 0.817 μmol/L | ||
Khoubnasab et al., 2019 [71] | n/a | >Healthy (n/a) (used for calibration after spiking with phenytoin) >Healthy (2) | UV-2550 spectrophotometer | RSD of 3.95% for five replicated determinations of a 100 μg·L−1 PHT InS-AgNP | 0.025–0.45 μg/mL | 0.01 μg/mL | ||
Jafari et al., 2019 [75] | n/a | Healthy (n/a) | Electrochemical sensor | n/a | 0.089–1.68 mM | 0.59 μmol/L | ||
Abachi et al., 2022 [72] | n/a | >Healthy (n/a) (used for calibration after spiking with aspirin) >Aspirin-treated patients (6) | Double-beam spectrophotometer UV-1800 | Intra-day and inter-day RSD for five replications: 1.0 % and 3.5 % batch-to-batch reproducibility with RSD = 5.2% (n = 3) | 10–250 μg/mL | 4.1 μg/mL | ||
Rezaei et al., 2020 [73] | n/a | >Healthy (n/a) (calibration spiking with tobramycin, gentamycin, or amikacin) >Healthy (6) | UV-vis spectrophotometer | Good reproducibility from batch to batch during the same day and on different days with an RSD < 4.2% | 1.0–50.0 ng/mL | 0.5 ng/mL |
3.4. Copper Nanoparticles
(a) EBC Methodology and Nanosensor Outcomes | ||||||||
EBC methodology | Nanosensor | |||||||
Refs. | Condenser | Extraction Temp/Time | Vol | Storage Temp/Time | Biomarker/Drug | Outcomes | ||
Jouyban et al., 2017 [77] | Lab-made setup | n/a * 20 min | 2 mL | −20 °C and of RT/12 h, 24 h, and 36 h | H2O2 |
| ||
Liu et al., 2018 [63] | Teflon bags (3 L and absorption water of 5 mL) | n/a | n/a | n/a | H2O2 |
| ||
Hatefi et al., 2019 [79] | Lab-made system | n/a | n/a | Freshly used | CBZ |
| ||
Rahimpour et al., 2021 [78] | MVEBC samples collected from the waste of the ventilator | RT n/a | n/a | Freshly used | Vancomycin antibiotic |
| ||
(b) Classification of CuNPs and Associated Detection Characteristics | ||||||||
Refs. | Age | Groups (N)/ Health Status | Read-Out Method | Reproducibility/Storage | Linear Range | LOD | ||
Jouyban et al., 2017 [77] | n/a | >Healthy (n/a) (used for calibration after spiking with hydrogen peroxide) >Healthy (4) | FP-750 spectrofluorometer | Inter-day RSD of 4.2–6.9% and intra-day RSD of 2.4–4.9% for replicates at three levels of H2O2 | 50–500 nmol/L | 33.6 nmol/L | ||
Liu et al., 2018 [63] | n/a | >Healthy before/after smoking (12) | Electrochemical sensor | RSD of 4.2% (C = 0.1 μM, n = 7) | 0.01–500 nmol/L | 0.0026 nmol/L | ||
Hatefi et al., 2019 [79] | n/a | >Healthy (n/a) (used for calibration after spiking with carbamazepine) >CBZ-treated patients (4) | FP-750 spectrofluorometer | Inter-day RSD of 4.8 and intra-day RSD of 3.9% for six replicas; 1 μg/mL of CBZ Batch-to-batch RSD of 5.2% Cu-NC-CTAB stored in a dark place at 4 °C | 0.2–20 μg/mL | 8 μg/mL | ||
Rahimpour et al., 2021 [78] | Newborns or premature babies | >Under mechanical ventilator/MV (n/a) (used for calibration after spiking with vancomycin) >Under mechanical ventilator/MV and treated with vancomycin (5) | FP-750 spectrofluorometer | Inter-day RSD of 4.8 and intra-day RSD of 6.0% for six replicas; 1 μg/mL of vancomycin Cu-NCs stored in a dark place at 4 °C | 0.1–8 µg/mL | 0.06 µg/mL |
3.5. Quantum Dots, Carbon Nanotubes, Cobalt Oxide, and Polymer Nanoparticles
(a) EBC Extraction Methodology and Detection Outcomes | ||||||||
EBC Methodology | Nanosensor | |||||||
Refs. | Condenser | Extract Temp/Time | Vol. | Storage Temp/Time | Biomarker/Drug | Outcomes | ||
Li et al., 2013 [62] | Mouthpiece connected to a 50 mL centrifuge tube | n/a * | Diluted to 2 mL with purified water | −20 to −25 °C 1 week | H2O2 |
| ||
Hasanzadeh et al., 2017 [83] | Lab-made pipe with a cooling trap mouthpiece | Room temp | 2 mL | −25 °C | Malondialdehyde |
| ||
Park et al., 2018 [84] | Custom-made collection system | 0 °C 20 min | n/a | n/a | VOCs |
| ||
Nasehi et al., 2022 [82] | Lab-made setup MVEBC samples collected from the waste of the ventilator | n/a | n/a | n/a | Phenobarbital drug |
| ||
Mokhtari et al., 2022 [81] | Lab-made setup MVEBC samples collected from the waste of the ventilator | n/a | n/a | Freshly used | Phenobarbital drug |
| ||
(b) Performance of Quantum Dots/Carbon Nanotubes/Cobalt Oxide and Polymer Nanoparticles Properties | ||||||||
References | Age | Groups (N)/Health Status | Read-Out Method | Reproducibility/Storage | Linear Range | LOD | ||
Li et al., 2013 [62] | n/a | >Feverish (9) >Rheum (13) >Healthy (13) | Microarray scanner of SynergyTM 2 Multi-Mode Microplate Reader IFFM-A CL analyzer | RSD of 2.1% for 100 nM of H2O2 (n = 11) | 0.3 nmol/L | 1.0 nmol/L–1000 nmol/L | ||
Hasanzadeh et al., 2017 [83] | n/a | Healthy (n/a) | Electrochemical technique: square-wave voltammetry (SWV) | Simultaneous testing of the electrode with 3 replicates, with RSD of 6.16%. | 0.06–0.2 μM | 0.329 ng/mL | ||
Park et al., 2018 [84] | n/a | >Healthy (n/a) >Diseased (n/a) | Chemiresistive sensor | n/a | n/a | n/a | ||
Nasehi et al., 2022 [82] | Newborns and premature babies | >Healthy (n/a) >Under mechanical ventilator receiving phenobarbital (1) | Jasco FP-750 spectrofluorometer | Inter-day RSD of 6.1 and 6.9, and intra-day RSD of 1.8 and 1.8% for five replicates | 0.01–8.0 μg/mL | 0.006–0.18 μg/mL | ||
Mokhtari et al., 2022 [81] | Newborns and premature babies | >Healthy (n/a) >Under mechanical ventilator receiving phenobarbital (3) | FP-750 spectrofluorometer | Inter-day RSD of 3.6 and intra-day RSD of 5.4% Batch-to-batch reproducibility with RSD = 6.2% (n = 5); luminol-Tb CP NPs stored at 4 °C | 0.1–10.0 μg/mL | 0.024 μg/mL |
4. Discussion
5. Conclusions
6. Future Directions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
EBC | Exhaled Breath Condensate |
DEF | Deferiprone |
VOCs | Volatile Organic Compounds |
COPD | Chronic Obstructive Pulmonary Disease |
LC-MS | Liquid Chromatography–Mass Spectrometry |
GC | Gas Chromatography |
ELISA | Enzyme-Linked Immunosorbent Assay |
NPs | Nanoparticles |
AuNPs | Gold Nanoparticles |
LOD | Limit of Detection |
LR | Linear Range |
MSPE | Magnetic Solid-Phase Extraction |
HPLC | High-Performance Liquid Chromatography |
PDA | Photo Diode Array |
GC-MS | Gas Chromatography–Mass Spectrometry |
SEECL | Surface Enhanced Electrochemiluminescence |
CV | Cyclic Voltammetry |
EIS | Electrochemical Impedance Spectroscopy |
FASS | Field-Amplified Sample Stacking |
HRP | Horseradish Peroxidase |
CuNPs | Copper Nanoparticles |
SDS | Sodium Dodecyl Sulfate |
MIONPs | Magnetic Iron Oxide Nanoparticles |
CTAB | Cetyltrimethylammonium Bromide |
RF-PT | Riboflavin–Taurine |
GCE | Glassy Carbon Electrode |
QDs | Quantum Dots |
SWCNT | Single-Walled Carbon Nanotube |
MIP | Molecularly Imprinted Polymer |
PARG-GQDs | Polyarginine–Graphene Quantum Dots |
CL | Chemiluminescence |
CEA | Carcinoembryonic Antigen |
IIP | Imprinted Polymer |
SCC | Squamous Cell Carcinoma Antigen |
NSE | Neuron-Specific Enolase |
References
- Somoza, N.; Torà, M. Biological Safety in the Storage and Transport of Biological Specimens from Patients with Respiratory Diseases Used in Research Settings. Arch. De Bronconeumología 2009, 45, 187–195. [Google Scholar] [CrossRef]
- Nikolaidis, C.; Bouros, E.; Tzouvelekis, A.; Drakopanagiotakis, F.; Ntolios, P.; Kaltsas, K.; Boglou, P.; Anevlavis, S.; Steiropoulos, P.; Lambropoulou, M. A biobank for Interstitial Lung Diseases according to the European Network “eurIPF” and “ββΜrI”. Pneumon 2014, 1, 209. [Google Scholar]
- Kirwan, J.A.; Brennan, L.; Broadhurst, D.; Fiehn, O.; Cascante, M.; Dunn, W.B.; Schmidt, M.A.; Velagapudi, V. Preanalytical Processing and Biobanking Procedures of Biological Samples for Metabolomics Research: A White Paper, Community Perspective (for “Precision Medicine and Pharmacometabolomics Task Group”—The Metabolomics Society Initiative). Clin. Chem. 2018, 64, 1158–1182. [Google Scholar] [CrossRef] [PubMed]
- Van Den Heuvel, R.; Den Hond, E.; Colles, A.; Nelen, V.; Van Campenhout, K.; Schoeters, G. Biobank@VITO: Biobanking the General Population in Flanders. Front. Med. 2020, 7, 37. [Google Scholar] [CrossRef]
- Effros, R.M.; Hoagland, K.W.; Bosbous, M.; Castillo, D.; Foss, B.; Dunning, M.; Gare, M.; Lin, W.; Sun, F. Dilution of respiratory solutes in exhaled condensates. Am. J. Respir. Crit. Care Med. 2002, 165, 663–669. [Google Scholar] [CrossRef]
- Hunt, J. Exhaled breath condensate: An overview. Immunol. Allergy Clin. N. Am. 2007, 27, 587–596. [Google Scholar] [CrossRef]
- Ghelli, F.; Panizzolo, M.; Garzaro, G.; Squillacioti, G.; Bellisario, V.; Colombi, N.; Bergamaschi, E.; Canu, I.G.; Bono, R. Inflammatory Biomarkers in Exhaled Breath Condensate: A Systematic Review. Int. J. Mol. Sci. 2022, 23, 9820. [Google Scholar] [CrossRef]
- Campanella, A.; De Summa, S.; Tommasi, S. Exhaled breath condensate biomarkers for lung cancer. J. Breath Res. 2019, 13, 044002. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.S.; Sandrini, A.; Campbell, C.; Chow, S.; Thomas, P.S.; Yates, D.H. Comparison of Biomarkers in Exhaled Breath Condensate and Bronchoalveolar Lavage. Am. J. Respir. Crit. Care Med. 2007, 175, 222–227. [Google Scholar] [CrossRef]
- Balbi, B.; Pignatti, P.; Corradi, M.; Baiardi, P.; Bianchi, L.; Brunetti, G.; Radaeli, A.; Moscato, G.; Mutti, A.; Spanevello, A.; et al. Bronchoalveolar lavage, sputum and exhaled clinically relevant inflammatory markers: Values in healthy adults. Eur. Respir. J. 2007, 30, 769–781. [Google Scholar] [CrossRef]
- Hayes, S.A.; Haefliger, S.; Harris, B.; Pavlakis, N.; Clarke, S.J.; Molloy, M.P.; Howell, V.M. Exhaled breath condensate for lung cancer protein analysis: A review of methods and biomarkers. J. Breath Res. 2016, 10, 034001. [Google Scholar] [CrossRef] [PubMed]
- Horváth, I.; Barnes, P.J.; Loukides, S.; Sterk, P.J.; Högman, M.; Olin, A.C.; Amann, A.; Antus, B.; Baraldi, E.; Bikov, A.; et al. A European Respiratory Society technical standard: Exhaled biomarkers in lung disease. Eur. Respir. J. 2017, 49, 1600965. [Google Scholar] [CrossRef]
- Połomska, J.; Bar, K.; Sozańska, B. Exhaled Breath Condensate—A Non-Invasive Approach for Diagnostic Methods in Asthma. J. Clin. Med. 2021, 10, 2697. [Google Scholar] [CrossRef] [PubMed]
- Wallace, M.A.G.; Pleil, J.D. Evolution of clinical and environmental health applications of exhaled breath research: Review of methods and instrumentation for gas-phase, condensate, and aerosols. Anal. Chim. Acta 2018, 1024, 18–38. [Google Scholar] [CrossRef]
- Horváth, I.; Hunt, J.; Barnes, P.J. Exhaled breath condensate: Methodological recommendations and unresolved questions. Eur. Respir. J. 2005, 26, 523. [Google Scholar] [CrossRef]
- Potocnik, J. Commission recommendation of 18 October 2011 on the definition of nanomaterial. Off. J. Eur. Communities Legis 2011, 275, 38–40. [Google Scholar]
- Vert, M.; Doi, Y.; Hellwich, K.-H.; Hess, M.; Hodge, P.; Kubisa, P.; Rinaudo, M.; Schué, F. Terminology for biorelated polymers and applications (IUPAC Recommendations 2012). Pure Appl. Chem. 2012, 84, 377–410. [Google Scholar] [CrossRef]
- Rosi, N.L.; Mirkin, C.A. Nanostructures in Biodiagnostics. Chem. Rev. 2005, 105, 1547–1562. [Google Scholar] [CrossRef]
- Astruc, D. Introduction: Nanoparticles in Catalysis. Chem. Rev. 2020, 120, 461–463. [Google Scholar] [CrossRef]
- Auffan, M.; Rose, J.; Bottero, J.Y.; Lowry, G.V.; Jolivet, J.P.; Wiesner, M.R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 4, 634–641. [Google Scholar] [CrossRef]
- Anselmo, A.C.; Mitragotri, S. Nanoparticles in the clinic: An update. Bioeng. Transl. Med. 2019, 4, e10143. [Google Scholar] [CrossRef] [PubMed]
- Lim, E.-K.; Kim, T.; Paik, S.; Haam, S.; Huh, Y.-M.; Lee, K. Nanomaterials for Theranostics: Recent Advances and Future Challenges. Chem. Rev. 2015, 115, 327–394. [Google Scholar] [CrossRef]
- Kim, D.; Shin, K.; Kwon, S.G.; Hyeon, T. Synthesis and Biomedical Applications of Multifunctional Nanoparticles. Adv. Mater. 2018, 30, e1802309. [Google Scholar] [CrossRef] [PubMed]
- Drechsler, U.; Erdogan, B.; Rotello, V.M. Nanoparticles: Scaffolds for molecular recognition. Chemistry 2004, 10, 5570–5579. [Google Scholar] [CrossRef] [PubMed]
- Zeng, S.; Baillargeat, D.; Ho, H.P.; Yong, K.T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev. 2014, 43, 3426–3452. [Google Scholar] [CrossRef]
- Barash, O.; Peled, N.; Hirsch, F.R.; Haick, H. Sniffing the unique “odor print” of non-small-cell lung cancer with gold nanoparticles. Small 2009, 5, 2618–2624. [Google Scholar] [CrossRef]
- Hashoul, D.; Haick, H. Sensors for detecting pulmonary diseases from exhaled breath. Eur. Respir. Rev. 2019, 28, 190011. [Google Scholar] [CrossRef]
- Daniel, M.-C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar]
- Flores-Rojas, G.G.; López-Saucedo, F.; Vera-Graziano, R.; Mendizabal, E.; Bucio, E. Magnetic Nanoparticles for Medical Applications: Updated Review. Macromol 2022, 2, 374–390. [Google Scholar] [CrossRef]
- Xu, H.; Wei, Y.; Zhu, L.; Huang, J.; Li, Y.; Liu, F.; Wang, S.; Liu, S. Bifunctional magnetic nanoparticles for analysis of aldehyde metabolites in exhaled breath of lung cancer patients. J. Chromatogr. A 2014, 1324, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Heidari, H.; Hassan-Zadeh, Z.; Khoubnasabjafari, M. Ultrasensitive fluorometric determination of daclatasvir in exhaled breath condensate samples after magnetic solid-phase extraction by carbon-coated Fe3O4 magnetic nanoparticles: Method optimization via central composite design combined with desirability function. Chem. Pap. 2022, 76, 6619–6628. [Google Scholar]
- Tarfiei, M.A.; Tabrizi, A.B.; Jouyban, A. Trace Extraction of Metoprolol from Plasma, Urine and EBC Samples Using Modified Magnetic Nanoparticles Followed by Spectrofluorimetric Determination for Drug Monitoring Purposes. Curr. Pharm. Anal. 2020, 16, 844–855. [Google Scholar] [CrossRef]
- Peng, G.; Tisch, U.; Adams, O.; Hakim, M.; Shehada, N.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Haick, H. Diagnosing lung cancer in exhaled breath using gold nanoparticles. Nat. Nanotechnol. 2009, 4, 669–673. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Udukala, D.N.; Samarakoon, T.N.; Basel, M.T.; Kalita, M.; Abayaweera, G.; Manawadu, H.; Malalasekera, A.; Robinson, C.; Villanueva, D.; et al. Nanoplatforms for highly sensitive fluorescence detection of cancer-related proteases. Photochem. Photobiol. Sci. 2014, 13, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Udukala, D.N.; Wang, H.; Wendel, S.O.; Malalasekera, A.P.; Samarakoon, T.N.; Yapa, A.S.; Abayaweera, G.; Basel, M.T.; Maynez, P.; Ortega, R.; et al. Early breast cancer screening using iron/iron oxide-based nanoplatforms with sub-femtomolar limits of detection. Beilstein J. Nanotechnol. 2016, 7, 364–373. [Google Scholar] [CrossRef]
- Malalasekera, A.P.; Wang, H.; Samarakoon, T.N.; Udukala, D.N.; Yapa, A.S.; Ortega, R.; Shrestha, T.B.; Alshetaiwi, H.; McLaurin, E.J.; Troyer, D.L.; et al. A nanobiosensor for the detection of arginase activity. Nanomedicine 2017, 13, 383–390. [Google Scholar] [CrossRef]
- Voelz, B.E.; Kalubowilage, M.; Bossmann, S.H.; Troyer, D.L.; Chebel, R.C.; Mendonça, L.G.D. Associations between activity of arginase or matrix metalloproteinase-8 (MMP-8) and metritis in periparturient dairy cattle. Theriogenology 2017, 97, 83–88. [Google Scholar] [CrossRef]
- Kalubowilage, M.; Covarrubias-Zambrano, O.; Malalasekera, A.P.; Wendel, S.O.; Wang, H.; Yapa, A.S.; Chlebanowski, L.; Toledo, Y.; Ortega, R.; Janik, K.E.; et al. Early detection of pancreatic cancers in liquid biopsies by ultrasensitive fluorescence nanobiosensors. Nanomedicine 2018, 14, 1823–1832. [Google Scholar] [CrossRef]
- Covarrubias-Zambrano, O.; Motamedi, M.; Ameredes, B.T.; Tian, B.; Calhoun, W.J.; Zhao, Y.; Brasier, A.R.; Kalubowilage, M.; Malalasekera, A.P.; Yapa, A.S.; et al. Optical biosensing of markers of mucosal inflammation. Nanomed. Nanotechnol. Biol. Med. 2022, 40, 102476. [Google Scholar] [CrossRef]
- Moharami, R.; Karimzadeh, Z.; Soleymani, J.; Jouyban-Gharamaleki, V.; Khoubnasabjafari, M.; Rahimpour, E.; Jouyban, A. Design and development of metal-organic framework-based nanocomposite hydrogels for quantification of deferiprone in exhaled breath condensate. BMC Chem. 2024, 18, 176. [Google Scholar] [CrossRef] [PubMed]
- Azad, B.; Karimzadeh, Z.; Jabbaripour, A.; Jouyban-Gharamaleki, V.; Khoubnasabjafari, M.; Jouyban, A.; Rahimpour, E. Utilizing a nanocomposite aerogel grafted with Fe3O4@GO for the extraction and determination of metoprolol in exhaled breath condensate. RSC Adv. 2023, 13, 30562–30574. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; El-Sayed, M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. J. Adv. Res. 2010, 1, 13–28. [Google Scholar] [CrossRef]
- Hammami, I.; Alabdallah, N.M.; Jomaa, A.A.; Kamoun, M. Gold nanoparticles: Synthesis properties and applications. J. King Saud Univ. Sci. 2021, 33, 101560. [Google Scholar] [CrossRef]
- Dykman, L.A.; Khlebtsov, N.G. Gold nanoparticles in biology and medicine: Recent advances and prospects. Acta Naturae 2011, 3, 34–55. [Google Scholar] [CrossRef] [PubMed]
- Yeh, Y.C.; Creran, B.; Rotello, V.M. Gold nanoparticles: Preparation, properties, and applications in bionanotechnology. Nanoscale 2012, 4, 1871–1880. [Google Scholar] [CrossRef]
- Pendiuk Goncalves, J.; Fraga da Cruz, A.; Ribeiro de Barros, H.; Santana Borges, B.; Almeida Soares de Medeiros, L.C.; Soares, M.J.; Padovan Dos Santos, M.; Grassi, M.T.; Chandra, A.; Del Mercato, L.L.; et al. Beyond gold nanoparticles cytotoxicity: Potential to impair metastasis hallmarks. Eur. J. Pharm. Biopharm. 2020, 157, 221–232. [Google Scholar] [CrossRef]
- Peng, G.; Hakim, M.; Broza, Y.Y.; Billan, S.; Abdah-Bortnyak, R.; Kuten, A.; Tisch, U.; Haick, H. Detection of lung, breast, colorectal, and prostate cancers from exhaled breath using a single array of nanosensors. Br. J. Cancer 2010, 103, 542–551. [Google Scholar] [CrossRef]
- Zhang, X.; Zou, Y.; An, C.; Ying, K.; Chen, X.; Wang, P. Sensitive detection of carcinoembryonic antigen in exhaled breath condensate using surface acoustic wave immunosensor. Sens. Actuators B Chem. 2015, 217, 100–106. [Google Scholar] [CrossRef]
- Zou, Y.; Zhang, X.; An, C.; Ran, C.; Ying, K.; Wang, P. A point-of-care testing system with Love-wave sensor and immunogold staining enhancement for early detection of lung cancer. Biomed. Microdevices 2014, 16, 927–935. [Google Scholar] [CrossRef]
- Ding, L.; Xu, S.; Huang, Y.; Yao, Y.; Wang, Y.; Chen, L.; Zeng, Y.; Li, L.; Lin, Z.; Guo, L. Surface-Enhanced Electrochemiluminescence Imaging for Multiplexed Immunoassays of Cancer Markers in Exhaled Breath Condensates. Anal. Chem. 2022, 94, 7492–7499. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Xu, S.; Huang, D.; Chen, L.; Kannan, P.; Guo, L.; Lin, Z. Surface-enhanced electrochemiluminescence combined with resonance energy transfer for sensitive carcinoembryonic antigen detection in exhaled breath condensates. Analyst 2020, 145, 6524–6531. [Google Scholar] [CrossRef] [PubMed]
- Abu-Dalo, M.A.; Salam, A.A.; Nassory, N.S. Ion imprinted polymer based electrochemical sensor for environmental monitoring of copper(II). Int. J. Electrochem. Sci. 2015, 10, 6780–6793. [Google Scholar] [CrossRef]
- Lanza, F.; Sellergren, B. Method for synthesis and screening of large groups of molecularly imprinted polymers. Anal. Chem. 1999, 71, 2092–2096. [Google Scholar] [CrossRef] [PubMed]
- Diouf, A.; El Bari, N.; Bouchikhi, B. A novel electrochemical sensor based on ion imprinted polymer and gold nanomaterials for nitrite ion analysis in exhaled breath condensate. Talanta 2020, 209, 120577. [Google Scholar] [CrossRef]
- Lazar, J.; Schnelting, C.; Slavcheva, E.; Schnakenberg, U. Hampering of the Stability of Gold Electrodes by Ferri-/Ferrocyanide Redox Couple Electrolytes during Electrochemical Impedance Spectroscopy. Anal. Chem. 2016, 88, 682–687. [Google Scholar] [CrossRef] [PubMed]
- Channon, R.B.; Yang, Y.; Feibelman, K.M.; Geiss, B.J.; Dandy, D.S.; Henry, C.S. Development of an Electrochemical Paper-Based Analytical Device for Trace Detection of Virus Particles. Anal. Chem. 2018, 90, 7777–7783. [Google Scholar] [CrossRef]
- Garrote, B.L.; Santos, A.; Bueno, P.R. Perspectives on and Precautions for the Uses of Electric Spectroscopic Methods in Label-free Biosensing Applications. ACS Sens. 2019, 4, 2216–2227. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, T.; Guo, M.; Chang, H.; Zhou, H.; Wang, Y.; Ye, J.; Chu, Q.; Huang, D. Electrophoretic analysis of polyamines in exhaled breath condensate based on gold-nanoparticles microextraction coupled with field-amplified sample stacking. Talanta 2019, 198, 480–486. [Google Scholar] [CrossRef]
- Colombo, C.; Faelli, N.; Tirelli, A.S.; Fortunato, F.; Biffi, A.; Claut, L.; Cariani, L.; Daccò, V.; Prato, R.; Conese, M. Analysis of Inflammatory and Immune Response Biomarkers in Sputum and Exhaled Breath Condensate by a Multi-Parametric Biochip Array in Cystic Fibrosis. Int. J. Immunopathol. Pharmacol. 2011, 24, 423–432. [Google Scholar] [CrossRef]
- Karimzadeh, Z.; Jouyban, A.; Khoubnasabjafari, M.; Gharakhani, A.; Rahimpour, E. Utilizing Sucrose-Functionalized Gold Nanoparticles for Daclatasvir: Chemometric Optimization and Determination. Plasmonics 2022, 17, 1999–2008. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Z.; Tao, L.; Gao, M. Sensitive and selective chemiluminescence assay for hydrogen peroxide in exhaled breath condensate using nanoparticle-based catalysis. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2013, 107, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Liang, J.; Shi, R.; Zhao, Z.; Tian, Y. Ultrasensitive sensor based on nano-Cu/polyaniline/nickel foam for monitoring H2O2 in exhaled breath. J. Breath Res. 2018, 12, 036001. [Google Scholar] [CrossRef]
- Khajir, S.; Karimzadeh, Z.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Rahimpour, E.; Jouyban, A. A Rayleigh light scattering technique based on beta- cyclodextrin modified gold nanoparticles for phenytoin determination in exhaled breath condensate. J. Pharm. Biomed. Anal. 2023, 223, 115141. [Google Scholar] [CrossRef] [PubMed]
- Sefid-Sefidehkhan, Y.; Karimzadeh, Z.; Jouyban, A.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Rahimpour, E. Development of a nanocomposite hydrogel catalyzed H(2)O(2)/TMB system for determination of chlordiazepoxide in exhaled breath condensate. RSC Adv. 2024, 14, 29143–29150. [Google Scholar] [CrossRef]
- Kubáň, P.; Foret, F. Exhaled breath condensate: Determination of non-volatile compounds and their potential for clinical diagnosis and monitoring. A review. Anal. Chim. Acta 2013, 805, 1–18. [Google Scholar] [CrossRef]
- Pryshchepa, O.; Pomastowski, P.; Buszewski, B. Silver nanoparticles: Synthesis, investigation techniques, and properties. Adv. Colloid Interface Sci. 2020, 284, 102246. [Google Scholar] [CrossRef]
- Mohamadian, E.; Shayanfar, A.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Ghaffary, S.; Jouyban, A. Analysis of deferiprone in exhaled breath condensate using silver nanoparticle-enhanced terbium fluorescence. Anal. Methods 2017, 9, 5640–5645. [Google Scholar] [CrossRef]
- Jouyban, A.; Samadi, A.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Ranjbar, F. Amidosulfonic acid-capped silver nanoparticles for the spectrophotometric determination of lamotrigine in exhaled breath condensate. Microchim. Acta 2017, 184, 2991–2998. [Google Scholar] [CrossRef]
- Jouyban, A.; Samadi, A.; Jouyban-Gharamaleki, V.; Khoubnasabjafari, M. A microscale spectrophotometric method for quantification of doxorubicin in exhaled breath condensate. Anal. Methods 2019, 11, 648–653. [Google Scholar] [CrossRef]
- Khoubnasabjafari, M.; Salari, R.; Samadi, A.; Jouyban-Gharamaleki, V.; Jouyban, A. Colorimetric determination of phenytoin using indoxyl sulfate capped silver nanoparticles. Anal. Methods 2019, 11, 3324–3330. [Google Scholar] [CrossRef]
- Mohammadzadeh Abachi, S.; Rezaei, H.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Rahimpour, E.; Jouyban, A. Utilizing Nanoparticle Catalyzed TMB/H2O2 System for Determination of Aspirin in Exhaled Breath Condensate. Pharm. Sci. 2022, 29, 368–375. [Google Scholar] [CrossRef]
- Rezaei, H.; Rahimpour, E.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Jouyban, A. A colorimetric nanoprobe based on dynamic aggregation of SDS-capped silver nanoparticles for tobramycin determination in exhaled breath condensate. Mikrochim. Acta 2020, 187, 186. [Google Scholar] [CrossRef] [PubMed]
- Hasanzadeh, M.; Babaie, P.; Jouyban-Gharamaleki, V.; Jouyban, A. The use of chitosan as a bioactive polysaccharide in non-invasive detection of malondialdehyde biomarker in human exhaled breath condensate: A new platform towards diagnosis of some lung disease. Int. J. Biol. Macromol. 2018, 120 Pt B, 2482–2492. [Google Scholar] [CrossRef]
- Jafari, M.; Solhi, E.; Tagi, S.; Hasanzadeh, M.; Jouyban-Gharamaleki, V.; Jouyban, A.; Shadjou, N. Non-invasive quantification of malondialdehyde biomarker in human exhaled breath condensate using self-assembled organic-inorganic nanohybrid: A new platform for early diagnosis of lung disease. J. Pharm. Biomed. Anal. 2019, 164, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Crisan, M.C.; Teodora, M.; Lucian, M. Copper Nanoparticles: Synthesis and Characterization, Physiology, Toxicity and Antimicrobial Applications. Appl. Sci. 2022, 12, 141. [Google Scholar] [CrossRef]
- Jouyban, A.; Rahimpour, E.; Jouyban-Gharamaleki, V.; Khoubnasabjafari, M.; Abdolmohammad-Zadeh, H. Development and validation of a novel fluorometric sensor for hydrogen peroxide monitoring in exhaled breath condensate. Anal. Methods 2017, 9, 4371–4379. [Google Scholar] [CrossRef]
- Rahimpour, E.; Khoubnasabjafari, M.; Hosseini, M.B.; Jouyban, A. Copper nanocluster-based sensor for determination of vancomycin in exhaled breath condensate: A synchronous fluorescence spectroscopy. J. Pharm. Biomed. Anal. 2021, 196, 113906. [Google Scholar] [CrossRef]
- Hatefi, A.; Rahimpour, E.; Khoubnasabjafari, M.; Edalat, M.; Jouyban-Gharamaleki, V.; Alvani-Alamdari, S.; Nokhodchi, A.; Pournaghi-Azar, M.H.; Jouyban, A. A single-shot diagnostic platform based on copper nanoclusters coated with cetyl trimethylammonium bromide for determination of carbamazepine in exhaled breath condensate. Microchim. Acta 2019, 186, 194. [Google Scholar] [CrossRef]
- Keyvani, A.; Jouyban-Gharamaleki, V.; Khoubnasabjafari, M.; Soleymani, J.; Rahimpour, E.; Jouyban, A. Utilizing copper-doped graphene quantum dots as a fluorescent sensor for determination of carbamazepine in exhaled breath condensate. J. Pharm. Biomed. Anal. 2025, 260, 116815. [Google Scholar] [CrossRef]
- Mokhtari, M.; Rahimpour, E.; Jouyban-Gharamaleki, V.; Khoubnasabjafari, M.; Hosseini, M.; Jouyban, A. Development a coordination polymer based nanosensor for phenobarbital determination in exhaled breath condensate. J. Pharm. Biomed. Anal. 2022, 215, 114761. [Google Scholar] [CrossRef] [PubMed]
- Nasehi Nejhad, P.; Jouyban, A.; Khoubnasabjafari, M.; Jouyban-Gharamaleki, V.; Hosseini, M.; Rahimpour, E. Development of a fluoremetric probe based on molecularly imprinted polymers for determination of phenobarbital in exhaled breath condensate. Chem. Pap. 2022, 76, 3447–3457. [Google Scholar] [CrossRef]
- Hasanzadeh, M.; Mokhtari, F.; Shadjou, N.; Eftekhari, A.; Mokhtarzadeh, A.; Jouyban-Gharamaleki, V.; Mahboob, S. Poly arginine-graphene quantum dots as a biocompatible and non-toxic nanocomposite: Layer-by-layer electrochemical preparation, characterization and non-invasive malondialdehyde sensory application in exhaled breath condensate. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 75, 247–258. [Google Scholar] [CrossRef]
- Park, C.H.; Schroeder, V.; Kim, B.J.; Swager, T.M. Ionic Liquid-Carbon Nanotube Sensor Arrays for Human Breath Related Volatile Organic Compounds. ACS Sens. 2018, 3, 2432–2437. [Google Scholar] [CrossRef] [PubMed]
- Shirazi, K.; Karimzadeh, Z.; Hosseini, M.B.; Jouyban-Gharamaleki, V.; Khoubnasabjafari, M.; Soleymani, J.; Rahimpour, E.; Jouyban, A. Utilizing nitrogen, sulfur, phosphorus, and chlorine co-doped carbon dots as a fluorescent probe for determination of vancomycin in exhaled breath condensate. Heliyon 2024, 10, e37253. [Google Scholar] [CrossRef]
- Sarfraz, N.; Khan, I. Plasmonic Gold Nanoparticles (AuNPs): Properties, Synthesis and their Advanced Energy, Environmental and Biomedical Applications. Chem. Asian J. 2021, 16, 720–742. [Google Scholar] [CrossRef]
- Mitri, N.; Rahme, K.; Fracasso, G.; Ghanem, E. Human blood biocompatibility and immunogenicity of scFvD2B PEGylated gold nanoparticles. Nanotechnology 2022, 33, 315101. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghanem, E. Nanosensors for Exhaled Breath Condensate: Explored Models, Analytes, and Prospects. J. Nanotheranostics 2025, 6, 14. https://doi.org/10.3390/jnt6020014
Ghanem E. Nanosensors for Exhaled Breath Condensate: Explored Models, Analytes, and Prospects. Journal of Nanotheranostics. 2025; 6(2):14. https://doi.org/10.3390/jnt6020014
Chicago/Turabian StyleGhanem, Esther. 2025. "Nanosensors for Exhaled Breath Condensate: Explored Models, Analytes, and Prospects" Journal of Nanotheranostics 6, no. 2: 14. https://doi.org/10.3390/jnt6020014
APA StyleGhanem, E. (2025). Nanosensors for Exhaled Breath Condensate: Explored Models, Analytes, and Prospects. Journal of Nanotheranostics, 6(2), 14. https://doi.org/10.3390/jnt6020014