Optical Medium Approach: Simplifying General Relativity and Nonlinear Electrodynamics for Educational Purposes
Abstract
1. Introduction
2. The Concept of the Optical Medium Approach
3. The Effective Refractive Index in the Case of the Schwarzschild Solution
4. The Effective Refractive Index in the Case of a Rotating Object
5. The Effective Refractive Index in Nonlinear Vacuum Electrodynamics
6. Application on Magnetars
7. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Stephani, H.; Kramer, D.; MacCallum, M.; Hoenselaers, C.; Herlt, E. Exact Solutions of Einstein’s Field Equations; Cambridge University Press: New York, NY, USA, 2003. [Google Scholar] [CrossRef]
- Kersting, M.; Henriksen, E.K.; Bøe, M.V.; Angell, C. General relativity in upper secondary school: Design and evaluation of an online learning environment using the model of educational reconstruction. Phys. Rev. Phys. Educ. Res. 2018, 14, 010130. [Google Scholar] [CrossRef]
- Henriksen, E.K.; Bungum, B.; Angell, C.; Tellefsen, C.W.; Frågåt, T.; Vetleseter Bøe, M. Relativity, quantum physics and philosophy in the upper secondary curriculum: Challenges, opportunities and proposed approaches. Phys. Educ. 2014, 49, 678. [Google Scholar] [CrossRef]
- Velentzas, A.; Halkia, K. The use of thought experiments in teaching physics to upper secondary-level students: Two examples from the theory of relativity. Int. J. Sci. Educ. 2013, 35, 3026–3049. [Google Scholar] [CrossRef]
- Lehner, L. Numerical relativity: A review. Class. Quant. Grav. 2001, 18, R25–R86. [Google Scholar] [CrossRef]
- Kaur, T.; Blair, D.; Moschilla, J.; Stannard, W.; Zadnik, M. Teaching Einsteinian physics at schools: Part 1. Models and analogies for relativity. Phys. Educ. 2017, 52, 065012. [Google Scholar] [CrossRef]
- Tamm, I.E. The electrodynamics of anisotropic media in the special theory of relativity. Zh. Rus. Fiz.-Khim. Obsch. Otd. Fiz. [J. Rus. Phys.-Chem. Soc. Phys. Sect.] 1924, 56, 248–262. Available online (English translation): http://neo-classical-physics.info/uploads/3/0/6/5/3065888/tamm_-_ed_of_anisotropic_media_1924.pdf (accessed on 9 November 2024). (In Russian).
- Balazs, N. Effect of a gravitational field, due to a rotating body, on the plane of polarization of an electromagnetic wave. Phys. Rev. 1958, 110, 236–239. [Google Scholar] [CrossRef]
- Alsing, P. The optical-mechanical analogy for stationary metrics in general relativity. Am. J. Phys. 1998, 66, 779–790. [Google Scholar] [CrossRef]
- Roy, S.; Sen, A.K. Trajectory of a light ray in Kerr field: A material medium approach. Astrophys. Space Sci. 2015, 360, 23. [Google Scholar] [CrossRef]
- Sen, A.K. A more exact expression for the gravitational deflection of light, derived using material medium approach. Astrophysics 2010, 53, 560–569. [Google Scholar] [CrossRef]
- Roy, S.; Sen, A.K. Study of gravitational deflection of light ray. J. Phys. Conf. Ser. 2019, 1330, 012002. [Google Scholar] [CrossRef]
- Werner, M.C. Gravitational lensing in the Kerr–Randers optical geometry. Gen. Rel. Grav. 2012, 44, 3047–3057. [Google Scholar] [CrossRef]
- Beissen, N.; Utepova, D.; Abishev, M.; Quevedo, H.; Khassanov, M.; Toktarbay, S. Gravitational refraction of compact objects with quadrupoles. Symmetry 2023, 15, 614. [Google Scholar] [CrossRef]
- Beissen, N.; Utepova, D.; Kossov, V.; Toktarbay, S.; Khassanov, M.; Yernazarov, T.; Seydalieva, M. The influence of deformation in compact objects on redshift and radar echo delay. Rec. Contrib. Phys. 2024, 88, 4–11. [Google Scholar] [CrossRef]
- Kruglov, S.I. Vacuum birefringence from the effective Lagrangian of the electromagnetic field. Phys. Rev. D 2007, 75, 117301. [Google Scholar] [CrossRef]
- Kruglov, S.I. On generalized Born–Infeld electrodynamics. J. Phys. A 2010, 43, 375402. [Google Scholar] [CrossRef]
- Plebanski, J. Electromagnetic waves in gravitational fields. Phys. Rev. 1960, 118, 1396–1408. [Google Scholar] [CrossRef]
- Courbin, F.; Minniti, D. Gravitational Lensing: An Astrophysical Tool; Springer: Berlin/Hedelberg, Germany, 2002. [Google Scholar] [CrossRef]
- Abishev, M.; Beissen, N.; Belissarova, F.; Boshkayev, K.; Mansurova, A.; Muratkhan, A.; Quevedo, H.; Toktarbay, S. Approximate perfect fluid solutions with quadrupole moment. Int. J. Mod. Phys. D 2021, 30, 2150096. [Google Scholar] [CrossRef]
- Toktarbay, S.; Quevedo, H.; Abishev, M.; Muratkhan, A. Gravitational field of slightly deformed naked singularities. Eur. Phys. J. C 2022, 82, 382. [Google Scholar] [CrossRef]
- Denisov, V.I.; Sokolov, V.A.; Vasili’ev, M.I. Nonlinear vacuum electrodynamics birefringence effect in a pulsar’s strong magnetic field. Phys. Rev. D 2014, 90, 023011. [Google Scholar] [CrossRef]
- Bliokh, P.V.; Minakov, A.A. Gravitational Lenses; Naukova Dumka: Kiev, Ukraine, 1989. (In Russian) [Google Scholar]
- Simionato, S. Dark Matter and Gravitational Lensing as Teaching Tools for Physics and Astronomy. Ph.D. Thesis, Friedrich-Schiller-Universität Jena, Jena, Germany, 2022. Available online: https://www.db-thueringen.de/receive/dbt_mods_00052048 (accessed on 9 November 2024).
- Landau, L.D.; Lifshitz, E.M. The Classical Theory of Fields; Pergamon Press PLC: Oxford, UK; Elsevier Ltd.: Oxford, UK, 2013; Available online: https://www.sciencedirect.com/book/9780080250724/the-classical-theory-of-fields (accessed on 9 November 2024).
- Islam, J.N. Rotating Fields in General Relativity; Cambridge University Press: New York, NY, USA, 1985. [Google Scholar] [CrossRef]
- Jackson, J.D. Classical Electrodynamics; John Wiley & Sons, Inc.: New York, NY, USA, 2021. [Google Scholar]
- Heisenberg, W.; Euler, H. Folgerungen aus der Diracschen Theorie des Positrons. Z. Phys. 1936, 98, 714–732. [Google Scholar] [CrossRef]
- Heisenberg, W.; Euler, H. Consequences of Dirac Theory of the Positron. arXiv 2006, arXiv:physics/0605038. [Google Scholar] [CrossRef]
- Denisov, V.I.; Dolgaya, E.E.; Sokolov, V.A. Nonperturbative QED vacuum birefringence. J. High Energy Phys. 2017, 2017, 105. [Google Scholar] [CrossRef]
- Denisov, V.I.; Denisova, I.P.; Svertilov, S.I. Nonlinear electrodynamic effect of ray bending in the magnetic-dipole field. Dokl. Phys. 2001, 46, 705–707. [Google Scholar] [CrossRef]
- Abishev, M.E.; Toktarbay, S.; Beissen, N.A.; Belissarova, F.B.; Khassanov, M.K.; Kudussov, A.S.; Abylayeva, A.Z. Effects of non-linear electrodynamics of vacuum in the magnetic quadrupole field of a pulsar. Mon. Not. R. Astron. Soc. 2018, 481, 36–43. [Google Scholar] [CrossRef]
- Beissen, N.; Yernazarov, T.; Khassanov, M.; Toktarbay, S.; Taukenova, A.; Talkhat, A. Bending of light by magnetars within generalized Born–Infeld electrodynamics: Insights from the Gauss-Bonnet theorem. Symmetry 2024, 16, 132. [Google Scholar] [CrossRef]
- Kim, J.Y.; Lee, T. Light bending by nonlinear electrodynamics under strong electric and magnetic field. J. Cosmol. Astropart. Phys. 2011, 2011, 017. [Google Scholar] [CrossRef]
- Kim, J.Y. Deflection of light by magnetars in the generalized Born–Infeld electrodynamics. Eur. Phys. J. C 2022, 82, 485. [Google Scholar] [CrossRef]
- Kruglov, S.I. On generalized ModMax model of nonlinear electrodynamics. Phys. Lett. B 2021, 822, 136633. [Google Scholar] [CrossRef]
- Kruglov, S.I. Notes on Born–Infeld-type electrodynamics. Mod. Phys. Lett. A 2017, 32, 1750201. [Google Scholar] [CrossRef]
- Kruglov, S.I. Born–Infeld-type electrodynamics and magnetic black holes. Ann. Phys. 2017, 383, 550–559. [Google Scholar] [CrossRef]
- Kruglov, S.I. Magnetized black holes and nonlinear electrodynamics. Int. J. Mod. Phys. A 2017, 32, 1750147. [Google Scholar] [CrossRef]
- Kruglov, S.I. Nonlinear electrodynamics and magnetic black holes. Ann. Phys. 2017, 529, 1700073. [Google Scholar] [CrossRef]
- Beissen, N.; Abishev, M.; Toktarbay, S.; Yernazarov, T.; Aimuratov, Y.; Khassanov, M. Nonlinear electrodynamical lensing of electromagnetic waves on the dipole magnetic field of the magnetar. Int. J. Mod. Phys. D 2023, 32, 2350106. [Google Scholar] [CrossRef]
- Manchester, R.N. Pulsars. In Gravitational Radiation, Collapsed Objects and Exact Solutions. Proceedings of the Einstein Centenary Summer School, Perth, Australia, 01 January, 1979; Edwards, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 34–66. [Google Scholar] [CrossRef]
- Takibayev, N.; Nasirova, D.; Katō, K.; Kurmangaliyeva, V. Excited nuclei, resonances and reactions in neutron star crusts. J. Phys. Conf. Ser. 2018, 940, 012058. [Google Scholar] [CrossRef]
- Riffert, H.; Meszaros, P. Gravitational light bending near neutron stars. I. Emission from columns and hot spots. Astrophys. J. 1988, 325, 207–217. [Google Scholar] [CrossRef]
- Born, M.; Wolf, E. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light; Pergamon Press/Elsevier: Oxford, UK, 2013; Available online: https://www.sciencedirect.com/book/9780080264820/principles-of-optics (accessed on 9 November 2024).
- Gibbons, G.W.; Werner, M.C. Applications of the Gauss Bonnet theorem to gravitational lensing. Class. Quant. Grav. 2008, 25, 235009. [Google Scholar] [CrossRef]
- Ishihara, A.; Suzuki, Y.; Ono, T.; Asada, H. Finite-distance corrections to the gravitational bending angle of light in the strong deflection limit. Phys. Rev. D 2017, 95, 044017. [Google Scholar] [CrossRef]
- Jusufi, K.; Övgün, A.; Saavedra, J.; Vásquez, Y.; Gonzalez, P. Deflection of light by rotating regular black holes using the Gauss-Bonnet theorem. Phys. Rev. D 2018, 97, 124024. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toktarbay, S.; Beissen, N.; Khassanov, M.; Aitassov, T.; Sadu, A. Optical Medium Approach: Simplifying General Relativity and Nonlinear Electrodynamics for Educational Purposes. Physics 2024, 6, 1294-1305. https://doi.org/10.3390/physics6040080
Toktarbay S, Beissen N, Khassanov M, Aitassov T, Sadu A. Optical Medium Approach: Simplifying General Relativity and Nonlinear Electrodynamics for Educational Purposes. Physics. 2024; 6(4):1294-1305. https://doi.org/10.3390/physics6040080
Chicago/Turabian StyleToktarbay, Saken, Nurzada Beissen, Manas Khassanov, Temirbolat Aitassov, and Amina Sadu. 2024. "Optical Medium Approach: Simplifying General Relativity and Nonlinear Electrodynamics for Educational Purposes" Physics 6, no. 4: 1294-1305. https://doi.org/10.3390/physics6040080
APA StyleToktarbay, S., Beissen, N., Khassanov, M., Aitassov, T., & Sadu, A. (2024). Optical Medium Approach: Simplifying General Relativity and Nonlinear Electrodynamics for Educational Purposes. Physics, 6(4), 1294-1305. https://doi.org/10.3390/physics6040080