Probing Relativistic Heavy-Ion Collisions via Photon Anisotropic Flow Ratios. A Brief Review
Abstract
:1. Introduction
2. Anisotropic Flow of Photons
3. Ratio of Photon Anisotropic Flow
4. Ratio of Anisotropic Flow in the Presence of Clustered Structure
5. Summary and Conclusions
Funding
Conflicts of Interest
Appendix A
Centrality | (GeV) | Error Estimate | |
---|---|---|---|
0–20% centrality | 1.19 | 1.9832 | 1.8354 |
1.69 | 1.8482 | 0.8103 | |
2.20 | 1.6303 | 0.6833 | |
2.70 | 1.2974 | 0.5053 | |
3.20 | 1.0289 | 0.5063 | |
3.85 | 0.5063 | 0.7587 | |
20–40% centrality | 1.19 | 5.0674 | 9.0235 |
1.69 | 3.3807 | 3.0394 | |
2.20 | 2.6640 | 1.6579 | |
2.70 | 2.2646 | 1.2841 | |
3.20 | 2.0832 | 1.2792 | |
3.85 | 3.1558 | 4.0156 |
References
- Harris, J.W.; Müller, B. The Search for the quark-gluon plasma. Annu. Rev. Nucl. Part. Sci. 1996, 46, 71–107. [Google Scholar] [CrossRef]
- Shuryak, E. Strongly coupled quark-gluon plasma in heavy ion collisions. Rev. Mod. Phys. 2017, 89, 035001. [Google Scholar] [CrossRef]
- Yagi, K.; Hatsuda, T.; Miake, Y. Quark-Gluon Plasma: From Big Bang to Little Bang; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Busza, W.; Rajagopal, K.; van der Schee, W. Heavy ion collisions: The big picture, and the big questions. Annu. Rev. Nucl. Part. Sci. 2018, 68, 339–376. [Google Scholar] [CrossRef]
- Kolb, P.F.; Heinz, U. Hydrodynamic description of ultrarelativistic heavy-ion collisions. In Quark–Gluon Plasma 3; Hwa, R.C., Wang, X.-N., Eds.; World Scientific Co., Ltd.: Singapore, 2004; pp. 634–714. [Google Scholar] [CrossRef]
- Adler, C. et al. [STAR Collaboration] Identified particle elliptic flow in Au + Au collisions at 130 GeV. Phys. Rev. Lett. 2001, 87, 182301. [Google Scholar] [CrossRef]
- Adler, S.S. et al. [PHENIX Collaboration] Elliptic flow of identified hadrons in Au + Au collisions at 200 GeV. Phys. Rev. Lett. 2003, 91, 182301. [Google Scholar] [CrossRef]
- Kolb, P.F.; Sollfrank, J.; Heinz, U.W. Anisotropic transverse flow and the quark hadron phase transition. Phys. Rev. C 2000, 62, 054909. [Google Scholar] [CrossRef]
- Teaney, D.; Lauret, J.; Shuryak, E.V. A hydrodynamic description of heavy ion collisions at the SPS and RHIC. arXiv 2001, arXiv:nucl-th/0110037. [Google Scholar]
- Huovinen, P.; Kolb, P.F.; Heinz, U.W.; Ruuskanen, P.V.; Voloshin, S.A. Radial and elliptic flow at RHIC: Further predictions. Phys. Lett. B 2001, 503, 58–64. [Google Scholar] [CrossRef]
- Heinz, U.; Snellings, R. Collective flow and viscosity in relativistic heavy-ion collisions. Annu. Rev. Nucl. Part. Sci. 2013, 63, 123–151. [Google Scholar] [CrossRef]
- Eskola, K.J.; Honkanen, H.; Niemi, H.; Ruuskanen, P.V.; Räsänen, S.S. Predictiions for low-pT and high-pT hadron spectra in nearly central Pb+Pb collisions at 5.5 TeV tested at 130 and 200 GeV. Phys. Rev. C 2005, 72, 044904. [Google Scholar] [CrossRef]
- Huovinen, P.; Ruuskanen, P.V. Hydrodynamic models for heavy ion collisions. Annu. Rev. Nucl. Part. Sci. 2006, 56, 163–206. [Google Scholar] [CrossRef]
- Nonaka, C.; Bass, S.A. Space-time evolution of bulk QCD matter. Phys. Rev. C 2007, 75, 014902. [Google Scholar] [CrossRef]
- Romatschke, P.; Romatschke, U. Viscosity information from relativistic nuclear collisions: How perfect is the fluid observed at RHIC? Phys. Rev. Lett. 2007, 99, 172301. [Google Scholar] [CrossRef]
- Gale, C.; Jeon, S.; Schenke, B. Hydrodynamic modeling of heavy-ion collisions. Int. J. Mod. Phys. A 2013, 28, 1340011. [Google Scholar] [CrossRef]
- Schenke, B.; Jeon, S.; Gale, C. Elliptic and triangular flow in event-by-event D = 3 + 1 viscous hydrodynamics. Phys. Rev. Lett. 2011, 106, 042301. [Google Scholar] [CrossRef]
- Hama, Y.; Kodama, T.; Socolowski, O., Jr. Topics on hydrodynamic model of nucleus-nucleus collisions. Braz. J. Phys. 2005, 35, 24–51. [Google Scholar] [CrossRef]
- Andrade, R.; Grassi, F.; Hama, Y.; Kodama, T.; Socolowski, O., Jr. On the necessity to include event-by-event fluctuations in experimental evaluation of elliptical flow. Phys. Rev. Lett. 2006, 97, 202302. [Google Scholar] [CrossRef] [PubMed]
- Holopainen, H.; Niemi, H.; Eskola, K.J. Event-by-event hydrodynamics and elliptic flow from fluctuating initial state. Phys. Rev. C 2011, 83, 034901. [Google Scholar] [CrossRef]
- Schenke, B.; Tribedy, P.; Venugopalan, R. Fluctuating Glasma initial conditions and flow in heavy ion collisions. Phys. Rev. Lett. 2012, 108, 252301. [Google Scholar] [CrossRef]
- Heinz, U.; Qiu, Z.; Shen, C. Fluctuating flow angles and anisotropic flow measurements. Phys. Rev. C 2013, 87, 034913. [Google Scholar] [CrossRef]
- Alver, B.; Roland, G. Collision-geometry fluctuations and triangular flow in heavy-ion collisions. Phys. Rev. C 2010, 81, 054905. [Google Scholar] [CrossRef]
- Qiu, Z.; Shen, C.; Heinz, U. Hydrodynamic elliptic and triangular flow in Pb–Pb collisions at 2.76ATeV. Phys. Lett. B 2012, 707, 151–155. [Google Scholar] [CrossRef]
- David, G. Direct real photons in relativistic heavy ion collisions. Rep. Prog. Phys. 2020, 83, 046301. [Google Scholar] [CrossRef] [PubMed]
- McLerran, L.D.; Toimela, T. Photon and dilepton emission from the quark-gluon plasma: Some general considerations. Phys. Rev. D 1985, 31, 545–563. [Google Scholar] [CrossRef] [PubMed]
- Alam, J.; Sinha, B.; Raha, S. Electromagnetic probes of quark gluon plasma. Phys. Rep. 1996, 273, 243–362. [Google Scholar] [CrossRef]
- Cassing, W.; Bratkovskaya, E.L. Hadronic and electromagnetic probes of hot and dense nuclear matter. Phys. Rep. 1999, 308, 65–233. [Google Scholar] [CrossRef]
- Peitzmann, T.; Thoma, M.H. Direct photons from relativistic heavy-ion collisions. Phys. Rep. 2002, 364, 175–246. [Google Scholar] [CrossRef]
- Stankus, P. Direct photon production in relativistic heavy-ion collisions. Annu. Rev. Nucl. Part. Sci. 2005, 55, 517–554. [Google Scholar] [CrossRef]
- Shen, C.; Heinz, U.W.; Paquet, J.-F.; Gale, C. Thermal photons as a quark-gluon plasma thermometer reexamined. Phys. Rev. C 2014, 89, 044910. [Google Scholar] [CrossRef]
- Paquet, J.-F. Probing the space-time evolution of heavy ion collisions with photons and dileptons. Nucl. Phys. A 2017, 967, 184–191. [Google Scholar] [CrossRef]
- Gale, C. Direct photon production in relativistic heavy-ion collisions—A theory update. PoS Proc. Sci. 2019, 320, 023. [Google Scholar] [CrossRef]
- Srivastava, D.K. Direct photons from relativistic heavy-ion collisions. J. Phys. G Nucl. Part. Phys. 2008, 35, 104026. [Google Scholar] [CrossRef]
- Chatterjee, R.; Bhattacharya, L.; Srivastava, D.K. Electromagnetic probes. In The Physics of the Quark-Gluon Plasma. Introductory Lectures; Sarkar, S., Satz, H., Sinha, B., Eds.; Springer: Berlin/Heidelberg, Germany, 2010; pp. 219–264. [Google Scholar] [CrossRef]
- Chatterjee, R. Anisotropic flow of photons in relativistic heavy ion collisions. Pramana 2021, 95, 15. [Google Scholar] [CrossRef]
- Gale, C.; Hidaka, Y.; Jeon, S.; Lin, S.; Paquet, J.-F.; Pisarski, R.D.; Satow, D.; Skokov, V.V.; Vujanovic, G. Production and elliptic flow of dileptons and photons in a matrix model of the quark-gluon plasma. Phys. Rev. Lett. 2015, 114, 072301. [Google Scholar] [CrossRef]
- Monnai, A. Thermal photon v2 with slow quark chemical equilibration. Phys. Rev. C 2014, 90, 021901(R). [Google Scholar] [CrossRef]
- McLerran, L.; Schenke, B. The Glasma, photons and the implications of anisotropy. Nucl. Phys. A 2014, 929, 71–82. [Google Scholar] [CrossRef]
- Başar, G.; Kharzeev, D.E.; Skokov, V. Conformal anomaly as a source of soft photons in heavy ion collisions. Phys. Rev. Lett. 2012, 109, 202303. [Google Scholar] [CrossRef] [PubMed]
- Tuchin, K. Electromagnetic radiation by quark-gluon plasma in a magnetic field. Phys. Rev. C 2013, 87, 024912. [Google Scholar] [CrossRef]
- Zakharov, B.G. Effect of magnetic field on the photon radiation from quark-gluon plasma in heavy ion collisions. Eur. Phys. J. C 2016, 76, 609. [Google Scholar] [CrossRef]
- Vujanovic, G.; Paquet, J.-F.; Denicol, G.S.; Luzum, M.; Schenke, B.; Jeon, S.; Gale, C. Probing the early-time dynamics of relativistic heavy-ion collisions with electromagnetic radiation. Nucl. Phys. A 2014, 932, 230–234. [Google Scholar] [CrossRef]
- Liu, F.-M.; Liu, S.-X. Quark-gluon plasma formation time and direct photons from heavy ion collisions. Phys. Rev. C 2014, 89, 034906. [Google Scholar] [CrossRef]
- Garcia-Montero, O.; Löher, N.; Mazeliauskas, A.; Berges, J.; Reygers, K. Probing the evolution of heavy-ion collisions using direct photon interferometry. Phys. Rev. C 2020, 102, 024915. [Google Scholar] [CrossRef]
- Ruuskanen, P.V. Electromagnetic probes of quark-gluon plasma in relativistic heavy-ion collisions. Nucl. Phys. A 1992, 544, 169–182. [Google Scholar] [CrossRef]
- Srivastava, D.K.; Kapusta, J.I. Photon interferometry of quark-gluon dynamics. Phys. Lett. B 1993, 307, 1–6. [Google Scholar] [CrossRef]
- Srivastava, D.K. Intensity interferometry of thermal photons from relativistic heavy-ion collisions. Phys. Rev. C 2005, 71, 034905. [Google Scholar] [CrossRef]
- Peressounko, D. Hanbury Brown–Twiss interferometry of direct photons in heavy ion collisions. Phys. Rev. C 2003, 67, 014905. [Google Scholar] [CrossRef]
- Frodermann, E.; Heinz, U. Photon Hanbury-Brown–Twiss interferometry for noncentral heavy-ion collisions. Phys. Rev. C 2009, 80, 044903. [Google Scholar] [CrossRef]
- Adare, A. et al. [PHENIX Collaboration] Centrality dependence of low-momentum direct-photon production in Au + Au collisions at 200 GeV. Phys. Rev. C 2015, 91, 064904. [Google Scholar] [CrossRef]
- Adam, J. et al. [ALICE Collaboration] Enhanced production of multi-strange hadrons in high-multiplicity proton–proton collisions. Nat. Phys. 2017, 13, 535–539. [Google Scholar] [CrossRef]
- Adam, J. et al. [ALICE Collaboration] Direct photon production in Pb–Pb collisions at 2.76 TeV. Phys. Lett. B 2016, 754, 235–248. [Google Scholar] [CrossRef]
- Chatterjee, R. Electroweak physics: Summary. PoS Proc. Sci. 2021, 387, 026. [Google Scholar] [CrossRef]
- Adare, A. et al. [PHENIX Collaboration] Low-momentum direct-photon measurement in Cu + Cu collisions at 200 GeV. Phys. Rev. C 2018, 98, 054902. [Google Scholar] [CrossRef]
- Adare, A. et al. [PHENIX Collaboration] Beam energy and centrality dependence of direct-photon emission from ultrarelativistic heavy-ion collisions. Phys. Rev. Lett. 2019, 123, 022301. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, R.; Frodermann, E.S.; Heinz, U.W.; Srivastava, D.K. Elliptic flow of thermal photons in relativistic nuclear collisions. Phys. Rev. Lett. 2006, 96, 202302. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, R.; Srivastava, D.K. Formation time of QGP from thermal photon elliptic flow. Nucl. Phys. A 2009, 830, 503c–506c. [Google Scholar] [CrossRef]
- Chatterjee, R.; Dasgupta, P.; Srivastava, D.K. Anisotropic flow of thermal photons at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider. Phys. Rev. C 2017, 96, 014911. [Google Scholar] [CrossRef]
- Chatterjee, R.; Srivastava, D.K.; Renk, T. Triangular flow of thermal photons from an event-by-event hydrodynamic model for 2.76A TeV Pb + Pb collisions at the CERN Large Hadron Collider. Phys. Rev. C 2016, 94, 014903. [Google Scholar] [CrossRef]
- Dasgupta, P.; Chatterjee, R.; Srivastava, D.K. Spectra and elliptic flow of thermal photons from full-overlap U+U collisions at energies available at the BNL Relativistic Heavy Ion Collider. Phys. Rev. C 2017, 95, 064907. [Google Scholar] [CrossRef]
- Dasgupta, P.; Chatterjee, R.; Singh, S.K.; Alam, J. Effects of initial-state nucleon shadowing on the elliptic flow of thermal photons. Phys. Rev. C 2018, 97, 034902. [Google Scholar] [CrossRef]
- Chatterjee, R.; Srivastava, D.K.; Heinz, U.; Gale, C. Elliptic flow of thermal dileptons in relativistic nuclear collisions. Phys. Rev. C 2007, 75, 054909. [Google Scholar] [CrossRef]
- Arnold, P.B.; Moore, G.D.; Yaffe, L.G. Photon emission from quark gluon plasma: Complete leading order results. J. High Energy Phys. 2001, 12, 009. [Google Scholar] [CrossRef]
- Turbide, S.; Rapp, R.; Gale, C. Hadronic production of thermal photons. Phys. Rev. C 2004, 69, 014903. [Google Scholar] [CrossRef]
- Adare, A. et al. [PHENIX Collaboration] Observation of direct-photon collective flow in Au + Au collisions at 200 GeV. Phys. Rev. Lett. 2012, 109, 122302. [Google Scholar] [CrossRef] [PubMed]
- Lohner, D.; ALICE Collaboration. Measurement of direct-photon elliptic flow in Pb–Pb collisions at 2.76 TeV. J. Phys. Conf. Ser. 2013, 446, 012028. [Google Scholar] [CrossRef]
- Chatterjee, R.; Holopainen, H.; Helenius, I.; Renk, T.; Eskola, K.J. Elliptic flow of thermal photons from event-by-event hydrodynamic model. Phys. Rev. C 2013, 88, 034901. [Google Scholar] [CrossRef]
- Chatterjee, R.; Holopainen, H.; Renk, T.; Eskola, K.J. Enhancement of thermal photon production in event-by-event hydrodynamics. Phys. Rev. C 2011, 83, 054908. [Google Scholar] [CrossRef]
- van Hees, H.; Gale, C.; Rapp, R. Thermal photons and collective flow at energies available at the BNL Relativistic Heavy-Ion Collider. Phys. Rev. C 2011, 84, 054906. [Google Scholar] [CrossRef]
- Linnyk, O.; Cassing, W.; Bratkovskaya, E.L. Centrality dependence of the direct photon yield and elliptic flow in heavy-ion collisions at 200 GeV. Phys. Rev. C 2014, 89, 034908. [Google Scholar] [CrossRef]
- Dasgupta, P.; Chatterjee, R.; Srivastava, D.K. Directed flow of photons in Cu+Au collisions at RHIC. J. Phys. G 2020, 47, 085101. [Google Scholar] [CrossRef]
- Dasgupta, P.; De, S.; Chatterjee, R.; Srivastava, D.K. Photon production from Pb + Pb collisions at 5.02 TeV at the CERN Large Hadron Collider and at 39 TeV at the proposed Future Circular Collider facility. Phys. Rev. C 2018, 98, 024911. [Google Scholar] [CrossRef]
- Sun, J.-A.; Yan, L. The effect of weak magnetic photon emission from quark-gluon plasma. arXiv 2023, arXiv:2302.07696. [Google Scholar]
- Adamczyk, L. et al. [STAR Collaboration] Charge-dependent directed flow in Cu + Au collisions at 200 GeV. Phys. Rev. Lett. 2017, 118, 012301. [Google Scholar] [CrossRef]
- Chatterjee, S.; Singh, S.K.; Ghosh, S.; Hasanujjaman, M.; Alam, J.; Sarkar, S. Initial condition from the shadowed Glauber model. Phys. Lett. B 2016, 758, 269–273. [Google Scholar] [CrossRef]
- Gale, C.; Paquet, J.-F.; Schenke, B.; Shen, C. Probing early-time dynamics and quark-gluon plasma transport properties with photons and hadrons. Nucl. Phys. A 2021, 1005, 121863. [Google Scholar] [CrossRef]
- Chatterjee, R.; Holopainen, H.; Renk, T.; Eskola, K.J. Collision centrality and τ0 dependence of the emission of thermal photons from fluctuating initial state in ideal hydrodynamic calculation. Phys. Rev. C 2012, 85, 064910. [Google Scholar] [CrossRef]
- Chatterjee, R.; Dasgupta, P. Ratio of photon anisotropic flow in relativistic heavy ion collisions. Phys. Rev. C 2021, 104, 064907. [Google Scholar] [CrossRef]
- Eskola, K.J.; Kajantie, K.; Ruuskanen, P.V.; Tuominen, K. Scaling of transverse energies and multiplicities with atomic number and energy in ultrarelativistic nuclear collisions. Nucl. Phys. B 2000, 570, 379–389. [Google Scholar] [CrossRef]
- Laine, M.; Schröder, Y. Quark mass thresholds in QCD thermodynamics. Phys. Rev. D 2006, 73, 085009. [Google Scholar] [CrossRef]
- Ghiglieri, J.; Hong, J.; Kurkela, A.; Lu, E.; Moore, G.D.; Teaney, D. Next-to-leading order thermal photon production in a weakly coupled quark-gluon plasma. J. High Energy Phys. 2013, 2013, 10. [Google Scholar] [CrossRef]
- Adare, A. et al. [PHENIX Collaboration] Azimuthally anisotropic emission of low-momentum direct photons in Au + Au collisions at 200 GeV. Phys. Rev. C 2016, 94, 064901. [Google Scholar] [CrossRef]
- Shen, C.; Heinz, U.; Paquet, J.-F.; Gale, C. Thermal photon anisotropic flow serves as a quark-gluon plasma viscometer. Nucl. Phys. A 2014, 932, 184–188. [Google Scholar] [CrossRef]
- Niemi, H.; Denicol, G.S.; Holopainen, H.; Huovinen, P. Event-by-event distributions of azimuthal asymmetries in ultrarelativistic heavy-ion collisions. Phys. Rev. C 2013, 87, 054901. [Google Scholar] [CrossRef]
- Aidala, C. et al. [PHENIX Collaboration] Creation of quark–gluon plasma droplets with three distinct geometries. Nat. Phys. 2019, 15, 214–220. [Google Scholar] [CrossRef]
- Aad, G. et al. [ATLAS Collaboration] Observation of long-range elliptic azimuthal anisotropies in 13 and 2.76 TeV pp collisions with the ATLAS detector. Phys. Rev. Lett. 2016, 116, 172301. [Google Scholar] [CrossRef] [PubMed]
- Chatrchyan, S. et al. [CMS Collaboration] Observation of long-range, near-side angular correlations in pPb collisions at the LHC. Phys. Lett. B 2013, 718, 795–814. [Google Scholar] [CrossRef]
- Khachatryan, V.; PHENIX Collaboration. Direct photon production and scaling properties in large and small system collisions. J. Phys. Conf. Ser. 2020, 1602, 012015. [Google Scholar] [CrossRef]
- Rybczyński, M.; Piotrowska, M.; Broniowski, W. Signatures of α clustering in ultrarelativistic collisions with light nuclei. Phys. Rev. C 2018, 97, 034912. [Google Scholar] [CrossRef]
- Bożek, P.; Broniowski, W.; Ruiz Arriola, E.; Rybczyński, M. α clusters and collective flow in ultrarelativistic carbon–heavy-nucleus collisions. Phys. Rev. C 2014, 90, 064902. [Google Scholar] [CrossRef]
- Behera, D.; Deb, S.; Singh, C.R.; Sahoo, R. Characterizing nuclear modification effects in high-energy O-O collisions at energies available at the CERN Large Hadron Collider: A transport model perspective. Phys. Rev. C 2024, 109, 014902. [Google Scholar] [CrossRef]
- Behera, D.; Mallick, N.; Tripathy, S.; Prasad, S.; Mishra, A.N.; Sahoo, R. Predictions on global properties in O+O collisions at the Large Hadron Collider using a multi-phase transport model. Eur. Phys. J. A 2022, 58, 175. [Google Scholar] [CrossRef]
- Li, Y.-A.; Zhang, S.; Ma, Y.-G. Signatures of α-clustering in 16O by using a multiphase transport model. Phys. Rev. C 2020, 102, 054907. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, Y.G.; Chen, J.H.; He, W.B.; Zhong, C. Nuclear cluster structure effect on elliptic and triangular flows in heavy-ion collisions. Phys. Rev. C 2017, 95, 064904. [Google Scholar] [CrossRef]
- He, J.; He, W.-B.; Ma, Y.-G.; Zhang, S. Machine-learning-based identification for initial clustering structure in relativistic heavy-ion collisions. Phys. Rev. C 2021, 104, 044902. [Google Scholar] [CrossRef]
- Wang, Y.; Zhao, S.; Cao, B.; Xu, H.-j.; Song, H. Exploring the compactness of α cluster in the 16O nuclei with relativistic 16O+16O collisions. arXiv 2024. arXiv:2401.15723. [Google Scholar] [CrossRef]
- Dasgupta, P.; Chatterjee, R.; Ma, G.-L. Production and anisotropic flow of thermal photons in collisions of α-clustered carbon with heavy nuclei at relativistic energies. Phys. Rev. C 2023, 107, 044908. [Google Scholar] [CrossRef]
- Dasgupta, P.; Ma, G.-L.; Chatterjee, R.; Yan, L.; Zhang, S.; Ma, Y.-G. Thermal photons as a sensitive probe of α-cluster in C + Au collisions at the BNL Relativistic Heavy Ion Collider. Eur. Phys. J. A 2021, 57, 134. [Google Scholar] [CrossRef]
- Brewer, J.; Mazeliauskas, A.; van der Schee, W. Opportunities of OO and pO collisions at the LHC. arXiv 2021. arXiv:2103.01939. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatterjee, R.; Dasgupta, P. Probing Relativistic Heavy-Ion Collisions via Photon Anisotropic Flow Ratios. A Brief Review. Physics 2024, 6, 674-689. https://doi.org/10.3390/physics6020044
Chatterjee R, Dasgupta P. Probing Relativistic Heavy-Ion Collisions via Photon Anisotropic Flow Ratios. A Brief Review. Physics. 2024; 6(2):674-689. https://doi.org/10.3390/physics6020044
Chicago/Turabian StyleChatterjee, Rupa, and Pingal Dasgupta. 2024. "Probing Relativistic Heavy-Ion Collisions via Photon Anisotropic Flow Ratios. A Brief Review" Physics 6, no. 2: 674-689. https://doi.org/10.3390/physics6020044
APA StyleChatterjee, R., & Dasgupta, P. (2024). Probing Relativistic Heavy-Ion Collisions via Photon Anisotropic Flow Ratios. A Brief Review. Physics, 6(2), 674-689. https://doi.org/10.3390/physics6020044