Anti-Poly(ethylene glycol) (PEG) Antibodies: From Where Are We Coming and Where Are We Going
Abstract
1. Introduction
2. Immunogenicity of Pharmaceuticals
3. Revisiting PEG Immunogenicity
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Harris, J.M.; Chess, R.B. Effect of pegylation on pharmaceuticals. Nat. Rev. Drug Discov. 2003, 2, 214–221. [Google Scholar] [CrossRef] [PubMed]
- Anchordoquy, T.; Artzi, N.; Balyasnikova, I.V.; Barenholz, Y.; La-Beck, N.M.; Brenner, J.S.; Chan, W.C.W.; Decuzzi, P.; Exner, A.A.; Gabizon, A.; et al. Mechanisms and barriers in nanomedicine: Progress in the field and future directions. ACS Nano 2024, 18, 13983–13999. [Google Scholar] [CrossRef] [PubMed]
- Chen, B.-M.; Cheng, T.-L.; Roffler, S.R. Polyethylene glycol immunogenicity: Theoretical, clinical, and practical aspects of anti-polyethylene glycol antibodies. ACS Nano 2012, 15, 14022–14048. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Wu, E.; Li, G.; Wang, B.; Zhan, C. Anti-PEG antibodies: Current situation and countermeasures. Nano Today 2024, 55, 102163. [Google Scholar] [CrossRef]
- Senti, M.E.; de Jongh, C.A.; Dijkxhoorn, K.; Verhoef, J.J.F.; Szebeni, J.; Storm, G.; Hack, C.E.; Schiffelers, R.M.; Fens, M.H.; Boross, P. Anti-PEG antibodies compromise the integrity of PEGylated lipid-based nanoparticles via complement. J. Control. Release 2022, 341, 475–486. [Google Scholar] [CrossRef] [PubMed]
- Moghimi, S.M.; Haroon, H.B.; Yaghmur, A.; Hunter, A.C.; Papini, E.; Farhangrazi, Z.S.; Simberg, D.; Trohopoulos, P.N. Perspectives on complement and phagocytic responses to nanoparticles: From fundamentals to adverse reactions. J. Control. Release 2023, 356, 115–129. [Google Scholar] [CrossRef]
- Sellaturay, P.; Nasser, S.; Islam, S.; Gurugama, P.; Ewan, P.W. Polyethylene glycol (PEG) is a cause of anaphylaxis to the Pfizer/BioNTech mRNA COVID-19 vaccine. Clin. Exp. Allergy 2021, 51, 861–863. [Google Scholar] [CrossRef]
- Ju, Y.; Lee, W.S.; Pilkington, E.H.; Kelly, H.G.; Li, S.; Selva, K.J.; Wragg, K.M.; Subbarao, K.; Nguyen, T.H.O.; Rowntree, L.C.; et al. Anti-PEG antibodies boosted in humans by SARS-CoV-2 lipid nanoparticle mRNA vaccine. ACS Nano 2022, 16, 11769–11780. [Google Scholar] [CrossRef]
- Guerrini, G.; Gioria, S.; Sauer, A.V.; Lucchesi, S.; Montagnani, F.; Pastore, G.; Ciabattini, A.; Medaglini, D.; Calzolai, L. Monitoring anti-PEG antibodies level upon repeated lipid nanoparticle-based COVID-19 vaccine administration. Int. J. Mol. Sci. 2022, 13, 8838. [Google Scholar] [CrossRef]
- Zhou, Z.-H.; Cortese, M.M.; Fang, J.-L.; Wood, R.; Hummell, D.S.; Risma, K.A.; Norton, A.E.; KuKuruga, M.; Kirshner, S.; Rabin, R.L.; et al. Evaluation of association of anti-PEG antibodies with anaphylaxis after mRNA COVID-19 vaccination. Vaccine 2023, 41, 4183–4189. [Google Scholar] [CrossRef]
- Moghimi, S.M. Allergic reactions and anaphylaxis to LNP-based COVID-19 vaccines. Mol. Ther. 2021, 29, 898–900. [Google Scholar] [CrossRef]
- Sauna, Z.E.; Jawa, V.; Balu-Iyer, S.; Chirmule, N. Understanding preclinical and clinical immunogenicity risks in novel biotherapeutics development. Front. Immunol. 2023, 14, 1151888. [Google Scholar] [CrossRef]
- Weltzien, H.U.; Padovan, E. Molecular features of penicillin allergy. J. Investig. Dermatol. 1998, 110, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Shinnick, S.E.; Browning, M.L.; Koontz, S.E. Managing hypersensitivity to asparaginase in pediatrics, adolescents, and young adults. J. Pediatr. Oncol. Nurs. 2013, 30, 63–77. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Ettah, U.; Jacques, S.; Gaikwad, H.; Monte, A.; Dylla, L.; Guntupalli, S.; Moghimi, S.M.; Simberg, D. Optimized enzyme-linked immunosorbent assay for anti-PEG antibody detection in healthy donors and patients treated with PEGylated liposomal doxorubicin. Mol. Pharm. 2024, 21, 3053–3060. [Google Scholar] [CrossRef]
- Vu, V.P.; Gifford, G.B.; Chen, F.; Benasutti, H.; Wang, G.; Groman, E.V.; Schienman, R.; Moghimi, S.M.; Simberg, D. Immunoglobulin deposition on biomolecule corona determines complement opsonization efficiency of preclinical and clinical nanoparticles. Nat. Nanotechnol. 2019, 14, 260–268. [Google Scholar] [CrossRef]
- Kozma, G.T.; Mészáros, T.; Berényi, P.; Facskó, R.; Patkó, Z.; Olá, C.Z.; Nagy, A.; Fülöp, T.G.; Glatter, K.A.; Radovits, T.; et al. Role of anti-polyethylene glycol (PEG) antibodies in the allergic reactions to PEG-containing COVID-19 vaccines: Evidence for immunogenicity of PEG. Vaccine 2023, 41, 4561–4570. [Google Scholar] [CrossRef]
- Ishida, T.; Atobe, K.; Wang, X.; Kiwada, H. Accelerated blood clearance of PEGylated liposomes and high-dose first injection. J. Control. Release 2006, 115, 251–258. [Google Scholar] [CrossRef] [PubMed]
- Haroon, H.B.; Dhillon, E.; Farhangrazi, Z.S.; Trohopoulos, P.N.; Simberg, D.; Moghimi, S.M. Activation of the complement system by nanoparticles and strategies for complement inhibition. Eur. J. Pharm. Biopharm. 2023, 193, 227–240. [Google Scholar] [CrossRef]
- Moghimi, S.M. Nanomedicine safety in preclinical and clinical development: Focus on idiosyncratic injection/infusion reactions. Drug Discov. Today 2018, 23, 1034–1042. [Google Scholar] [CrossRef]
- Chen, W.-A.; Chang, D.-Y.; Chen, B.-M.; Lin, Y.-C.; Barenholz, Y.; Roffler, S.R. Antibodies against poly(ethylene glycol) activate innate immune cells and induce hypersensitivity reactions to PEGylated nanomedicines. ACS Nano 2023, 17, 5757–5772. [Google Scholar] [CrossRef]
- Gaikwad, H.; Li, Y.; Wang, G.; Li, R.; Dai, S.; Rester, C.; Kedl, R.; Saba, L.; Banda, N.K.; Schienman, R.I.; et al. Antibody-dependent complement responses toward SARS-CoV-2 receptor-binding domain immobilized on “pseudovirus-like” nanoparticles. ACS Nano 2022, 16, 8704–8715. [Google Scholar] [CrossRef]
- Inturi, S.; Wang, G.; Chen, F.; Banda, N.K.; Holers, V.M.; Wu, L.; Moghimi, S.M.; Simberg, D. Modulatory role of surface coating of superparamagnetic iron oxide nanoworms in complement opsonization and leukocyte uptake. ACS Nano 2015, 9, 10758–10768. [Google Scholar] [CrossRef]
- Harris, C.L.; Heurich, M.; Rodriguez de Cordoba, S.; Morgan, B.P. The Complotype: Dictating risk for inflammation and infection. Trends Immunol. 2012, 33, 513–521. [Google Scholar] [CrossRef]
- Heurich, M.; Martinez-Barricarte, R.; Francis, N.J.; Roberts, D.L.; Rodriguez de Cordoba, S.; Morgan, B.P.; Harris, C.L. Common polymorphisms in C3, Factor B, and Factor H collaborate to determine systemic complement activity and disease Risk. Proc. Natl. Acad. Sci. USA 2011, 108, 8761–8766. [Google Scholar] [CrossRef] [PubMed]
- Viegas, T.X.; Bentley, M.D.; Harris, J.M.; Fang, Z.; Yoon, K.; Dizman, B.; Weimer, R.; Mero, A.; Pasut, G.; Veronese, F.M. Polyoxazoline: Chemistry, properties, and applications in drug delivery. Bioconjug. Chem. 2011, 22, 976–986. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Lim, S.I.; Kim, J.C.; Tae, G.; Kwon, I. Site-specific albumination as an alternative to PEGylation for the enhanced serum half-life in vivo. Biomacromolecules 2016, 17, 1811–1817. [Google Scholar] [CrossRef] [PubMed]
- Dinesen, A.; Andersen, V.L.; Elk Hashab, M.; Pilati, D.; Bech, P.; Fuchs, E.; Samuelsen, T.R.; Winther, A.; Cai, Y.; Marcher, A.; et al. An albumin-Holliday junction biomolecular modular design for programmable multifunctionality and prolonged circulation. Bioconjug. Chem. 2024, 35, 214–222. [Google Scholar] [CrossRef]
- Tavano, R.; Gabrielli, L.; Lubian, E.; Fedeli, C.; Visentin, S.; De Laureto, P.P.; Arrigoni, G.; Geffer-Smith, A.; Chen, F.; Simberg, D.; et al. C1q-mediated complement activation and C3 opsonization trigger recognition of stealth poly(2-methyl-2-oxazoline)-coated silica nanoparticles by human phagocytes. ACS Nano 2018, 12, 5834–5847. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simberg, D.; Moghimi, S.M. Anti-Poly(ethylene glycol) (PEG) Antibodies: From Where Are We Coming and Where Are We Going. J. Nanotheranostics 2024, 5, 99-103. https://doi.org/10.3390/jnt5030007
Simberg D, Moghimi SM. Anti-Poly(ethylene glycol) (PEG) Antibodies: From Where Are We Coming and Where Are We Going. Journal of Nanotheranostics. 2024; 5(3):99-103. https://doi.org/10.3390/jnt5030007
Chicago/Turabian StyleSimberg, Dmitri, and S. Moein Moghimi. 2024. "Anti-Poly(ethylene glycol) (PEG) Antibodies: From Where Are We Coming and Where Are We Going" Journal of Nanotheranostics 5, no. 3: 99-103. https://doi.org/10.3390/jnt5030007
APA StyleSimberg, D., & Moghimi, S. M. (2024). Anti-Poly(ethylene glycol) (PEG) Antibodies: From Where Are We Coming and Where Are We Going. Journal of Nanotheranostics, 5(3), 99-103. https://doi.org/10.3390/jnt5030007