Interaction Between Gravitational Waves and Trapped Bose–Einstein Condensates
Abstract
1. Introduction
2. Gravitational Waves
3. Bose–Einstein Condensates
4. Bose–Einstein Condensates in Curved Spacetime
5. Quantum Fidelity and Enhanced Phase Shift
5.1. Anisotropic Harmonic Confinement
5.1.1. Non-Interacting Bosons
5.1.2. Interacting Bosons
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Roitberg, A. Einstein field equations for Bose-Einstein condensates in cosmology. J. Phys. Conf. Ser. 2021, 1730, 012017. [Google Scholar] [CrossRef]
- Roitberg, A. Emergence of effective Lorentzian metric from a vortex defect. AIP Conf. Proc. 2023, 2872, 120060. [Google Scholar] [CrossRef]
- Liberati, S. Analogue gravity models of emergent gravity: Lessons and pitfalls. J. Phys. Conf. Ser. 2017, 880, 012009. [Google Scholar] [CrossRef]
- Abbott, B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration]. Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 2016, 116, 061102. [Google Scholar] [CrossRef]
- Abbott, B.P. et al. [LIGO Scientific Collaboration and Virgo Collaboration]. GW170814: A three-detector observation of gravitational waves from a binary black hole coalescence. Phys. Rev. Lett. 2017, 119, 141101. [Google Scholar] [CrossRef] [PubMed]
- Schützhold, R. Interaction of a Bose-Einstein condensate with a gravitational wave. Phys. Rev. D 2018, 98, 105019. [Google Scholar] [CrossRef]
- Sabín, C.; Bruschi, D.E.; Ahmadi, M.; Fuentes, I. Phonon creation by gravitational waves. New J. Phys. 2014, 16, 085003. [Google Scholar] [CrossRef]
- Robbins, M.P.G.; Afshordi, N.; Jamison, A.O.; Mann, R.B. Detection of gravitational waves using parametric resonance in Bose-Einstein condensates. Class. Quant. Grav. 2022, 39, 175009. [Google Scholar] [CrossRef]
- Gallerati, A.; Modanese, G.; Ummarino, G.A. Interaction between macroscopic quantum systems and gravity. Front. Phys. 2022, 10, 941858. [Google Scholar] [CrossRef]
- Sen, S.; Gangopadhyay, S. Probing the quantum nature of gravity using a Bose-Einstein condensate. Phys. Rev. D 2024, 110, 026014. [Google Scholar] [CrossRef]
- Wald, R.M. General Relativity; Chicago University Press: Chicago, IL, USA, 1984; Available online: https://cdn.preterhuman.net/texts/science_and_technology/physics/General_Relativity_Theory/ (accessed on 16 November 2024).
- Salasnich, L. Quantum Physics of Light and Matter. Photons, Atoms, and Strongly Correlated Systems; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Glauber, R.J. Coherent and incoherent states of the radiation field. Phys. Rev. 1963, 131, 2766–2788. [Google Scholar] [CrossRef]
- Sudarshan, E.C.G. Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams. Phys. Rev. Lett. 1963, 10, 277–279. [Google Scholar] [CrossRef]
- Gross, E.P. Structure of a quantized vortex in boson systems. Nuovo Cim. 1961, 20, 454–477. [Google Scholar] [CrossRef]
- Gross, E.P. Hydrodynamics of a superfluid condensate. J. Math. Phys. 1963, 4, 195–207. [Google Scholar] [CrossRef]
- Pitaevskii, L.P. Vortex lines in an imperfect Bose gas. Sov. Phys. JETP 1961, 13, 451–454. Available online: http://jetp.ras.ru/cgi-bin/e/index/e/13/2/p451?a=list (accessed on 16 November 2024).
- Fagnocchi, S.; Finazzi, S.; Liberati, S.; Kormos, M.; Trombettoni, A. Relativistic Bose-Einstein condensates: A new system for analogue models of gravity. New J. Phys. 2010, 12, 095012. [Google Scholar] [CrossRef]
- Feshbach, H. Unified theory of nuclear reactions. Ann. Phys. 1958, 5, 357–390. [Google Scholar] [CrossRef]
- Feshbach, H. A unified theory of nuclear reactions. II. Ann. Phys. 1962, 19, 287–313. [Google Scholar] [CrossRef]
- Fano, U. Sullo spettro di assorbimento dei gas nobili presso il limite dello spettro d’arco. Nuovo Cim. 1935, 12, 154–161. [Google Scholar] [CrossRef]
- Chin, C.; Grimm, R.; Julienne, P.; Tiesinga, E. Feshbach resonances in ultracold gases. Rev. Mod. Phys. 2010, 82, 1225–1286. [Google Scholar] [CrossRef]
- Salasnich, L. Time-dependent variational approach to Bose-Einstein condensation. Int. J. Mod. Phys. B 2000, 14, 1–11. [Google Scholar] [CrossRef]
- Afek, I.; Ambar, O.; Silberberg, Y. High-NOON states by mixing quantum and classical light. Science 2010, 328, 879–881. [Google Scholar] [CrossRef]
- Zhang, J.; Um, M.; Lv, D.; Zhang, J.-N.; Duan, L.-M.; Kim, K. NOON states of nine quantized vibrations in two radial modes of a trapped ion. Phys. Rev. Lett. 2018, 121, 160502. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perodi, A.; Salasnich, L. Interaction Between Gravitational Waves and Trapped Bose–Einstein Condensates. Physics 2024, 6, 1306-1314. https://doi.org/10.3390/physics6040081
Perodi A, Salasnich L. Interaction Between Gravitational Waves and Trapped Bose–Einstein Condensates. Physics. 2024; 6(4):1306-1314. https://doi.org/10.3390/physics6040081
Chicago/Turabian StylePerodi, Alessio, and Luca Salasnich. 2024. "Interaction Between Gravitational Waves and Trapped Bose–Einstein Condensates" Physics 6, no. 4: 1306-1314. https://doi.org/10.3390/physics6040081
APA StylePerodi, A., & Salasnich, L. (2024). Interaction Between Gravitational Waves and Trapped Bose–Einstein Condensates. Physics, 6(4), 1306-1314. https://doi.org/10.3390/physics6040081